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Efflux ratio (ER) was calculated by the equation Papp 
(B-A)/Papp (A-B). Statistical significance of differences 
was tested by Student’s t-test.  The Papp (A to B) was 
significantly higher than Papp (B to A) at p<0.0001, 
indicating an active uptake mechanism. 
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(B to A) for aurone 4-3. Permeation studies were 
performed in triplicate in three independent experiments. 
Data are expressed as mean Papp ± SEM (x10-6 cm/s). 
Efflux ratio (ER) was calculated by the equation Papp 
(B-A)/Papp (A-B). Statistical significance of differences 
was tested by Student’s t-test. The Papp (A to B) 
significantly higher than Papp (B to A) at p<0.05 (p = 
0.0128), indicating an active uptake mechanism. 
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(B to A) for donepezil. Permeation studies were performed 
in triplicate in three independent experiments. Data are 
expressed as mean Papp ± SEM (x10-6 cm/s). Efflux ratio 
(ER) was calculated by the equation Papp (B-A)/Papp (A-B). 
Statistical significance of differences was tested by 
Student’s t-test. No significant difference at p<0.05, 
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Figure 5.17 Apparent permeability coefficients, Papp (A to B) and Papp 
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mechanism). Permeation studies were performed in 
triplicate in three independent experiments. Data are 
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studies were performed in triplicate in three independent 
experiments. Data are expressed as mean Papp ± SEM 
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AURON DENGAN KEFUNGSIAN AMINA DAN KARBAMAT SEBAGAI 

AGEN NEUROPROTEKTIF DENGAN POTENSI PELBAGAI SASARAN: 

SINTESIS DAN KAJIAN HUBUNGAN STRUKTUR-AKTIVITI 

SERTA MOD TINDAKAN 

 

ABSTRAK 

 

Penyakit Alzheimer (AD) ialah penyakit kompleks pelbagai faktor melibatkan 

pelbagai mekanisme yang menyumbang kepada pencetusan penyakit ini. Dalam 

pencarian entiti kimia baru untuk menangani faktor-faktor penyebab penyakit ini, 

strategi rekaan ligan diarah pelbagai sasaran (MTDL) telah digunakan dalam kajian 

ini dengan menggabungkan motif struktur yang terpilih (pelbagai amina dan 

karbamat) daripada dua ubat Alzheimer yang mantap (donepezil dan rivastigmina) ke 

dalam perancah auron. Auron-auron ini direka berdasarkan premis bahawa perancah 

tersebut berpotensi digunakan untuk membangunkan suatu sebatian pelbagai sasaran 

yang bersaiz munasabah kecil untuk neuroprotektif sementara memelihara ciri-ciri 

menyerupai ubat yang baik. Dalam kajian ini, suatu siri terbitan auron yang 

membawa kefungsian amina dan karbamat di pelbagai kedudukan (gelang A dan/atau 

B) perancah telah disintesiskan dan dicirikan dengan menggunakan teknik-teknik 

spektroskopi. Auron-auron tersebut pada mulanya dinilai dalam aktiviti in vitro 

perencatan asetilkolinesterase (AChE) dan butirilkolinesterase (BuChE). Untuk 

mengesahkan ciri pelbagai sasaran mereka, auron tersebut dinilai dalam dua aktiviti 

berkaitan dengan penyakit Alzheimer (AD), iaitu perencatan monoamina oksidase 
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(MAO) dan pengagregatan amiloid beta (Aβ). Pada masa yang sama, kestabilan 

metabolik dan ketelapan rintangan darah-otak (BBB) auron terpilih yang poten 

diperiksa untuk mengenal pasti suatu sebatian optimum dengan kombinasi pelbagai 

potensi dan profil farmakokinetik yang baik. Kesan neuroprotektif aurone 4-3 yang 

paling baik kemudian diperiksa dengan dua model neurodegenerasi Caenorhabditis 

elegans (C.elegans), iaitu kelumpuhan diaruh Aβ dan neurodegenerasi diaruh 

6-hidroksidopamina (6-OHDA). Kajian hubungan struktur-aktiviti mendedahkan 

beberapa perencat kuat AChE selektif yang membawa moieti piperidina dan 

pirolidina di gelang A atau B, dengan nilai-nilai IC50 submikromolar. Sebagai 

tambahan kepada aktiviti perencatan AChE mereka, potensi pelbagai sasaran telah 

diperhatikan dalam dua auron, iaitu auron 2-2 (perencat MAO-B) dan 4-3 (perencat 

pengagregatan Aβ). Pengeraman mikrosom hati tikus dengan auron mengenalpasti 

4-3 sebagai paling stabil secara metabolik berbanding dengan auron-auron lain. 

Penilaian ketelapan BBB menggunakan cerakinan ketelapan membran tiruan selari 

(PAMPA) dan ketelapan dwiarah sel endothelium otak khinzir (PBEC) mendedahkan 

kesemua auron yang diuji sangat telap secara pasif merentasi BBB serta penerapan 

aurone 4-3 adalah melibatkan mekanisme pengambilan aktif merentasi BBB. 

