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PEMBANGUNAN IMUNOESEI UNTUK MITRAGININ 

 

ABSTRAK 

  

Ketum merupakan tumbuhan tropika yang digunakan dalam perubatan 

traditional untuk mengurangkan kesakitan dan merawat cirit-birit. Walau 

bagaimanapun, di Malaysia, ketum seringkali disalahgunakan sebagai dadah rekreasi 

disebabkan kesan rangsangan sistem saraf pusat dan kekerapan penyalahgunaannya 

semakin meningkat semenjak 2005. Mitraginin (MG), substrat/bahan aktif ketum, 

telah dibuktikan boleh menyebabkan ketagihan. Oleh sebab itu, kini dibawah Akta 

Racun 1952, ketum adalah bahan kawalan di mana pemilikan ketum dianggap salah di 

sisi undang-undang. Justeru itu, ujian saringan air kencing diperlukan. Oleh yang 

demikian, objektif utama projek ini adalah untuk membangunkan suatu imunoesei 

untuk mengesan mitraginin dan metabolit-metabolitnya di dalam air kencing manusia. 

Untuk menghasilkan antibodi terhadap mitraginin, ia telah digandingkan kepada 

protein pembawa, albumin serum lembu yang dikationkan (cBSA) melalui tindak 

balas Mannich. Antigen yang disintesis ini disuntikkan ke dalam dua arnab untuk 

mendapatkan antibodi poliklonal terhadap mitraginin. Antibodi-antibodi dikumpulkan 

seminggu selepas imunasi kedua. Enzim konjugat mitraginin-HRP telah disintesis 

sebagai reagen pengesan melalui tindak balas Mannich. Kedua-dua antibodi dan enzim 

konjugat dioptimalkan dalam imunoesei demi pencirian antibodi mitraginin. 

Imunoesei menggunakan antibodi mitraginin dengan enzim konjugat mitraginin-HRP 

membawa nilai IC50 sebanyak 8.38 ng/mL. Kereaktifan-silang antibodi dengan 7α-

hydroxy-7H-mitragynine (82.65%), speciociliatine (63.20%), dan paynantheine 

(54.35%) menggunakan enzim konjugat mitraginin-HRP. Imunoesei yang 
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dibangkitkan menunjukkan had pengesanan bernilai 15.05 ng/mL untuk air kencing 

dan had kuantifikasi pada 27.23 ng/mL di mana sampel air kencing cuma dicairkan 10 

kali ganda dengan larutan penampan. Keputusan intra- dan inter-esei yang didapati 

adalah dalam lingkungan 1.50 – 8.05%. Suatu kaedah kromatografi cecair-ionisasi 

elektrospray-spektrometri jisim (LC-ESI-MS/MS) telah dibangunkan dan disahkan 

untuk pengesanan mitraginin dan metabolit-metabolitnya di dalam air kencing 

manusia. Oleh yang demikian, imunoesei yang dibangkitkan ini diberi pengesahan dan 

keputusan yang diperolehi dikaitkan dengan data daripada LC-ESI-MS/MS. Sepuluh 

sampel air kencing positif manusia telah dianalisa dan dikuantifikasikan dengan 

imunoesei yang telah dibangkitkan dan keputusan ini dibandingkan dengan kaedah 

LC-ESI-MS/MS yang menunjukkan korelasi baik dengan bernilai R2 = 0.7426. Data 

yang diperolehi daripada imunoesei ini menunjukkan jumlah kepekatan yang 

diperolehi daripada sampel-sampel air kencing positif ini adalah dalam linkungan 6.62 

– 81.51 µg/mL. Sampel-sampel ini menunjukkan kepekatan mitraginin pada 0.45 – 

9.81 µg/mL, 9-O-DM-MG pada 5.52 – 24.23 µg/mL, dan 16-COOH-MG pada 4.01 – 

14.85 µg/mL apabila dianalisakan dengan LC-ESI-MS/MS. Ini meliputi jumlah 

kepekatan dalam lingkungan 11.00 – 44.35 µg/mL. Kesimpulannya, suatu imunoesei 

telah berjaya dibangunkan dan disahkan untuk kegunaannya dalam pengesanan 

mitraginin dan metabolit-metabolitnya dalam air kencing manusia. Di samping itu, 

kaedah LC-ESI-MS/MS yang telah disahkan sesuai digunakan sebagai kaedah 

pengesahan.  
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DEVELOPMENT OF AN IMMUNOASSAY FOR MITRAGYNINE 

 

ABSTRACT 

 

