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PEMBANGUNAN ACUAN ANOD ALUMINUM OKSIDA UNTUK 

PENUMBUHAN ROD NANO CuO DALAM PENGESANAN FOTO 

ABSTRAK 

Nanoliang anod aluminium oksida (AAO) bertertib tinggi dan berbentuk 

heksagon berjaya ditumbuhkan daripada saput prapemendapan Al dengan 

ketebalan 1μm pada substrat Si dan ITO/kaca melalui penganodan dua-langkah.  

Mekanisme pertumbuhan saput liang AAO dikaji berdasarkan penganodan 

perlakuan arus-masa pada voltan yang berbeza, dan juga melalui pemerhatian 

mikrostruktur menggunakan keratan rentas dan pandangan atas daripada 

pengimejan (FESEM). Kajian mendapati  liang dengan diameter (garis pusat)  

yang berjulat daripada  50 hingga 110 nm dan ketebalan di antara 250 dan 1400 

nm, diperolehi dengan mengawal pengaruh dua parameter utama penganodan, 

iaitu voltan penganodan dan masa penganodan langkah kedua.    Keadaan 

optimum pemboleh ubah proses seperti masa penyepuhlindapan bagi saput nipis 

Al yang termendak dan masa pelebaran liang daripada saput  liang AAO 

ditentukan secara eksperimen bagi memperoleh saput  AAO dengan 

mikrostruktur liang yang teragih secara seragam dan yang dijajar secara menegak. 

Pelebaran liang melalui rawatan punaran basar pada suhu bilik didapati 

mengubah kualiti liang saput AAO dan mengurangkan saput halangan bawah 

jajaran liang untuk memudahkan elektroenapan struktur nano ke atas saput AAO. 

Sebagai tambahan, permukaan Al yang cekung hemisfera memastikan bahawa 

pentertiban atau penyusunan kendiri liang AAO boleh diwujudkan apabila 

penjaluran digunakan selama 45 minit. Justeru, dapat dirumuskan bahawa tempoh 

rawatan punaran basar (penjaluran) pada saput Al oksida berlaku selepas 
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penganodan langkah pertama  memainkan peranan penting dalam susunan 

terakhir nanoliang. Analisis belauan sinar-X menunjukkan transformasi fasa 

amorfus - kepada - hablur selepas penyepuhlindapan pada suhu melebihi  800
o
C. 

Imej AFM menunjukkan susunan optimum saput liang AAO teranod di bawah 

keadaan voltan yang rendah. Saput AAO boleh berfungsi sebagai templat dengan 

taburan saiz yang dikehendaki bagi fabrikasi jajaran nanorod CuO. Keputusan 

menunjukkan bahawa morfologi jajaran nanorod  CuO yang dijajar amat terkesan 

oleh  tempoh  punaran basar dan penanggalan templat AAO. Kajian ini juga 

menunjukkan bahawa tempoh punaran basar optimum diperlukan untuk 

mengekalkan nanorod CuO dijajar tanpa sebarang fraktur adalah hampir 5 minit. 

Jajaran nanorod CuO prestasi tinggi /himpunan AAO dan pengesan foto IR 

susunan jajaran nanorod CuO yang berdiri bebas berdasarkan MSM difabrikasi 

dengan elektrod sentuhan-Al. Sambutan fotoelektrik dan elektrik dikaji, dan 

keputusan menunjukkan bahawa pengesan foto mempamerkan kepekaan yang 

tinggi terhadap  diod laser infra merah (IR) 808 nm. Kedua-dua sambutan dan 

masa pemulihan didapati lebih cepat, iaitu masa yang lebih pendek dibandingkan 

dengan pengesan foto IR lain, yang dilaporkan dalam literatur.   
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DEVELOPMENT OF ANODIC ALUMINUM OXIDE TEMPLATES FOR 