Tambahan, auron 4-3 yang menjanjikan juga menunjukkan perlindungan kepada 

nematod daripada ketoksikan diaruh Aβ dan 6-OHDA dalam model neurodegenerasi 

C.elegans. Maka, auron 4-3 yang ditemui dalam kajian ini mewakili suatu sebatian 

petunjuk menyerupai ubat yang menjanjikan kepada perkembangan lanjut perancah 

auron sebagai agen pelbagai poten yang berpotensi untuk penyakit neurodegeneratif. 
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AURONES OF AMINE AND CARBAMATE FUNCTIONALITIES AS 

NEUROPROTECTIVE AGENTS WITH MULTITARGETING POTENTIAL: 

SYNTHESIS, STRUCTURE-ACTIVITY RELATIONSHIPS AND 

MODE OF ACTION STUDIES 

 

ABSTRACT 

 

Alzheimer’s disease (AD) is a complex multifactorial disease involving diverse 

mechanisms contributing to the onset of the disease. In the search for novel chemical 

entities to address the causative factors of the disease, the multitarget-directed ligand 

(MTDL) design strategy has been applied in the present study by incorporating 

selected structural motifs (various amines and carbamate) from two established 

Alzheimer drugs (donepezil and rivastigmine) into the aurone scaffold. These 

aurones were designed on the premise that the scaffold could be utilised to develop a 

reasonably small sized multitargeting compound (targeting cholinesterase, 

monoamine oxidase, and amyloid-beta aggregation) for neuroprotection while 

maintaining good drug-like properties. In this study, a series of aurone derivatives 

carrying amine and carbamate functionalities at various positions (ring A and/or B) 

of the scaffold was synthesized and characterized using spectroscopic techniques. 

These aurones were initially evaluated for their in vitro acetylcholinesterase (AChE) 

and butyrylcholinesterase (BuChE) inhibitory activities. To further substantiate their 

multi-targeting properties, the aurones were evaluated on two Alzheimer’s disease 

(AD)-related activities, namely monoamine oxidase (MAO) and amyloid-beta (Aβ) 
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aggregation inhibitions. In parallel, the metabolic stability and blood-brain barrier 

(BBB) permeability of selected potent aurones were examined to identify an optimal 

compound with a combination of multipotency and favourable pharmacokinetic 

profile. The neuroprotective effect of the most promising aurone 4-3 was then 

examined on two Caenorhabditis elegans (C. elegans) neurodegeneration models, 

namely Aβ-induced paralysis and 6-hydroxydopamine (6-OHDA)-induced 

neurodegeneration. Structure-activity relationship study revealed several potent 

selective AChE inhibitors carrying piperidine and pyrrolidine moieties at ring A or B, 

with submicromolar IC50 values. In addition to their AChE inhibitory activity, 

multi-targeting potential was observed in two aurones, namely aurone 2-2 (MAO-B 

inhibitor) and 4-3 (Aβ-aggregation inhibitor). Rat liver microsomal incubation of the 

aurones identified aurone 4-3 to be the most metabolically stable compared to the 

other aurones. BBB permeability evaluation using the parallel artificial membrane 

permeability assay (PAMPA) and porcine brain endothelial cells (PBEC) 

bidirectional permeability revealed all the tested aurones to be highly passive 

permeable across the BBB and the permeation of aurone 4-3 to involve active uptake 

mechanism across the BBB. In addition, the most promising aurone 4-3 also showed 

protection on the nematodes against both Aβ- and 6-OHDA-induced toxicities in the 

C.elegans neurodegeneration models. Hence, aurone 4-3 discovered in the present 

study represents a promising, drug-like lead for further development of the aurone 

scaffold as potential multi-potent agents for neurodegenerative diseases. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Neurodegenerative diseases 

Neurodegenerative diseases are debilitating disorders characterized by progressive 

loss of nerve structure and function in the central nervous system (CNS). They 

include Alzheimer’s disease (AD), Parkinson’s disease, Huntington’s disease, 

amyotrophic lateral sclerosis and multiple sclerosis. Although there are a variety of 

risk factors (aging, genetics, environment, and lifestyle) leading to the onset of these 

diseases (Nieoullon, 2011), the outcome is the same: loss of cognitive function and 

motor control progressing to brain atrophy and death (Brettschneider et al., 2015). 