Kratom is a tropical plant used in traditional medicine for pain relief and to 

treat diarrhea. However, in Malaysia kratom is commonly misused as a recreational 

drug due to its central nervous system stimulatory effect and its frequency of abuse 

has been on the rise since 2005. Mitragynine (MG) an active ingredient in kratom has 

been proven to be addictive. Thus, possession of kratom is now illegal and controlled 

under the Poisons Act 1952. Therefore, a rapid screening urine test needs to be 

developed. For effective enforcement to monitor the kratom abuse, the main objective 

of this project was to develop an immunoassay for the detection of mitragynine 

residues and its metabolites in human urine. To raise anti-mitragynine antibodies, 

mitragynine was conjugated to the carrier protein, cationized-bovine serum albumin 

(cBSA) directly using the Mannich reaction. The synthesized antigen was injected into 

two rabbits to raise polyclonal antibodies against mitragynine. The antibodies were 

harvested a week post the (2nd) booster immunization. Horseradish peroxidase-

mitragynine (HRP-MG) conjugate was synthesized via Mannich reaction and used as 

a tracer. These antibodies and enzyme-conjugate were optimized for antibody 

characterization. The antibody assay using HRP-MG produced an IC50 of 8.38 ng/mL. 

The antibody cross-reacted with 7α-hydroxy-7H-mitragynine (82.65%), 

speciociliatine (63.20%), and paynantheine (54.35%) using HRP-MG. The 

immunoassay developed showed a limit of detection (LoD) of 15.05 ng/mL (ppb) and 

a limit of quantification (LoQ) of 27.23 ng/mL (ppb) in urine whereby the urine 

samples were diluted 10 times with dilution buffer. The variation of intra-day and 
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inter-day assay results ranged from 1.50 – 8.05%. A liquid chromatography tandem 

mass spectrometry (LC-ESI-MS/MS) method was developed and validated for the 

detection of mitragynine and its metabolites in human urine. Therefore, the developed 

immunoassay was validated and its results correlated with the LC-ESI-MS/MS data. 

Ten positive human urine samples were screened and quantified using the developed 

immunoassay method and their results compared with that of the LC-ESI-MS/MS 

method showed good correlation of R2 = 0.7426. Data collected from the immunoassay 

showed positive urine samples with total concentration ranging from 6.62 – 81.51 

µg/mL (ppm). These positive samples analysed with the LC-ESI-MS/MS showed 0.45 

– 9.81 µg/mL (ppm) of mitragynine, 5.52 – 24.23 µg/mL (ppm) of 9-O-DM-MG, and 

4.01 – 14.85 µg/mL (ppm) of 16-COOH-MG thus, giving a total concentration range 

of 11.00 – 44.35 µg/mL (ppm). Therefore, it was concluded that an immunoassay was 

successfully developed and validated for the detection of mitragynine and its 

metabolites in human urine. The validated LC-ESI-MS/MS method was suitable to be 

used as a confirmation method.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Mitragyna speciosa 

Mitragyna speciosa (Figure 1.1) is a tropical plant native to many Southeast Asian 

countries, such as Thailand, Malaysia and Myanmar. It is a member of the Rubiaceae 

family and goes by local names such as ‘kratom’, ‘kakuam’, ‘ithang’, and ‘thom’ in 

Thailand; ‘mambog’ in the Philippines; and ‘biak-biak’ and ‘daun ketum’ in Malaysia 

(Houghton et al., 1991). The Malaysian name ‘biak-biak’ aptly refers to the ability of 

this plant to grow wild on different terrain and especially in swampy areas. The kratom 

tree can grow beyond 15.2 meters in height and 4.6 meters in diameter.  

  

Like most plants in nature, kratom also exhibits medicinal properties such as 

antihypertensive, anti-diabetic, improvement of blood circulation, analgesic, 

antipyretic, to counter fatigue, as well as in the treatment of cough and diarrhea 

(Kumarnsit et al., 2006; Assanangkornchai et al., 2007; and Utar et al., 2011). Its uses 

also extended to being a stimulant at low doses, and as an opium substitute at high 

doses, and this has lead to its use for wearing off heroin addiction. The leaves produce 

these narcotic-like effects when smoked, chewed, or drank as a suspension 

(Matsumoto et al., 1997).  

 

Addiction is common among kratom users leading to prolonged sleep with heavy use. 

Chronic users of kratom experience insomnia, anorexia, weight loss, stomach 

distension, nausea, constipation, increased urination, sweating, darkening of the skin 

especially the cheeks, and dryness of the mouth (Kumarnsit et al., 2006; and 
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Chittrakarn et al., 2008). On the other hand, withdrawal symptoms bring about 

aggression, tearfulness, hostility, inability to work, and muscle pain (Chan et al., 

2005). According to Assanangkornchai et al. (2007), men recorded a higher rate of 

kratom consumption compared to women. The majority of them also showed a 

concurrent use of cannabis and amphetamine at some time.  