GROWTH OF CuO NANORODS FOR PHOTODETECTION DEVICE 

ABSTRACT 

Ordered and hexagonal-shaped nanoporous anodic aluminum oxide 

(AAO) was successfully grown from 1μm thickness of Al pre-deposited onto Si 

and ITO/glass substrate using two-step anodization. The growth mechanism of 

the porous AAO film was investigated by anodization current-time behavior for 

different anodizing voltages and by microstructural observations using cross-

sectional and top view of FESEM imaging. It was found that pores with diameter 

ranging from 50 to 110 nm and thicknesses between 250 and 1400 nm, were 

obtained by controlling two main influential anodization parameters: the 

anodizing voltage and time of the second-step anodization. The optimum 

conditions of the process variables such as annealing time of the as- deposited Al 

thin film and pore widening time of porous AAO film were experimentally 

determined to obtain AAO films with uniformly distributed and vertically aligned 

porous microstructure. Pore widening via wet-etching treatment at room 

temperature was found to modify the pore quality of AAO films and reduces the 

barrier layer on the bottom of AAO pore array facilitating a uniform 

electrodeposition of nanostructures onto AAO films. In addition, regular 

hemispherical concave Al surface ensuring the self-ordering of AAO pore can be 

established when striping is employed for 45 min. Thus, it could be inferred that 

the duration of wet etching treatment (striping) of Al oxide film performed after 

the first-step anodization plays a crucial role in the final arrangement of 

nanopores. X-ray diffraction analysis revealed amorphous-to-crystalline phase 
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transformation after annealing at temperatures above 800 
o
C. AFM images 

showed optimum ordering of the porous AAO films anodized under low voltage 

condition. AAO films could serve as templates with desired size distribution for 

the fabrication of CuO nanorod arrays. The results indicated that the morphology 

of the aligned arrays of CuO nanorods was strongly affected by the duration of 

etching and the removal of AAO template. This study showed also that the 

optimum etching duration required to maintain the aligned CuO nanorods without 

any fracture was approximately 5 min. High performance CuO nanorod arrays/ 

AAO assembly and free-standing CuO nanorod arrays infrared (IR) metal-

semiconductor-metal (MSM) photodetectors were fabricated with Al contact 

electrodes. The electrical performance and photoelectric response were studied 

and the results showed that IR photodetectors exhibited a high sensitivity to 808 

nm IR laser diode. Both the response and recovery time were found to be fast; i.e. 

much shorter time compared to other IR photodetectors reported in the literature. 
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           CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Nanotechnology “the science that deals with nanometer-sized structures” is a 

fast-growing interdisciplinary field that extends exciting research in many fields, 

including physics, chemistry, material science and biology. Nanostructures exhibit 

unique physical and chemical properties due to quantum confinement effect compare 

to bulk counterparts. In recent years, many efforts have been focused on the 

development of expensive and inexpensive nanofabrication techniques. The large 

scale inexpensive fabrication methods remain one of the key mainstays of today’s 

nanotechnology. The search for such in low-cost fabrication alternatives, reaching 

the limits of current technologies, has led to a growing interest in nanoporous 

materials as templates for the controlled growth of nanostructures. 

 In particular, the porous anodic aluminum oxide (AAO) films formed by the 

electrochemical anodizing of aluminum have received significant attention in the 

synthetic nanostructure materials. The successful application of porous AAO as 

templates in many industrial fields, such as the manufacturing of nano-optoelectronic 

devices, is attributed to their highly controllable pore diameter and cylindrical shape, 

as well as periodicity and density distribution. In addition, AAO is electrically 

insulating, transparent and possessed high chemical and heat stabilities. 

 Previous studies have deduced that the most significant controllable 

parameters that influence the preparation of porous AAO films are the anodizing 
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voltage, type/concentration of the electrolyte, temperature and duration of 

anodization. For instance, by the controlling of the voltage during anodization, the 

possibility of modifying pore diameter as well as interpore distance increases 

exponentially. The thickness of the AAO films can also be modified by controlling 

the duration of anodization process.  

Masuda and Fukuda [1] and Jessensky et al. [2] were the pioneers in 

describing how to fabricate an AAO template onto bulk Al foil with ordered 

hexagonal-shaped parallel nanotubes using a two-step anodization process. It has 

been reported that in order to obtain fully ordered nanotubes throughout the template, 

it is necessary to introduce a pre-arranged pattern before anodization. It was 

suggested that the anodization should be carried out in two steps. Most of the 

developed methods for producing self-organized AAO templates generally yield 

highly ordered arrays onto bulk Al foil. However, some challenges were encountered 

during the preparation of porous AAO templates of Al pre-deposited onto conducted 

substrates by using two-step anodization, including achieving highly-ordered porous 

AAO with open-through bottom barrier layer of pore structure. 