Despite their enormous diversity in clinical manifestations and pathogenesis, most 

neurodegenerative diseases share some common key features: dramatic loss of 

synapses and neurons and cerebral deposits of insoluble misfolded protein aggregates 

(Forman et al., 2004). These deposits can be considered trademarks for the different 

neurodegenerative disorders because the main protein component involved is 

different in each disease (Ramanan and Saykin, 2013). In the particular case of AD, 

two types of protein deposits are considered to be the pathological hallmarks of the 

disease, namely senile plaques (also known as amyloid plaques) that are associated 

with extracellular amyloid beta (Aβ) protein (Glenner and Wong, 1984) and 

intracellular neurofibrillary tangles (NFT) that are composed of hyperphosphorylated 

tau protein (Huang and Mucke, 2012; Longo and Massa, 2004). 
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1.1.1 Prevalence and pathogenesis of AD 

Among the various neurodegenerative diseases that have been diagnosed, AD stood 

out to be the most prominent in terms of prevalence and socioeconomic burden 

(Maslow, 2008). The disease is named after Alois Alzheimer, the pathologist who in 

1907 first observed the plaques and tangles in the brains of AD patients (Forman et 

al., 2004). It is age-related and affects approximately 5 - 8 % of people over the age 

of 65, 15 - 20 % of those over the age of 75, and 25 - 50 % of those over the age of 

85 (Shah et al., 2008). Epidemiologic studies show that around 35 million in the 

world are suffering from AD and this will grow to more than 100 million cases by 

2050 (Aggarwal et al., 2012; Thies and Bleiler, 2013). In parallel with the increase in 

the number of people affected with AD, the annual financial cost to society due to 

AD in 2010 was estimated approximately US$ 604 billion worldwide (Wimo et al., 

2013) and expected to increase by the year of 2030 (Abbott, 2011), highlighting the 

enormous socioeconomic impact of AD.  

 

 Notwithstanding the many efforts to understand the AD pathogenesis, the 

precise aetiology of AD remains incomplete (Leon et al., 2013). Advancements in 

molecular biology and immunology over the past two decades have enabled further 

understanding of the disease and the identification of molecular targets that mediate 

the pathogenesis of AD. Several theories have come into prominence to explain the 

aetiology of AD (Klafki et al., 2006; Suh et al., 2005): the cholinergic deficit 

hypothesis (Bartus et al., 1982), the amyloid cascade hypothesis (Hardy and Allsop, 

1991; Hardy and Selkoe, 2002; Karran et al., 2011), oxidative stress and 

mitochondrial dysfunction (Garcia-Escudero et al., 2013; Marcus et al., 1998; 

Moreira et al., 2010), excitotoxic and neuroinflammatory processes (Mishizen-
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Eberzet al., 2004) and monoaminergic abnormalities (Baker and Reynolds, 1989, 

Trillo et al., 2013), altogether depicting a complex picture of the disease. 

 

The cholinergic hypothesis is particularly important as it has been the 

cornerstone to the discovery of the present treatments for AD. This hypothesis 

postulates that the cognitive impairment and symptoms (dementia, memory loss) 

experienced by AD patients are due to the extensive loss of cholinergic neurons in 

certain regions of the brain such as the hypothalamus, the amygdala, and the 

neocortex. Drugs that can restore this cholinergic deficit in the CNS would therefore 

be able to slow the cognitive decline associated with the disease. 

 

Also of prominence is the amyloid cascade hypothesis which originates from 

the observation of Aβ plaques in the AD brains. The deposition of insoluble Aβ 

fibrils amidst the neurons and the generation and aggregation of Aβ monomers into 

protofibrils and oligomers have been shown in studies in vitro and in vivo to be toxic 

to the neurons (Klein, 2013). The mechanisms by which Aβ exerts neuronal toxicity 

and the identification and dynamics of the different Aβ forms (for examples, 

protofibrils, soluble oligomers) that are toxic are among the most extensively studied 

subjects in AD research with the aim of finding a potential therapeutic targeting Aβ 

in mind (Benilova et al., 2012).  

 

1.1.2 Current treatment modalities for AD 

To date, there is no efficacious treatment available that allows the recovery and 

reversal of the inevitable degenerative process of AD (Simoes et al., 2014). Current 

drugs available for AD treatment in the clinic are mainly acetylcholinesterase 
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inhibitors (AChEIs) (Leon et al., 2013) based on the cholinergic deficit hypothesis. 

This hypothesis arised from evidence that AD patients suffered from cognitive 

dysfunction because of the loss of cholinergic neurons and activity in certain parts of 

the brain. Thus, a drug that inhibits the hydrolysis of the cholinergic neurotransmitter 

acetylcholine by presynaptic acetylcholinesterase would augment cholinergic activity 

and relieve the symptoms of AD. Only a handful of AChEIs have been approved by 

the U.S. Food and Drug Administration (FDA) and launched in the market for the 

treatment of mild and moderate stages of AD. They are tacrine (1993), donepezil 

(1996), rivastigmine (2000) and galanthamine (2001) (Hong-Qi et al., 2012). Tacrine 

was the first acetylcholinesterase inhibitor approved for the treatment of AD 

(Tumiatti et al, 2010). However, tacrine was eventually abandoned due to its limited 

therapeutic use because of its poor oral bioavailability and severe adverse effects 

such as hepatotoxicity and gastrointestinal reactions (Alfirevic et al., 2007; Mehta et 

al., 2012).  