 

               
  

 

               
 

Figure 1.1 The diagram showing the kratom powder (i), kratom flower (ii), kratom 

extract (iii), and kratom seeds (iv) (adapted from Mitragyna.com, 

2012). 

 

There are two types of kratom differentiated by the colour of the veins of the leaf, i.e. 

red veins (Figure 1.2i) and green veins (Figure 1.2ii). Both types of kratom have 

different effects and are known to be taken simultaneously for better results. The red 

vein kratom is believed to have stronger biological activities especially sedation at low 

doses (Chittrakarn et al., 2008). It is often used for pain relief and detoxing therapies. 

i ii 

iii iv 
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Conversely, green vein kratom with its stimulating and euphoric effect, is often utilized 

as an antidepressant (Kumarnsit et al., 2007).  

 

             
 

Figure 1.2 The diagram showing the red vein kratom (i), and green vein kratom 

(ii) (adapted from Herbal Flame, 2015). 

  

The leaves are consumed either as ground powder or boiled in water. They exert their 

biological effects within 5 to 10 minutes of ingestion and the effects last for 1 to 1.5 

hours depending on the amount consumed (Hassan et al., 2013). Kratom is known to 

have a biphasic effect with initial exhilaration followed by sedation. Chittrakarn et al. 

(2008) have proved that it is more a central nervous system stimulant rather than a 

depressant. Kumarnsit et al. (2007) in his study revealed that kratom demonstrated 

antidepressant activity without spontaneous motor stimulation at doses of 100, 300 and 

500 mg/kg. Moreover, the consumption of 300 mg/kg of aqueous extract in rats 

inhibits ethanol withdrawal-induced behaviours such as rearing, displacement and 

head weaving in a test of induction of ethanol withdrawal and treatment (Kumarnsit et 

al., 2007). Chittrakarn et al. (2008) documented antidiarrheal effect on rat 

gastrointestinal tract using the kratom methanolic extract. Kratom leaves can also be 

used as an antimicrobial as well as antioxidant agent (Parthasarathy et al., 2009). In 

summary, kratom possess anti-inflammatory, antinociceptive, anaesthetic, anti-

i ii 
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malaria, anti-diarrheal, anti-depressant, adrenergic, antioxidant, antimicrobial, and 

antitussive properties.  

 

However, Saidin et al. (2008) showed dose-dependent cytotoxicity in several human 

cancer cell lines using the Mitragyna speciosa alkaloid extract (MSE). The data 

indicated that this cytotoxicity was enhanced in the presence of cytochrome enzyme, 

CYP2E1. A similar result was also observed with mitragynine, a major alkaloid 

constituent in kratom leaves.   

 

1.2 Chemical constituents of Mitragyna speciosa 

More than 40 alkaloids have been isolated from kratom. Alkaloids are nitrogenous 

compounds that exert a bitter taste. Most alkaloids are optically active and some of 

them exhibit curative properties (Ikan, 2013). 

 

The two most abundant types of alkaloids are the indoles (mitragynine, paynantheine 

and speciogynine) and oxyindoles (mitraphylline and speciofoline). Mitragynine is the 

major alkaloid contributing 12 – 66.2% of the total alkaloid extract (Takayama, 2004). 

Paynantheine (8.6%) with a molecular formulae of C23H28N2O4 and a molecular 

weight of 397.0 g/moL, has the same configuration as speciogynine at C20 bearing a 

vinyl group instead of an ethyl group. Speciogynine (6.6%) is the third most abundant 

alkaloid present in kratom. It is a diastereomer of mitragynine which differs in the 

configuration at stereocenter C20. Both paynantheine and speciogynine act as a 

smooth muscle relaxant. Other smooth muscles relaxants also include speciociliatine, 

7α-hydroxy-7H-mitragynine and mitraciliatine. Speciociliatine (0.8%), a C3 

stereoisomer of mitragynine, is a weak opioid agonist. Its potency at the opioid 
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receptor is 13-fold less than mitragynine. Moreover, speciociliatine, speciogynine, and 

paynantheine were shown to inhibit the naloxone-insensitive twitch contraction in rats 

(Takayama, 2004).  