 In literature, different approaches have been used in the preparation of 

nanostructures into porous AAO template, such as chemical vapor deposition (CVD), 

physical vapor deposition (PVD) and electrochemical deposition. In the current 

research, the preparation of metallic nanostructures such as copper into porous AAO 

using electrochemical deposition, followed by thermal oxidation is the most 

promising and efficient method for the growth of vertically aligned cupric oxide 

nanorod arrays. The cupric oxide (CuO) has been a hot topic among the studies on 

transition metal oxides, because of its interesting properties as a p-type 



3 

 

semiconductor with a narrow band gap. The vertically aligned CuO nanorod arrays 

with large surface areas and size potential effect possesses superior physical and 

chemical properties. These significant CuO nanostructures have been extensively 

investigated, because of their promising applications in the photodetection devices. 

1.2  Problem Statement 

During the two-step anodizing of Al thin film deposited onto substrate, due to 

the limited thickness of Al (  1 μm), the fabrication of uniform porous structure with 

vertically aligned nanotubes are not easily applicable. Also in the case of long time 

anodizing, which is known for producing well-ordered pore structure, the Al thin 

film can be easily detached from the substrate or develop cracks. These problems 

make the identification of optimum conditions to attain the required pore size, pore 

density and pore uniformity much more complex to be achieved in this research. 

Inability in optimizing the duration of pore widening prevents attaining high quality 

features of AAO pore arrays and obtaining homogeneous electrodeposition of 

nanostructures into AAO template. Nanorods fabricated using AAO are 

characterized by highly ordered and vertically well aligned nanostructures. However, 

the removal of AAO template causes the nanorods to collapse easily or aggregate 

into clusters due to their high surface tension. This has a negative influence on the 

fabrication of photodetection devices. Consequently, the control of the wet etching 

treatment procedure for the removal of AAO template has become imperative. 

1.3  Research Objectives 

The main objectives of this research work can be summarized by the following 

points: 
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1. To synthesize highly-ordered thin AAO template onto Si and ITO/glass 

substrate, and study their growth parameters by controlling the intrinsic 

variables of anodization, including anodizing voltage and duration of the 

second-step anodization. 

2. To develop a simple and efficient method to prepare uniform CuO 

nanorod arrays embedded into Si-based AAO template. 

3. To study characteristics and performance of IR photodetectors based on 

aligned CuO nanorod arrays grown on Si substrate with or without AAO 

template. 

1.4  Research Originality 

The originality of this research work can be identified as follow: 

1. Controllable pore-widening process by adjusting the pore diameter and 

removing the AAO bottom barrier layer at room temperature. 

2.  Microstructural procedure of the thin AAO film fabrication via two-step 

anodization has been visualized for the first time by using a cross-

sectional FESEM imaging. 

3. Elucidate a possible relationship between the morphology of aligned 

arrays of CuO nanorods during removal of AAO template and etching 

time, which has been reported for the first time. 

4. No previous reports can be found in the literature so far about the 

fabrication of aligned CuO nanorod arrays IR metal-semiconductor-metal 

(MSM) photodetector by assisted AAO template. 
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5. Fabrication Al-CuO nanorod arrays-Al IR photodetector with ultra-fast 

response and recovery times at zero bias voltage. 

1.5  Thesis Overview 

The content of this thesis is organized as follows:  Chapter one contains a 

brief overview of an inexpensive and successful fabrication of the nanostructures by 

using self-organized porous AAO template, the main research problem, the research 

objectives and research originality. Chapter two presents a literature review and 

theoretical background of this study. Chapter three describes the principles of the 

experimental equipment, fabrication process and characterization instruments used in 

the preparation of porous AAO templates, growth of CuO nanorod arrays and for 

photodetection device applications. In chapter four, thin porous AAO films under 

controllable conditions of two-step anodization grown from pre-deposited Al thin 

film (1μm) thick onto Si and ITO/glass substrate are fabricated. The modulation of 

the AAO features (pore diameter and pore length) by modifying two controllable 

conditions (anodizing voltage and time of anodization) is involved in this chapter. In 

addition, this chapter explains the effect of the chemical wet etching time cycles 

(striping of the first-step anodization and pore widening) on the morphological 

features of Si-based AAO templates. The growth and characterization of CuO 

nanorod arrays into thin porous AAO template, as well as, fabrication and 

characterization of two MSM photodetector devices: Al-CuO nanorod arrays/AAO 

assembly-Al and Al-CuO nanorod arrays-Al are investigated in chapter five. Finally, 

conclusions and recommendations for future studies are reported in chapter six. 
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 CHAPTER 2 2.