 

In 2003, another drug called memantine has been approved by FDA that acts 

as a non-competitive antagonist of glutamate receptors (Mehta et al., 2012; Rodda 

and Carter, 2012).  This drug marks a departure from the previous AChEIs in that it 

has a different mechanism of action; it binds to the N-methyl-D-aspartate (NMDA) 

receptor to block the excitotoxic effects of elevated glutamate levels that may lead to 

neuronal dysfunction (Rodda and Carter, 2012).  
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Figure 1.1: Chemical structures of clinically used drugs for the treatment of AD. 

 

1.1.3 Emerging paradigm: Multitarget-directed ligand (MTDL)  

The current drugs available for AD are considered as short-term treatments and 

appear to be palliative as they temporarily slow down the progressive loss of 

cognitive function and do not address AD’s causative factors (Hong-Qi et al., 2012; 

van Marum, 2008). The molecular basis of AD can be considered as a complex 

network of protein targets with multiple pathological pathways inter-relating with 

each other (Minarini et al., 2012). Due to the multifactorial nature of AD and the 

diverse molecular and cellular mechanisms implicated in the disease, these “one-

drug-one-target” drugs are only capable of symptomatic relief and are unable to 

prevent the neurodegenerative process hence the limited efficacy of the current 

clinical therapy for AD (Pisani et al., 2011). The lack of effective treatment of the 

disease in spite of the complexity of AD prompted many research efforts to search 

for potential disease-modifying agents that target the other factors associated with 

AD (Citron, 2010; Galimberti and Scarpini, 2011; Salomone et al., 2012). Examples 

of AD causative factors are amyloid-beta (Aβ) aggregation and generation of toxic 
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Aβ oligomers, the formation of tau protein fibrils within the neurons, 

neuroinflammation, excitotoxic insults, and oxidative stress (Figure 1.2).  This has 

led to the idea of multitarget-directed ligand (MTDL) in medicinal chemistry, 

molecules designed to combine functionalities or moieties needed in one molecule to 

hit multiple targets simultaneously (Nepovimova et al., 2014; Rosini et al., 2005; 

Zhang, 2005). In principle, each of the functionalities combined in a hybrid molecule 

should retain their ability to interact with their corresponding targets and 

consequently, to produce pharmacological responses which as a whole modulate the 

neurodegenerative process (Cavalli et al., 2008). Such an approach may hold the 

promise for treating a multifactorial disease such as AD. 

 

 Aaggregation and toxic soluble oligomers
(give rise to neurotoxic effects, inflammation, oxidative stress)

Presynaptic acetylcholinesterase
(hydrolysis of acetylcholine)

Excitotoxic stimulation 
(glutaminergic excitation)

Reactive astrocytes 
(Monoamine oxidase 
(Glutaminergic excitation)

Reactive microglial cells
(cytokines , TNF- )

Neuron dysfunction and loss

Oxidative stress
(Reactive oxygen species )

AChEIs 
(tacrine, galanthamine, 
donepezil, rivastigmine)

Memantine

Fibrillary tangles (tau protein) within neurons

 

Figure 1.2: A simplified diagram showing the multiple factors implicated in the 
pathogenesis of AD and the present drugs available to address them. 
 

Over the past decade, many potential multifunctional agents have been 

developed for AD treatment. The majority of these focused on the modifications of 

existing drugs with specific biological activities (Guzior et al., 2015; Nepovimova et 
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al., 2014). One of the most widely adopted designs in this approach was a dual- 

binding AChEI in which modification was made on the existing AChEIs with 

additional biological properties such as Aβ anti-aggregating activity (Bajda et al., 

2011; Giacobini, 2004; Pepeu and Giovannini, 2009). Previous studies showed that 

the peripheral anionic site (PAS) of the enzyme acetylcholinesterase (AChE) can 

induce the formation of Aβ fibrils (Bartolini et al., 2003; Inestrosa et al., 1996); 

therefore, dual-binding AChEI that is able to bind to both the catalytic and peripheral 

sites of the enzyme could simultaneously inhibit the hydrolysis of acetylcholine and 

block the Aβ-aggregating action of the enzyme (Dinamarca et al., 2010; Johnson and 

Moore, 2006). In an attempt to examine new dual-binding AChEIs, Tang and co-

workers (2011) synthesized a series of novel compounds bearing tacrine and 

oxoisoaporphine moieties linked by an aminoalkyl tether (Figure 1.3). In this 

approach, tacrine acts as catalytic-site inhibitor and oxoisoaporphine as a PAS 

inhibitor of AChE. All the synthesized compounds were found to be AChEIs, with 

IC50 values in the nanomolar range (3.4 to 910 nM) and showed inhibitory activities 

(35.5 - 85.8 %) on self-induced Aβ aggregation at 10 µM (Tang et al., 2011). 

 

H
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N
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Oxoisoaporhine
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Figure 1.3: Structure of tacrine heterodimers with promising AChE and Aβ 
aggregation inhibitory activity (Tang et al., 2011). 
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Another successful approach of multifunctional agents based on dual-binding 

AChEI is the donepezil-tacrine hybrid compound. In 2010, a series of AChE and Aβ 

aggregation inhibitors was synthesized by Camps and co-workers by combining both 

donepezil and tacrine molecules, linked by a variety of spacer subunits (Figure 1.4). 