 

The geographical location of kratom results in variation of alkaloid constituents in its 

leaves (Takayama, 2004). It was reported that the major alkaloid, mitragynine, isolated 

from kratom growing in Thailand constitutes 66.2% of total chemical constituent 

compared to 12% with the Malaysian variant. Five identical alkaloids obtained from 

both the Thailand and Malaysia variants include mitragynine, speciogynine, 

speciociliatine, paynantheine, and 7α-hydroxy-7H-mitragynine. In 1975, Hemingway 

et al. discovered three new speciofoline isomers. They were mitrafoline, 

isomitrafoline, and isospeciofoline. Mitrafoline, a non-phenolic 9-

hydroxyrhynchophylline-type alkaloid, has identical chemical behaviour as 

rotundifoline. However, dissimilarity in a number of minor alkaloids found in the 

Malaysia variant differentiates it from the Thailand variant.  

 

Houghton et al. (1991) showed that mitragynaline and corynantheidaline are the major 

alkaloids in very young leaves of kratom in Malaysia. But, mitragynaline is then found 

to be in minute quantities as the leaves mature. Other compounds like mitragynalic 

acid and corynantheidalinic acid remain as minor compounds in the leaves. Houghton 

and Said (1986) also isolated a new yellow coloured alkaloid 3-dehydromitragynine 

that gave rise to yellow colouration skin for kratom users. In 2000, Takayama et al. 

discovered a new corynanthe-type indole alkaloid named as (-)-9-

methoxymitralactonine.  
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Another compound, 9-hydroxycorynantheidine, bears a hydroxyl group at C9 instead 

of a methoxy group. Matsumoto et al. (2006) verified that 9-hydroxycorynantheidine 

was a partial agonist of opioid receptors. The transformation from methoxy group 

(mitragynine) to hydroxy group (9-hydroxycorynantheidine) or to hydrogen 

(corynantheidine) at C9 drastically shifted it from a full agonist to an antagonist of 

opioid receptors (Takayama, 2004). The 9-hydroxycorynantheidine inhibited the 

electrically-induced twitch contraction with a maximum inhibition of 50%, which is 

lower than mitragynine.  

 

Corynantheidine does not show any opioid agonist properties. Its antagonistic effect is 

concentration dependent. It inhibits the effect of morphine via functional antagonism 

of opioid receptors. Mitralactonal has a 9-methoxyindole nucleus. It shows long 

wavelength absorption at UV 496 nm indicating a high degree of unsaturation in the 

molecule (Takayama, 2004). All these unique alkaloids found in kratom (Table 1.1) 

have attracted a lot of researchers to study the chemical and pharmacological potentials 

of this plant such as mitragynine and 7α-hydroxy-7H-mitragynine.  

 

Table 1.1 Table showing the alkaloids found in Mitragyna speciosa. 

 
Alkaloid     Structure 

 
             

                                                                 

 
 

 

Mitragynine  

(3S, 15S, 20S)  



7 

 

Table 1.1 Continued. 

 
Alkaloid     Structure 

 
         

      

 
          

      

 
 

 

 
 

 

 
 

 

Speciogynine 

(3S, 15S, 20R) 

Mitraphylline 

Speciofoline 

Paynantheine 

(3S, 15S, 20R)  
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Table 1.1 Continued. 

 
Alkaloid     Structure 

 
 

  

 
  

   

 

 
  

 

 

 
 

 

 

 

 

 

 

 

 

 

7α-hydroxy-7H-mitragynine 

Mitraciliatine 

(3R, 15S, 20R) 

Speciociliatine 

(3R, 15S, 20S) 
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Table 1.1 Continued. 

 
Alkaloid     Structure 

 

         

          

 

  

 
 

 

 
  

  

 
 

 

 

 

Mitrafoline 

 

Isospeciofoline 

Mitragynaline 

Isomitrafoline 
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Table 1.1 Continued. 

 
Alkaloid     Structure 

 
 

  

 
  

  

 
 

                     

 
      

       

 
      

        

 
 

 

Corynantheidaline 

Mitragynalic acid 

(-)-9-methoxymitralactonine 
 

3-dehydromitragynine 

Corynantheidalinic acid 
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Table 1.1 Continued. 

 
Alkaloid     Structure 

 

       

 
    

       

 
 

       

 
 

 

1.2.1 Mitragynine  

Mitragynine is the major alkaloid found in kratom. It was first isolated in 1921 and its 

structure fully elucidated in 1964. It has a molecular formula of C23H30N2O4 with a 

molecular weight of 398.50 g/moL. Its melting and boiling points range from 102 – 

106°C and 230 – 240°C respectively. It is soluble in chloroform, alcohol, acetic acid, 

acetone and diethyl ether. It has an UV absorbance at 254 nm (Chee et al., 2008). 