LITERATURE REVIEW AND THEORETICAL BACKGROUND 

2.1 Introduction  

In this chapter, general fundamentals and basic theories of all required 

subjects involved in this research study are presented. It begins with classification of 

the AAO films into two categories according to their morphology. The advantage of 

heat treatment on Al films before anodization is clarified briefly. The mechanism of 

pore nucleation of the AAO is discussed. The procedure of self-organized of porous 

AAO by using two-step anodization is explained. The effect of anodizing parameters 

on modulation of the pore dimensions is reviewed. The growth of nanostructure 

materials by electrodeposition assisted porous AAO film also is reviewed. Moreover, 

the essentials of metal–semiconductor contacts and the basic principles of the metal-

semiconductor-metal photodetectors are briefly described in this chapter. 

2.2 Types of Anodic Aluminum Oxide (AAO) 

Anodization of Al films in aqueous electrolytes produces anodic oxide films 

with two different morphologies, that is, the nonporous barrier-type oxide films and 

the porous-type oxide films. The different morphology depends on the chemical 

nature of the electrolyte [3-5]. 

2.2.1 Nonporous Barrier-Type Oxide  

Barrier-type films are generally grown in an electrolytic cell with neutral 

electrolytes such as borate, oxalate, citrate, phosphate solution, etc. The grown film 

is insoluble in the electrolyte and consists of a thin compact layer of aluminum oxide 
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[6, 7]. Barrier-type oxide formation under potentiostatic conditions, current density 

(j) decreases exponentially with time (t). Correspondingly, the film growth rate 

decreases almost exponentially with time (t), which points a limit on the maximum 

film thickness obtainable for barrier-type AAO films (Figure  2.1 (a)). It has been 

experimentally verified that the thickness of barrier-type film is directly proportional 

to the applied voltage. 

2.2.2 Porous-Type Oxide 

Porous-type films are generally grown in an electrolytic cell with acidic 

electrolytes such as sulfuric [8], oxalic [9], phosphoric [10], chromic [11], malonic 

[12], tartaric [13], citric [14], squaric [15], malic acid [16] etc., in which anodic 

oxide is slightly soluble and consist of arrays of cylindrical shaped pores surrounded 

by an aluminum oxide structure. 

 Current density (j) in porous-type anodization under potentiostatic conditions 

remains almost constant within a certain range of values during the anodization 

process, due to the constant thickness of the barrier layer at the pore bottom 

(Figure  2.1 (b)). The thickness of the resulting porous oxide film is linearly 

proportional to the total amount of charge (i.e., anodization time) involved in the 

electrochemical reaction. It has been experimentally verified that the thickness of 

porous-type film is directly proportional to the anodization time. 
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Figure  2.1  Two different types of anodic aluminum oxide (AAO) formed by (a) 

barrier-type and (b) porous-type anodizing process, along with the 

respective current density - time (j-t) transients under potentiostatic 

conditions [17]. 

2.3  Pre-Treatment of Al Films 

The quality of the surface structure and/or the surface pre-treatments of the Al 

film will have a significant impact on the morphology and the nanoporous structures 

formed on the film surface during the anodizing process [18-21]. The purity of the Al 

film used has a direct impact on its dissolution rate in the acidic conditions of the 

electrolyte and thus, high purity Al is generally used. A purity of 99.99 % is 

commonly used. A typical pre-treatment of an Al film begins by first, degreasing the 

Al film using acetone or a similar solvent, then electrochemically polished in 1 M of 

sodium hydroxide solution for few minutes and finally washed in deionized water. 

This is followed by the annealing treatment; which is applied to the Al film to reduce 
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the mechanical stresses in the material and to modify the grain boundaries, since both 

these factors can have a significant effect on pore nucleation [22]. Annealing is 

usually performed at a temperature close to two-thirds of the melting point of Al 

usually between (400 - 500 °C) in an inert atmosphere, such as nitrogen or argon 

inside a conventional furnace [23]. The Al film is kept at this temperature for a 

suitable annealing period usually between (2 - 5 h) and then allowed to slowly cool 

in the inert atmosphere to prevent oxidation. During the annealing process the Al 

crystals reoriented to a preferred crystalline direction [24] and the Al grain size 

increases and the surface of the Al film becomes rougher and the larger grain 

boundaries can be observed [25, 26]. 