All compounds of this series were able to inhibit the human AChE and 

butyrylcholinesterase (BuChE) in the nanomolar range together with several 

compounds showing multipotencies by significantly inhibiting the AChE-induced Aβ 

aggregation at the concentration of 100 μM (Camps et al., 2010). 

 

N

O
O

O
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N Cl

Indanone of donepezil

6-chlorotacrine

 

Figure 1.4: Structure of tacrine-donepezil hybrid compound with selective AChE and 
AChE-induced Aβ aggregation inhibitory activities (Camps et al., 2010). 

 

In another example, Bolea and co-workers (2011) reported a series of 

donepezil-based hybrid compounds capable of interacting simultaneously with 

cholinesterases (ChE) and monoamine oxidase (MAO), two targets related to AD 

and other neurodegenerative diseases. The structural design was based on the 

combination of the benzylpiperidine moiety of donepezil and indolylpropargyl amine 
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subunit present in the structure of monoamine oxidase inhibitors (MAOIs) connected 

by methylene chains of various lengths. Among the compounds tested, a compound 

(Figure 1.5) was identified as a promising compound which showed selective 

inhibition on monoamine oxidase A (MAO-A) with an IC50 of 5.2 nM and non-

selective inhibition towards the cholinesterase enzymes in submicromolar range. In 

conjunction, this compound was also shown to be able to inhibit Aβ self-induced 

aggregation as well as AChE-induced Aβ aggregation. These results suggested that 

this compound might be a promising multitargeting drug candidate to address the 

multifactorial nature of AD (Bolea et al., 2011). 

 

N

O

N

N

Me

Me

Indolyl propargylamine

Benzyl piperidine

 

Figure 1.5: Structure of donepezil-propargylamine hybrid compound with dual 
ChE/MAO inhibitory activity (Bolea et al., 2011). 

 

Aside from this, more interesting multitarget-directed ligands (MTDLs) 

designed utilising this hybrid approach include the cholinesterase inhibitors with 

neuroprotective and antioxidant activity (Fernandez-Bachiller et al., 2009; Samadi et 

al., 2011), monoamine oxidase B (MAO-B) inhibitors with metal-chelating property 

(Fernandez-Bachiller et al. 2010), and metal chelators with antioxidant activity 

(Avramovich-Tirosh et al., 2007; Zheng et al., 2009). Most of these ligands have 

been shown to display promising biological activity in vitro and proved to be 

superior to those of one-target specific drugs. Interestingly, several studies also 
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suggested that MTDLs may give rise to neuroprotective effect (Bajda et al., 2011; 

Bolea et al., 2013; Minarini et al., 2012). Such a desirable effect has been attributed 

to the combination of two or more functionalities in the hybrid molecules enabling 

them to intervene concertedly on several biological pathways. 

 

1.1.4 The importance of drug-like properties 

Drug discovery is a complex and demanding process, involving many disciplines and 

investigations into various aspects, often with complications on the road to realize a 

successful drug. In the earlier history of drug discovery, the trend in industry practice 

was to optimize the biological target activity or potency of the drug candidate first. 

Little attention was given to the bioavailability and pharmacokinetic properties of the 

potent compounds. These aspects were only addressed in the later stages of 

development.  This was one of the reasons many compounds with high potencies 

failed in clinical trials due to poor pharmacokinetic profiles and bioavailability 

(Lipinski, 2000). In the case of drugs developed to treat CNS diseases such as AD, of 

the many potential compounds in development, only 2 % are able to enter the brain 

in sufficient concentrations to produce the desired therapeutic effect (Pardridge, 

2001). These clinical failures marked a tremendous loss in terms of money, research 

effort, and time.  

 

In recent years, considerable attention has been placed on assessing drug-like 

properties during the early phase of discovery. These drug-like properties include 

absorption, distribution, metabolism, elimination and toxicity (ADMET) in addition 

to the other physicochemical aspects to ensure the pharmacokinetic feasibility of 

compounds brought forth during development (Di and Kerns., 2003; Liu et al., 
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2004). The term “drug-like” is a qualitative concept used in drug design to describe 

certain intrinsic properties (structural, physicochemical, biochemical and 

pharmacokinetic) of a compound that would contribute to its bioavailability 

(availability in the system) and its availability in the CNS for drugs aimed for 

treating CNS diseases (Kerns and Di, 2008; Li, 2005). Looking for and optimizing 

drug-like features in the molecules synthesized during the early part of discovery 

would be beneficial in ensuring quality, pharmacokinetically sound (and not any) 

compounds are being studied throughout the various stages of development.  