Chemically, it is named 9-methoxycorynantheideine due to the presence of a methoxy 

group at position C9. Compared to the general corynanthe-type indole alkaloids, it is 

Corynantheidine 

Mitralactonal 

9-hydroxycorynantheidine 
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structurally characteristic of the Mitragyna alkaloid. The methoxy group at C9 is the 

key for pharmacophore binding to opioid receptors which controls the intrinsic 

activities on opioid receptors and elicits analgesic activity (Takayama et al., 2002). It 

has an indole structure similar to reserpine, yohimbine, uncaria alkaloid, and other 

tryptamine compounds.  

 

Mitragynine exhibits an uncommonly strong analgesic effect (Thongpradichote et al., 

1998). It is mediated by the µ- and δ- opioid receptors (Takayama et al., 1995). 

Matsumoto et al. (1997) reported that mitragynine appeared to be a psychoactive drug. 

It produced analgesic and antitussive actions comparable to codeine without causing 

emesis or dyspnoea. Due to its structural similarity to codeine and morphine, 

comparison studies were conducted by Watanabe et al. (1997) on the analgesic effect 

of mitragynine on electrically stimulated contractions in the guinea-pig ileum. The 

results showed that analgesic activity by mitragynine was 6-fold less potent than 

morphine. Mitragynine itself can induce antinociceptive activity by acting in the brain 

and partially in the supraspinal opioid systems (Matsumoto et al., 1996). Nevertheless, 

its analgesic qualities were further enhanced when it was used in combination with 

morphine and effectively impaired the development of substance tolerance. 

Furthermore, it also reduced liver toxicity as a result of chronic administration of 

morphine (Fakurazi et al., 2013).  

 

This is in accordance to the claim that kratom consumption results in anorexia and 

weight loss due to the inhibitory effect on gastric acid secretion via opioid receptors. 

Kumarnsit et al. (2006) showed that mitragynine administration resulted in decreased 
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weight gain in rats as well as indirectly lowered blood glucose level because of reduced 

food and water intake.  

 

1.2.2 7α-Hydroxy-7H-mitragynine 

7α-Hydroxy-7H-mitragynine is a terpenoid indole alkaloid with a molecular formula 

of C23H30N2O5 and a molecular mass of 414.50 g/moL. It accounts for 2% of the total 

alkaloid extract. Although it is present in minute amount in the plant, this novel opioid 

agonist is not only 13-fold more potent than morphine with less adverse effects 

(Matsumoto et al., 2004), but it is also 46-fold more potent as an analgesic compared 

to mitragynine. Therefore, 7α-hydroxy-7H-mitragynine is believed to be the most 

pharmacologically active alkaloid from Mitragyna speciosa.  

 

7α-Hydroxy-7H-mitragynine is structurally different from other opioid agonist and it 

exerts analgesia and euphoria in small doses. On the other hand, high doses bring about 

sedation. The hydroxyl group at position C7 enhances pharmacophore binding to µ-

opioid receptors resulting in better oral absorption compared to morphine (Takayama 

et al., 2002; Matsumoto et al., 2004). Thus, 7α-hydroxy-7H-mitragynine is a potential 

candidate for pain management and as an opiate substitute. However, it is most 

effective when used together with other alkaloids in the leaves.  

 

1.3 Abuse of kratom 

Drugs or substance abuse can be defined as drugs or substances consumption without 

approval by medical professionals. Individuals taking drugs for nonmedical purposes 

are not a new phenomenon. Drug abuse leads to social problems such as crime, 

unemployment, and violence. The National Anti-Drug Agency of Malaysia (AADK) 



14 

 

documented a total of 300,241 drug users from 1998 to 2006. That was approximately 

1.1% of the Malaysian population (Vicknasingam & Mazlan, 2008). On 11 June 2012, 

the New Straits Times reported that young people aged between 18 and 39 tops the 

drug abuse list. Although kratom is not categorised as a drug, it is utilized in the same 

context as recreational drugs, i.e. heroin, methamphetamine, cannabis, ketamine, and 

ecstasy (MDMA).  

 

The rampant abuse of kratom in Thailand and Malaysia, has forced both governments 

to raise awareness towards kratom (Houghton and Said, 1986) where it is claimed to 

cause addiction. Due to its opium-like effects, possession and ingestion of kratom are 

deemed illegal in both countries (Houghton et al., 1991). Although Thailand has 

banned the usage of kratom since 1943, its use is still rampant as this plant is native to 

the country. Its use is also considered illegal in Australia, Myanmar, Vietnam and 

Denmark. Thus in 2004, mitragynine and kratom have been placed in schedule 9 of 

the Australian National Drugs and Poisons Schedule. Nevertheless, this plant remained 

uncontrolled in other countries like the United States of America and most countries 

in Europe (Chittrakarn et al., 2008).  