2.4  Mechanism of Pore Nucleation  

The origin of pore nuclei and the exact mechanism of pore nucleation are still 

clearly unknown. Several formation models have been proposed; one model explains 

that pore nucleation result from an electric field-assisted dissolution theory was first 

proposed by Hoar and Mott [27], but its effect on pore size, spacing and other porous 

AAO features were only presented in detail a few years later [28]. Thompson and 

Wood pioneered the understanding on the morphology, ion transport and initial 

stages of pore formation in porous AAO [29]. This model explains that pore 

nucleation results from an electric field assisted dissolution at the electrolyte/oxide 

interface and oxide generation at the metal/oxide interface. 

 In the early stages of the anodizing process, Al
3+

 ions migrate from the metal 

across the metal/oxide interface into the forming oxide layer. In the same time O
2-

 

ions formed from water at the oxide/electrolyte interface travel into the oxide layer 

[30, 31]. During the oxide formation the barrier layer constantly regrows with further 
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oxide growth and transforms into a semi-spherical oxide layer of constant thickness 

that forms the pore bottom, as shown in Figure  2.2. During the formation of the 

porous oxide layer the anodic Al dissolution reaction is presented by 

                   (2.1) 

 

The resulting reaction at the cathode produces bubbles of hydrogen gas: 

               (2.2) 

 

Anode reactions taking place at the metal/oxide interface (Oxygen anions react with 

Al) 

       
              

 (2.3) 

 

At the oxide/electrolyte interface (Al cations react with the water molecules) 

     
                   (2.4) 

 

Overall reactions at electrode describe the simple reaction of anodizing process. 

                       (2.5) 

 

The steady state growth results from the equilibrium between the field-assisted oxide 

dissolution at the oxide/electrolyte interface at the base of the hemispherical shaped 

pores where the electric field is high enough to drive the Al
3+

 ions through the barrier 

layer and the oxide growth at the metal/oxide interface resulting from the migration 

of O
2-

 and OH
-
 ions into the pore base oxide layer. 
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Figure ‎2.2  Schematic of the pore nucleation mechanism in an acidic electrolyte [32]. 

 

Shimizu et al. [33] described the initial pore formation process as a transition 

from a barrier-type film to a porous-type film, created by the cracking of the Al film 

under tensile stress, where the locally thinner sites become preferred sites for pore 

development. A theoretical model based on oxide growth at the metal/oxide and 

oxide/electrolyte interfaces and on field-assisted dissolution at the pore bottom, was 

then proposed by Parkhutik and Shershulsky [34]. Although a description of the 

porous AAO formation and growth was provided in this model. 

 Thamida and Chang [35] proposed a mathematical model accounted the 

effect of the surface curvature (roughness, perturbations) on converging the electric 

field at the troughs and diverging at the crests. Recently, a linear correlation between 

AAO pore depth and electric charge density during electrochemical anodizing 

process was determined and utilized to facilitate precise control of the porous AAO 

growth process in a wide range of voltage for a broad application [36]. 
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In addition, the time dependence of the anodizing current during porous AAO 

formation is well established and can also provide insights into the growth process. 

Figure  2.3 shows a typical electric current curve monitored during the anodizing 

process where distinct regimes indicative of porous AAO structure formation can be 

identified [4, 25, 37, 38].  

At first, the electric current decreases, it corresponding to the formation of 

barrier-type oxide film (regime (I)). Then, it passes through minimum value of 

electric current (regime (II)). Al is continuously oxidized and pore begin to grow in 

sites where irregularities on the surface topography. At these sites, the electric-field 

lines are converged, giving rise to localized heating due to electrical power 

dissipation. This effect results on enhanced chemical-assisted dissolution of the 

oxide. Subsequently, the electric current translates into a rise in value and it 

corresponds to the initial stage of pore nucleation and growth. In this stage numerous 

ionic conduction paths (pores) appear. Since some pores begin to stop growing due 

to competition among the pores, the current decreases again (regime (III)). Last, the 

electric current reaching a steady-state value (regime (IV)). The constant in electric 

current is indicative of equilibrium between oxide dissolution (at the 

electrolyte/oxide interface) and oxide growth (at the metal/oxide interface) giving a 

constant growth rate for the nanopores. 
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Figure ‎2.3 Current-time transients during porous AAO formation showing the    

distinct pore growth stages [39]. 