 

Many high-throughput in vitro assays have been developed over the past 

decade for evaluating drug-like properties in order to avoid unnecessary complexities 

associated with animal models and to minimize the time and cost needed to screen 

large numbers of target compounds (Di et al., 2004; Liu et al., 2004). These assays 

measure the fundamental physicochemical and biochemical properties which 

determine the higher level properties such as the pharmacokinetics of a drug (Li, 

2004). They include blood-brain barrier permeability assays, gastrointestinal 

permeability assays, plasma stability assay, solubility assay, and liver microsomal 

stability assay that are able to sort out candidates with acceptable drug-like properties 

in the earlier drug design phase with fewer resources and in a shorter amount of time 

(Di et al., 2003; Kerns and Di, 2008; Li, 2005). Moreover, these methods also 

showed good correlation with in vivo findings and could reflect the in vivo 

pharmacokinetic condition (Li, 2005). Table 1.1 lists several commonly assessed 

drug-like properties and the in vitro assays used to evaluate them. 

 

 



12 
 

Table 1.1: Selected drug-like properties and their in vitro methods of evaluation     
(Di and Kerns, 2003). 

Drug-like Properties Methods/Assays 
Oral/gastrointestinal permeability Parallel Artificial Membrane Permeability 

Assay (PAMPA), Caco-2 cell monolayer, 
immobilized artificial membrane high 
performance liquid chromatography (HPLC), 
everted gut sac. 
 

Lipophilicity Shake flask method, reversed phase HPLC, 
capillary electrophoresis. 
 

Blood-brain barrier permeability PAMPA-BBB, cell-based method. 
 

Metabolic stability Liver microsomes, S9 fraction, cytosol, 
hepatocytes. 
 

Toxicity Cell toxicity, hERG block assays, zebrafish. 
 

CYP450 inhibition and induction Liver microsomes, hepatocytes. 
 

 

In order to design a compound with drug-like properties, the Lipinski’s rule 

of five or simply Rule of five (RO5) plays a guiding role, whereby it states that a 

drug-like molecule in general should have less than 5 hydrogen bond donors and 10 

hydrogen bond acceptors, a molecular mass less than 500 Da, and an octanol-water 

partition coefficient (log P) value less than 5 (Lipinski, 1997). Early evaluation of a 

chemical structure as suggested by the RO5 would allow one to select the possible 

drug candidates that would be more drug-like for further pharmacological testing 

(Lipinski, 2004). This rule of thumb together with the assays for evaluating drug-like 

properties  are used to drive the design, synthesis, selection, and optimization of 

compounds in conjunction with the main biological activity evaluation. 
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1.2 Overview of aurones and their AD-related activities 

Aurones (2-benzylidenebenzofuran-3-(2H)-ones) are small molecules belonging to 

the flavonoid family that are naturally present as bright yellow pigments in fruits and 

flowers of certain terrestrial and marine plants (Harborne et al., 1988). Naturally 

occurring aurones derivatives are often found as their hydroxylated, methoxylated or 

glycosylated forms (Beney et al., 2001). Although aurones are structurally related to 

the other subclasses of flavonoids (flavones, isoflavones and chalcones), aurones 

hold a unique place in nature due to the remarkably low quantities present in plants 

(Haudecoeur and Boumendjel, 2012). 

 

O

O

A

B

C

 

Figure 1.6: The aurone scaffold. 

 

Ever since the first review by Boumendjel (2003), aurones have gained 

considerable attention as a “privileged structure” due to its promising utility in many 

medicinal chemistry projects (Boumendjel, 2003; Haudecour and Boumendjel, 2012; 

Zwergel et al., 2012). Aurones have been found to possess antiproliferative effect in 

cancer cells (Lawrence et al., 2003), anti-tyrosinase activity (Okombi et al., 2006), 

anti-viral activity (Liu et al., 2008), anti-microbial activity (Bandgar and Patil, 2010), 

antimalarial activity (Souard et al, 2010; Carrasco et al., 2014), and are potential 

chemopreventive agents via the induction of the cytoprotective NADP(H) Quinone 

Oxidoreductase 1 (NQO1) (Lee et al., 2010). More recent studies revealed that 

aurones possess anti-inflammatory activity by reducing the production of nitric oxide 
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and prostaglandin E2 (Shin et al., 2011), and were potent inhibitors of the breast 

cancer resistance protein ABCG2 (Sim et al., 2011) and Hepatitis C Virus RNA 

Polymerase (Haudecoeur et al., 2012; Meguellati et al., 2014).  

 

Sheng and co-workers (2009) were the first to report AD related activities of 

synthetic aminomethylaurones through AChE inhibition. Most of the synthesized 

aurones demonstrated a high inhibition towards AChE with IC50 in micromolar range 

(Sheng et al., 2009). The authors also proposed that the π-π stacking interaction of an 

aurone planar ring system could be a reason for the enhanced AChE inhibitory 

activity of the aurones (Sheng et al., 2009). In another investigation, a series of 6-

alkoxy aurone derivatives all possessing pyridinium as the nitrogen-bearing motif 

showed moderate to high AChE inhibition activities (Nadri et al., 2010). However, 

these aurones were focused mainly on the cholinesterase inhibitory activity and were 

not designed for multitargeting purposes. In addition, aurones have also been 

reported to exhibit high binding affinity for Aβ aggregates in vitro (Maya et al., 