 

In 2006, many psychotropic herbal products adulterated with synthetic cannabinoids 

were found to be marketed worldwide rampantly especially through the internet. Their 

appearance in Japan since 2008 prompted Kikura-Hanajiri et al. (2011) to study and 

evaluate them. His survey findings revealed that mitragynine was detected in products 

at 1.2 – 6.3% and 7α-hydroxy-7H-mitragynine ranging from 0.01 – 0.04%. Thus, 

kratom abuse became a foremost issue for concern.  
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Similar issues were seen in a survey on the prevalence of psychoactive drug usage 

among drivers in Thailand (Ingsathit et al., 2009). Studies showed the use of 

mitragynine was increasingly popular and reportedly as one of the most common illicit 

drugs besides cannabis. In addition, a case report that indicated massive overdose of 

kratom could cause intrahepatic cholestasis (Kapp et al., 2011). With its ability to 

produce euphoric effect, relaxation and pain relief similar to that of opium, these 

medicinal properties are due to be abused. Moreover, this plant is indigenous to 

Southeast Asian countries and is cheap to acquire. Consequently, this plant is illegal 

in these countries:  

 

 Australia (placed in schedule 9 of the Australian SUSDP) 

 Denmark  

 Malaysia (mitragynine was listed in the First Schedule and Third Schedule 

(psychotropic substances) of the Poisons Act 1952 of January 2003 and kratom 

was deemed illegal without a government license since August 2006) 

 Myanmar (under section 30(b) of the Narcotic Drugs and Psychotropic 

Substances Law) 

 Thailand (classified as narcotic level 5)  

 Vietnam  

 

In other countries such as US, UK, and Germany, kratom usage is still not regulated. 

In Malaysia, there has been a growing trend among drug addicts who ingest kratom 

leaves to get high when they are unable to acquire their regular supply of cannabis or 

heroin. This kratom abuse has caused considerable concern among the public and law 

enforcement authorities. Its popularity is principally due to its wide availability and 
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low price compared to other illicit drugs. As mitragynine was found to be the major 

alkaloid of kratom, thus it was listed in the First Schedule and Third Schedule 

(psychotropic substances) of the Poisons Act 1952 of January 2003. Under the Act, 

planting the kratom tree is not an offense. However, individuals in possession or 

selling kratom leaves or drinks would be fined a maximum of RM10,000 or served 

four years jail or both (Chan et al., 2005).  

 

Lately, more stringent enforcement and regulation on kratom abuse was implemented. 

According to Malaysian country report, the government is in the final process of 

scheduling kratom under the Dangerous Drug Act 1952 to strengthen control of kratom 

by making its cultivation and trafficking illegal. Under the Dangerous Drug Act 1952, 

it provides mandatory death sentence for drug trafficking offenders (National Anti-

Drugs Agency, Jun 2015).  

 

1.4 Problem statement 

Although kratom toxicity was insignificant and was a potential candidate as an 

alternative to methadone (Lago, 2013), this plant was still abused. This ultimately led 

to addiction. The increase of kratom abuse in Malaysia since 2005 caused many 

problems for the community such as crimes, neglect of family, poor work performance 

and also loss of consciousness. Extensive use of kratom results in prolonged sleep. The 

withdrawal symptoms include hostility, aggression, tearfulness, muscle pain and 

inability to work.  

 

Hence, it is essential to not only control misuse of kratom but also to detect and monitor 

the users. Up till now, many chromatographic methods have been published to detect 
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mitragynine and other related alkaloids qualitatively and/or quantitatively. Although 

chromatographic methods using liquid chromatography (de Moraes et al., 2009; 

Kikura-Hanajiri et al., 2009; Lu et al., 2009; Vuppala et al., 2011; Le et al., 2012; 

Parthasarathy et al., 2013) or gas chromatography (Kaewklum et al., 2005) are able to 

detect and confirm the presence of drugs quantitatively, however, the application of 

these methods are restricted by high analysis cost, and skilled/trained personnel are 

required. Hence, there is a need for the development of an immunoassay which is 

cheap, convenient and easy, rapid to use in screening for the presence of mitragynine 

(the major active alkaloid for kratom) in biological samples. It only requires a small 

amount of sample for analysis, no sample preparation is required, and simultaneous 

analyses of a large number of samples.   

 

The contribution of this research work includes the reduction of kratom abuse by 

effective detection of users and minimization of social problems contributed by drug 

abusers through the development of a locally made ELISA test kit which is currently 

unavailable. 

 

 

 

 

 

 

 

 

 



18 

 

1.5 Objectives of study 

The scope of this project encompasses the development of an immunoassay for the 

detection of mitragynine and its metabolites to monitor the kratom abusers. Therefore, 

the objectives of this research involve: 

 

 To modify mitragynine for the use as a specific immunogen. 