2.5  Self- Organized Porous AAO Film 

Generally, there are two different techniques of porous AAO fabrication: a 

prepatterned-guided anodization resulting in a perfectly ordered nanopore 

arrangement and self-organized two-step anodization leading to a quasi-monodomain 

structure with partially areas of defects. The pre-patterning of Al film prior 

anodization can be carried out using a tip of the scanning probe microscope (SPM) 

[40, 41] and atomic force microscope (AFM) [42]. The patterning of Al film can be 

also formed by focused-ion beam lithography [43, 44]. Various molds with a regular 

array of convexes prepared lithographically have been also used for pre-patterning of 

Al film [45-47].  
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The main drawbacks of these pre-patterned anodization techniques are a 

time-consuming indentation of Al film before anodization and high-cost. 

Additionally, the perfect arrangement of nanopores of AAO is observed over the pre-

patterned surface area of Al film only.  

On the other hand, a self-organized two-step anodization of porous AAO can 

be carried out over a large surface area at the same time. The process of porous AAO 

formation by self-organized anodizing is simple, inexpensive and results in a high-

density of nanopores but it is not free from defects in pore arrangement [37, 48, 49]. 

2.5.1  Two-Step Anodization 

 Masuda and Fukuda, 1995 developed a two-step anodization method to 

obtain highly ordered porous AAO, without resorting to complex and costly 

lithographic techniques [1]. Their procedure involved two separated anodization 

processes onto bulk Al foil: a longer first anodization until order at the metal/ oxide 

interface is attained followed by oxide removal and a subsequent second-step 

anodization (Figure  2.4). While the first-step anodization at the original pre-

treatment Al surface, the pores nucleated in (almost) random positions (Figure  2.4 

(c)), ordered domain of Al dimples with area larger than 1 μm are observed at the Al 

substrate top surface, after removing the  porous aluminum oxide layer (Figure  2.4 

(d)). During the second anodization, the pores will conveniently nucleate at the 

depressions of the Al surface, with the pattern guiding the nanopores growth. This 

leads to highly ordered hexagonal porous structures with domain of area larger than 1 

μm, depending on the first anodization time (Figure  2.4 (e)). 
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Figure  2.4  Two-step anodization method: schematic drawings and corresponding 

SEM images for anodization in 0.3 M oxalic acid, anodizing voltage is 

40 V, temperature of electrolyte at 4 
o
C. (a) Al foil surface as-rolled; (b) 

Al foil surface after standard pre-treatments; (c) top porous-alumina 

surface with random pore nucleation; (d) Al substrate top surface after 

chemical etching of the aluminum oxide formed during the first-step 

anodization, evidencing the patterned dimples; (e) top porous AAO 

surface after a second-step anodization [39]. 

 

 

Many models pointed to slightly different mechanisms related to self-

organized; one model explained the self-organized was a mechanical stress model 

proposed by Jessensky et al. [2, 50] based on repulsive forces between neighboring 

pores to explain the formation of hexagonally-ordered pore arrays. During the oxide 

growth at the metal/oxide interface, a volume expansion occurs (Figure  2.5) as a 

consequence of the lower atomic density that Al presents in Al2O3 when compared to 

metallic Al. While the oxide is growing, the significant volume (V) expansion (Ѯ = 

VAl2O3/VAl) leads to mechanical stress in the barrier-layer, expansion pore walls to 

grow only on the vertical direction and pushes the pore walls upwards [51]. 
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Figure ‎2.5  Expansion of Al during anodic oxidation, depicting on the left the level 

of the unoxidized metal surface [2]. 

 However, not all oxidized Al gives rise to Al2O3, approximately 70% of the 

Al
3+

 ions and the O
2-

 ions contribute to the formation of the barrier oxide layer [30], 

the remaining Al
3+

 ions are dissolved into the electrolyte, and thus the real volume 

expansion was found to depend on anodizing voltage and electrolyte composition 

[52].  

2.5.2  Structure Features of Self-Ordered Porous AAO Film 

Figure  2.6 shows schematically an idealized structure of self-ordered porous 

AAO. Porous aluminum oxide layer formed on Al surface contains a large number of 

mutually parallel nanopores with honeycomb-like structure. Each circular nanopore 

consists of vertical pore channel and its surrounding aluminum oxide constitutes a 

hexagonal cell. The nanopore at the metal/oxide interface is closed by a thin barrier 

oxide layer with an approximately hemispherical morphology. The thickness of the 
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porous AAO layer on Al surface is easily tunable from a few tens of nanometers up 

to hundreds of micrometers by controlling the anodizing time [53].            