2009) and more recently showing MAO inhibitory activity (Morales-Camilo et al., 

2015). These reported activities provide interesting leads to exploit the scaffold in the 

development of novel multitargeting anti-Alzheimer's agents.  
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Figure 1.7: Aurones with reported acetylcholinesterase inhibitory activity. 
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1.3 Problem statement and hypotheses 

The purpose of this thesis is to investigate the potential of aurones as neuroprotective 

agents via a multi-target directed ligand design while placing equal emphasis to 

maintain a balanced drug-like profile particularly their metabolic stability and ability 

to permeate the blood-brain barrier. Numerous MTDLs have been developed and 

were shown to be have potent multi-faceted activities (Bajda et al., 2011; Guzior et 

al., 2015; Pisani et al., 2011). However, despite having high potencies and strong 

binding affinities for their target proteins (many in the nanomolar range), these 

ligands were generally bulky, had high molecular weights (> 500 Da), and were 

tethered hybrids of two drug molecules as can be observed from several MTDL 

examples cited in Section 1.1.3. Such structural designs cast doubts about their drug-

like properties. Large molecular weights in these compounds could hinder their 

ability to permeate the blood-brain barrier which is necessary for a CNS-active 

compound while high lipophilicity which came with their large size may attract high 

liver metabolism and clearance particularly by the phase 1 cytochrome P450 

(CYP450) enzymes. It can be argued that in the design of these hybrid MTDLs, 

drug-like considerations (which are necessary for the development of CNS drugs) 

have been overlooked in achieving high target protein affinities and multitarget 

potencies. 

 

To develop a novel multipotent anti-Alzheimer drug that retains good drug-

like properties (metabolic stability and blood-brain barrier permeability), the aurone 

platform was utilised in the present investigation. The aurone scaffold with a tenable 

molecular weight of 222.24 Da and a topological polar surface area (26.3 Å2) would 

provide a suitable foundation for which to introduce additional key functionalities 
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while maintaining reasonable molecular weight and polar surface area in compliance 

with the RO5 (Lipinski, 1997; 2000). Over the past decade, the aurone scaffold has 

gained importance as a “privileged structure” due to its prevalence in many 

pharmacologically active compounds (Boumendjel, 2003; Zwergel et al., 2012). It is 

proposed that by incorporating selected structural motifs (various amines and 

carbamate) from two established Alzheimer drugs (rivastigmine and donepezil) into 

the scaffold, a novel multitargeting AChEI that has additional mechanism(s) of 

action may be uncovered. It would also seem likely that the proposed multitargeting 

aurones may exhibit neuroprotective effect, as has been observed in studies on other 

MTDLs (Bajda et al., 2011; Bolea et al., 2013; Minarini et al., 2012). A promising 

aurone obtained from this study would provide the tool to investigate this premise. 
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Figure 1.8: Selected structural motifs (basic amine and carbamate) from donepezil 
and rivastigmine used in the present study. 

 

In addition to examining the pharmacological potential of the aurones,  it is 

also important to gain accurate data on their drug-like properties as such information 

is needed to identify an optimal compound with a combination of good 

activity/potency and favourable pharmokinetic profile (metabolic stability, blood-

brain barrier permeability). Little is known about the drug-like properties of aurones, 

particularly their stability in the face of phase 1 CYP450 liver clearance and their 
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ability to permeate the blood-brain barrier, important features in developing a CNS-

active compound. It is hypothesized that the close resemblance between the aurone’s 

benzofuranone and the pharmacokinetically optimized donepezil’s indanone might 

give rise to favourable drug-like properties in the target aurones in addition to their 

“streamlined” (small molecular weights and polar surface area) design. Furthermore, 

the proposed introduction of amines and carbamate moieties into the scaffold may 

influence the physicochemical properties of the scaffold and hence their drug-like 

potential. 

 

1.4 Objectives of study 

To verify the aforementioned hypotheses, the specific objectives of the study are as 

follow: 

(i) To design and synthesize a series of aurone derivatives incorporating the 

selected structural motifs from the known AChEIs donepezil and rivastigmine. 

(ii) To elucidate the structure-activity relationship of the aurones with respect to 

their cholinesterase inhibitory activity as well as their mode of binding. 

(iii) To investigate the multitargeting potential of the aurones in two AD-related 

targets (monoamine oxidase and Aβ aggregation) and their respective binding 

mechanisms. 

(iv) To evaluate the drug-like properties of selected aurones using in vitro 

pharmacokinetic assays (metabolic stability, blood-brain barrier permeability). 

(v) To investigate the neuroprotective effects of the most promising aurone in two 

Caenorhabditis elegans (C.elegans) neurodegeneration models. 
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CHAPTER 2 

 

DESIGN AND SYNTHESIS OF TARGET COMPOUNDS 

 

2.1 Introduction  

This chapter describes the design and synthesis of target compounds for the 

evaluation of potential neuroprotective properties based on their anti-cholinesterase 

activity. These compounds possess the aurone scaffold with modifications at rings A 

and B with various basic amines and carbamate functionalities. The rationale 

underlying the design, chemical considerations of their synthesis and the 

experimental methods are presented. The structures of the synthesized compounds 

were identified by proton-1 (1H) and carbon-13 (13C) nuclear magnetic resonance 

(NMR) spectroscopy, and their mass spectra. Spectroscopic data, melting points, 

yields and purities of each compound are listed in Appendix 1. 