 To raise polyclonal antibodies towards mitragynine using the synthesized 

hapten. 

 To synthesize mitragynine enzyme-conjugates for the use as a tracer in enzyme 

immunoassay. 

 To optimize an enzyme immunoassay for the rapid screening of mitragynine 

and its metabolites. 

 To characterize the polyclonal antibodies raised. 

 To develop a validated liquid chromatography-tandem mass spectrometry (LC-

ESI-MS/MS) method for the validation of the developed immunoassay and 

confirmation of mitragynine and its metabolites.  
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CHAPTER 2 

HAPTEN MODIFICATION AND CONJUGATION 

 

2.1 Introduction 

The synthesis of a suitable hapten is critical in antibody production. It determines the 

affinity and the specificity of antibodies produced against the drug. Therefore, this 

chapter discusses the designations of the hapten mitragynine and its modifications as 

the first step to make antigen(s) for raising antibodies. Hapten refers to a small 

molecule e.g. a drug molecule which is too small to be immunogenic. Immunogenic 

molecules are huge molecules that are injected into animals to elicit an immune 

response. All immunogens are antigens but not all antigens are immunogens. Antigens 

are macromolecules which contain antigenic sites and are able to bind with antibodies 

in the immune system. Immunogenic compounds are foreign to the host system, have 

a high molecular weight and chemical complexity (Coico & Sunshine, 2009).  

  

Molecules with a molecular weight of less than 5,000 Daltons (Da) are not considered 

an effective immunogen as they are unable to induce an immune response and produce 

hapten-specific antibodies (Crowther, 1995). This can be solved by coupling small 

molecule haptens to a large carrier protein which is able to stimulate the host immune 

response. Proteins are commonly used as carrier molecules due to their solubility and 

abundance of functional groups for conjugation. These carrier proteins can be keyhole 

limpet haemocyanin (KLH), bovine serum albumin (BSA), human serum albumin 

(HSA), thyroglobulin (THG), gamma globulins, fibrinogen, ovalbumin, synthetic 

polypeptides poly-L-lysine, and polyglutamic acid. The hapten-carrier conjugate can 
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be injected in any experimental animal except the animal of origin of the carrier protein 

itself.  

  

Bovine serum albumin (BSA) is one of the most common protein used as it is cheap, 

physically and chemically stable, easily available, has good solubility, possesses 

numerous lysine residues and amino groups (Dewen et al., 2007). Its molecular weight 

is 67,000 Da and possesses 59 lysine ε-amine groups (only 30 – 35 of lysine ε-amine 

groups are available for conjugation), 1 free cysteine sulfhydryl (with an additional 17 

disulfides buried within its three-dimensional structure), 19 tyrosine phenolate 

residues, and 17 histidine imidazole groups. The presence of abundant carboxylate 

groups in BSA contributes to a nett negative charge with pI value of 5.1. Modification 

of any carrier protein with hydrophobic haptens may result in precipitation due to the 

decrease of hydrophilicity. Therefore, the level of carrier protein modification in the 

conjugation reaction should not be too extensive in order to minimize precipitation 

(Hermanson, 2008).  

 

Cationized-BSA (cBSA) is synthesized through the modification of the carboxylate 

groups of BSA using ethylenediamine. After modification of BSA, the negative 

charges contributed by the native carboxylates are masked and the positive charges 

from the amines are created. Thus, increasing its pI value (pI > 11.0) when compared 

to the native BSA. The higher pI value contributes to better immunogenicity whereby 

its rate of binding to APC is accelerated and consequently produce a quicker immune 

response (Hermanson, 2008).  
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Keyhole limpet haemocyanin (KLH) contains plenty of functional groups for 

conjugation purposes. Its molecular weight is more than 1,000,000 Da with more than 

2,000 amines from lysine residues, over 700 sulfhydryls from cysteine groups, and 

more than 1,900 tyrosines. It is a multi-subunit protein which contains chelated copper 

of non-heme origin. Native KLH is stable and soluble in buffers containing at least 0.9 

M sodium chloride (NaCl). Precipitation and denaturation happen at a concentration 

less than 0.6 M of NaCl. As a result, a high salt condition should be employed when 

multi-subunit KLH is used for conjugation. This is to maintain the solubility of the 

hapten-carrier complex. KLH should not be frozen due to freeze-thaw effect as it may 

cause denaturation. KLH is completely soluble in 50% DMSO and becomes cloudy at 

60%. It precipitates at 67% of DMSO (Hermanson, 2008).  