In general, the structure of porous AAO is often defined by several structural 

features, such as interpore distance (Di), pore diameter (Dp), barrier layer thickness 

(β), pore wall thickness (W), pore density (ρ), defined as number of pores on the 

surface area of 1 cm
2
, and porosity (P), defined as a ratio of a surface area occupied 

by pores to the total surface area of oxide. Depending on experimental results, these 

structural features are mainly determined by anodizing parameters. 

 

 

Figure ‎2.6  Schematic structure of (a) porous anodic aluminum oxide (AAO) on Al 

foil and (b) cross-sectional view [17]. 

For ideally ordered porous AAO, the different features can be calculated from 

the well-known Equations established for hexagonally arranged nanoporous 

structures [49]: 

 

Di = Dp + 2W        (nm)  (2.6) 

Where, Di is interpore distance, Dp is pore diameter and W is pore wall thickness. 
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Where,   is the pore density and Di is interpore distance. 

 

p (%)  =   
 

 √ 
   (

  

  
) 2 

 (2.8) 

Where, p is the porosity, Dp is pore diameter and Di is interpore distance. 

 

Highly-ordered hexagonal structures can be obtained of optimum parameters 

of anodizing process (Table 2.1), which samples exhibit a porosity P of ~ 10 %, and 

corresponding volume expansion Ѯ = 1.2 [51]. In the case of sulfuric and phosphoric 

acid, the porosity for the optimum conditions is slightly higher than the expected 10 

%, due to chemical etching of the aluminum oxide pore wall. 

Table ‎2-1  Controllable parameters: anodizing voltage, concentration and 

temperature of the electrolyte and structural features: interpore distance 

(Di), pore diameter (Dp), pore wall thickness (W), porosity and growth rate 

of self-organized porous AAO for sulfuric, oxalic and phosphoric acid 

[39]. 

Acid Sulfuric Oxalic Phosphoric 

Voltage (V) 25 40 195 

Concentration (M) 0.3 0.3 0.1 

Di (nm) 65 105 480 

Dp (nm) 25 35 180 

W (nm) ~34 ~50 ~250 

Porosity (%) ~14 ~10 ~13 

Growth rate (μm/h) 5 2.5 5 

Temperature (
o
C) ~1 ~4 ~1 
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2.6  Modulation of the Pore Dimensions 

The controllable fabrication of thin porous AAO template under parameters 

conditions of anodizing process by using two-step anodization with tailoring the pore 

diameter, interpore spacing, thickness of thin porous AAO template through 

controllable of the critical parameters of anodizing process such as, anodizing 

voltage, concentration and electrolyte type and temperature are well-known effects 

[54-59]. 

 

2.6.1  Anodizing Voltage 

The anodizing voltage, V, is one of the most important factors to adjust self-

organized of porous AAO film. As shown in the Figure  2.7, the interpore distance     

(Di), is linearly proportional to the applied voltage with a proportionality constant ki 

(nm/V) of approximately value is equal 2.5 for different types of acidic electrolyte 

[13, 52, 60]. 

 

Di  =  ki V = 2.5 V (2.9) 

 

In addition, large efforts have been made in the last years to widen the voltage vs. Di 

range. Up-to-now, ordered porous AAO has been prepared in broad interval 

conditions as seen in the Figure  2.7 [39, 60, 61]. 
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Figure  2.7  Interpore spacing versus anodizing voltage. The known self-ordering 

regimes are shown as symbols. The line is a fit to the data with a 

proportional constant ki = 2.5 nm/V. Experimental data extracted from 

Chu et al. [13] and Ono et al. [60]. 

 

 

The model proposed by O
,
Sullivan et al. [28] showed a linear relation 

between the pore diameter (Dp) and the anodizing voltage. This relation was clarified 

by Xu et al. [62], which depends of the migration velocity of the reactive ions under 

the electric field during the growth and dissolution process of the forming porous 

AAO. This clarification was later supported by the study of Shingubara et al. [63] 

who investigated that voltage dependence on pore formation. A few years later, Lee 

et al. [64] reported that pore diameter (Dp) increases with current density (j) under 

potentiostatic anodization. Recently, many studies describe the fabrication of porous 

AAO with modulated of pore diameters by oscillatory current signals (anodization 

cyclic) [65]. 
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Two other features (pore density and porosity) that characterize the porous 