 

2.2 Rationale of target compound design 

The aurone scaffold was chosen in this investigation owing to the close resemblance 

of its benzofuranone core with the indanone of the clinically used Alzheimer drug 

donepezil (Figure 2.1). Donepezil is a well-tolerated, orally bioavailable 

acetylcholinesterase inhibitor for the treatment of AD (Sugimoto et al., 2002; 

Wilkinson, 1999).  It serves as a lead for further modifications on the aurone scaffold 

to uncover novel compounds with a similar pharmacokinetic profile. Furthermore, 

studies on a series of pyridinium aurone derivatives synthesized as 

acetylcholinesterase inhibitors revealed that some of these compounds exhibited high 

anti-cholinesterase activity (Nadri et al., 2013; Nadri et al., 2010). In addition, 
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aurones have been developed as probes for imaging Aβ plaques using single photon 

emission computed tomography (SPECT) that showed high affinity for Aβ 

aggregates (Ono et al., 2007) suggesting a potential multi-targeting property in the 

scaffold. 
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Figure 2.1: The aurone scaffold and the structures of AChEIs donepezil and 
rivastigmine. 

 

In this study, a total of forty-one target compounds were synthesized and 

grouped into six series based on the modifications at rings A and B of the aurone 

scaffold. Series 1 and 2 consist of 6-hydroxyaurones and 6-methoxyaurones 

respectively with different substituents at the 4'-position of the ring B (Table 2.1 and 

2.2). They were introduced because such oxygenated aurones have been reported to 

exhibit multiple bioactivities including anti-inflammatory properties (Shin et al., 

2011), a desirable feature in developing a multi-targeting agent. Moreover, hydroxyl 

and methoxyl groups would provide a good comparison between the two series with 

regard to their lipophilicities and hydrogen bond donor and acceptor properties. 

Series 3 comprises of aurones with “reversed” functionalized equivalents of Series 2 

in which the various substituents are placed at the 6-position of ring A while the 

methoxyl group is at the 4'-position of ring B (Table 2.3). They provide suitable 

comparisons with Series 2 and Series 5 by which to explore the placement of the 
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amine or carbamate moieties at the other end of the scaffold. Series 4 aurones are 

akin to Series 3 with the functionalization at ring A but with a 3', 4', 5'-trimethoxy 

motif at ring B (Table 2.4). This modification was inspired by a report on a series of 

multipotent AChEIs in which the use of this motif gave rise to potent inhibitors 

(Belluti et al., 2005). Series 5 are 6-diethylcarbamoylaurones with the amine 

functionalities at ring B to examine the effect of having the carbamate moiety at ring 

A (Table 2.5). Series 6 aurones are chlorinated equivalents of Series 2 where one 

chlorine is placed at positions ortho and meta to the amine functionality at ring B 

(Table 2.6). This series serves to assess whether the placement of an electron-

withdrawing group (such as chlorine) near a potentially labile site can increase the 

metabolic stability of the compounds. 

 

As for the type of substituents, they were limited to tertiary amines such as 

dimethylamino-, diethylamino-, pyrrolidine, and piperidine. The rationale underlying 

this choice was because most centrally active AChEIs such as donepezil, 

galanthamine and recently synthesized derivatives (Pan et al., 2014; Yan et al., 2012) 

hold basic, ionisable nitrogen-containing moieties which contribute to their activities 

and pharmacokinetic properties. Carbamate functionality (diethylcarbamate) 

borrowed from the known AChEI rivastigmine (Figure 2.1) and xanthostigmine 

derivatives (Rampa et al., 2001) is another group introduced into the design of the 

present aurones. The incorporation of the aforementioned amines and carbamate to 

the aurone scaffold is expected to influence the anti-cholinesterase activity of the 

target compounds.  

 

 



21 
 

Table 2.1: Structures of compounds in Series 1 

Compound R1 % Yield 
Series 1 

O

O

R1

A
HO

6

 

 
1-1 

 
O

N CH3

CH3
B

 

 
63 

 
1-2 

 
O

N
B

 

 
64 

 
1-3 

 
O

N
B

 

 
59 

 
1-4 

 

N
CH3

CH3B

 

 
99 

 
1-5 

 

N

CH3

CH3
B

 

 
81 

 
1-6 

 

N
B

 

 
53 

 
1-7 

 

O
B

N
CH3

CH3

 

 
84 

 
1-8 

 

B
OCH3

 

 
68 

 

 

 

 



22 
 

Table 2.2: Structures of compounds in Series 2 
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Table 2.3: Structures of compounds in Series 3 

Compound R1 % Yield 
Series 3 
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Table 2.4: Structures of compounds in Series 4 
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Table 2.5: Structures of compounds in Series 5 

Compound R1 % Yield 
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