 

Ovalbumin has a molecular weight of 43,000 Da. It is a phosphoprotein that contains 

N-glycosylation sites with 386 amino acids. It has 20 lysine residues, 14 aspartic acids, 

and 33 glutamic acid groups with a pI value of 4.63. Solubility for ovalbumin in 

DMSO is up to 70%, become cloudy at 75% and precipitates at 80% (Hermanson, 

2008).  

 

Thyroglobulin (THG) is a protein stored in the thyroid gland. It has a molecular weight 

of 660,000 Da with a pI value of 4.7. Usually, THG and ovalbumin are used as non-

relevant carriers in ELISA tests that measure antibody response. It is seldom used as 

carrier in the preparation of immunogens (Hermanson, 2008).  

 

To modify a hapten, some factors need to be taken into consideration. First is the 

structural point of attachment for the hapten to a carrier protein. According to 
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Landsteiner’s Principle, antibody specificity is directed primarily at the part of the 

hapten where it is furthest removed from the functional group that is used to couple to 

a carrier protein. This site of attachment provides steric hindrance by the carrier protein 

that prevents specific recognition of the hapten. Moreover, it is pendent for the hapten 

design to be attached to a carrier protein at a site remote from the chemical or metabolic 

change (Law, 1996).  

 

The second consideration is the functionalization of the hapten. In order to covalently 

attach the hapten to a carrier protein, a suitable functional group must be present in 

hapten to react with complementary functional group on the carrier protein. The 

functional groups can be amino, carboxylic, aldehydes, ketones, thiol, and hydroxyl 

groups. A hapten without the necessary reactive functional groups need to be modified 

by introducing a reactive functional group into the structure prior to conjugation to the 

carrier protein. However, the final chemical structure and stereochemistry should be 

identical with the original hapten (Dewen et al., 2007) to ensure greater antibody 

specificity. 

 

The length of the spacer arm between hapten and carrier protein is important also to 

reduce the steric hindrance effect and allow the hapten to be more easily recognized 

by the circulating lymphocytes (Law, 1996). Long spacers cause the overlapping of 

hapten while short spacers may cause the carrier protein to obstruct the hapten and 

hence produce antibodies with a lack of specificity. According to Bermudez (1975), 

four to six carbon atoms of spacer groups are optimal for antigen-antibody interaction 

and to increase immunogenicity. Additionally, the spacer should be non-polar to avoid 

changes to the distribution of electric density of the hapten. Impurities as a result of 
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hapten synthesis not only reduce assay specificity but are also dangerous to the host 

animals as well. Hence, care must be taken to ensure good hapten quality and purity 

prior to immunization.  

 

Selection of carriers is of utmost importance as different carrier protein induce 

different immune responses and affect antibody quality and quantity. This is because 

the secondary response is determined by the immunogenicity of the carrier proteins. 

Furthermore, the ratio of hapten per molecule of carrier protein has to be taken into 

consideration (Law, 1996) to prevent improper hapten designs that produce low quality 

antibodies.  

 

In this research, mitragynine with a molecular mass of 398.5 g/moL is small and not 

sufficient to induce an immune response on its own. Hence, it must be conjugated to a 

carrier protein before being introduced into experimental animals. Besides, 

mitragynine does not have any suitable functional group for conjugation. Thus, 

introduction of relevant functional groups on mitragynine is needed such as carboxylic 

acid (-COOH), amino (-NH2), hydroxyl (-OH), sulfhydryl group (-SH), aldehyde (-

COH), and ketone (-C=O) groups that are suitable for coupling to a carrier protein. 

The possible sites for modification on mitragynine are shown in Figure 2.1. 
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Figure 2.1 Molecular structure of mitragynine with possible sites for modification 

using various methods. 

 

 

2.2 Aim of study  

The main objective of this chapter is to design and modify the hapten mitragynine by 

introducing reactive functional groups and conjugating it to a carrier protein. 

Modification of carrier proteins is also performed in order to enable better conjugation 

and enhance the binding ratios. Subsequently, the concentrations and coupling ratios 

of successfully synthesized antigens are determined. Moreover, enzyme conjugates are 

also synthesized and used as a detection reagent in an enzyme-linked immunosorbent 

assay (ELISA). 

 

2.3 Materials and instrumentation 

 
Chemicals       Company/ Source 

 
1,2-Dichloroethane      Sigma Aldrich 

        Corporation, USA. 

 

1,4-Butanediol diglycidyl ether ≥ 95%   Sigma Aldrich 

        Corporation, USA. 

 

1-Ethyl-3-(3-dimethylaminopropyl)-    Sigma Aldrich 

carbodiimide hydrochloride      Corporation, USA. 

 
 