AAO are related with the anodizing voltage. The pore density varies inversely as the 

square of the anodizing voltage [66]. Using 3 % oxalic acid, pore densities of the 

order 10
10

 pores/cm
2
 can be obtained. Pore densities (˃10

11
 pores/cm

2
) can be 

obtained using 15 % sulphuric acid. Exponential dependence of pore density as a 

function of anodizing voltage was reported by Palibroda et al. [67]. In order to obtain 

perfect self-organized hexagonal arrays of nanopore formed during optimal 

anodizing parameters, the porosity of 10 % rule should be obeyed [51]. Recently, 

reports have published regarding changes in the porosity of porous AAO with 

increasing anodizing voltage [68, 69].  

2.6.2  Type and Concentration of the Electrolyte 

The type and concentration of the electrolyte for a given anodizing voltage 

has to be selected properly to obtain self-ordered pore growth. In other words, the 

choice of the type of electrolyte is limited. Usually, the anodization of Al is carried 

out in sulfuric acid in low voltage range 5- 25 V, oxalic acid is used for medium 

voltage range 35- 80 V and phosphoric acid for high voltage range 80- 200 V. This 

limit is due to the conductivity and pH value of the electrolyte. For example, if Al is 

anodized in sulfuric acid at a high voltage (note that sulfuric acid has a very high 

conductivity), collapse of the porous AAO layer takes place very often. In addition, 

the pH-scale of the electrolyte determines the diameter of the pores. The lower the 

pH scale, the lower the voltage threshold for field-assisted dissolution at the pore 

boundary. This leads to a smaller size of the pores. Therefore, small pore diameters 

are formed by using the sulfuric acid, the medium pore diameters are formed by 

using the oxalic acid and the large pore diameters are obtained by using the 
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phosphoric acid [25]. Theoretical modeling of porous AAO growth performed by 

Parkutik and Shershulsky [34] predicted an increase in pore diameter with increasing 

pH electrolyte. (i.e., increasing electrolyte concentration) due to the enhanced 

dissolution velocity of anodic oxide at the pore base. Nielsch et al. [51] proposed the 

10% porosity rule for the self-ordering regimes in three electrolytes such as sulfuric, 

oxalic, and phosphoric at anodizing voltages 25, 40, and 195 V, respectively as 

shown in Figure  2.8. 

 

 

 

Figure  2.8  (a, b and c) Top surface and (d, e and f) cross-section SEM image of 

porous AAO obtained with different anodizing parameters: [(a) and (d)] 

0.3 M sulfuric acid, anodizing voltage is 25 V; [(b) and (e)] 0.3 M oxalic 

acid, anodizing voltage is 40 V; [(c) and (f)] 0.1 M phosphoric acid, 

anodizing voltage is 195 V [39]. 

 

2.6.3  Temperature Dependence 

During the anodizing process, temperature should be kept lower than room 

temperature to prevent the formed oxide structure from being dissolved in acidic 
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electrolytes. For instant, anodization at 40 V in oxalic acid is performed at 5- 19  
o
C 

and in the case of anodization at 195 V in phosphoric acid is performed at 0- 2  
o
C. 

Additional reason to keep the temperature as low as possible is to avoid a local 

heating at the bottom of the pores during the period of anodization (specially, the 

anodizing process at a high voltage). The local heat causes an inhomogeneous 

electric field distribution at the bottom, leading to local electrical collapse of the 

oxide layer. Recently study by Sulka and Parkoła indicated that the pore diameter 

increases with increasing temperature [58]. During the anodizing process, the 

electrolyte should be vigorously stirred to efficiently remove local heat and hydrogen 

bubbles on the Al surface, and to allow a homogenous diffusion of anions into pore 

channels [70].  

2.7  Syntheses of Functional Nanostructures Assisted by Porous AAO 

Synthesis of functional nanostructures into porous AAO template provides 

many unique opportunities, allowing simple and cost-effective preparations of 

extended high-ordered arrays of nanostructures and also overcoming many of 

drawbacks of conventional state of the art lithographic techniques. 

2.7.1  Porous AAO Deposited onto Substrates  

There are two major kinds of porous AAO, the first- type of porous AAO is 

grown on a bulk pure Al foil while the second- type is grown on conductive or metal-

coated substrates. The second- type of the porous AAO is preferable. In addition to 

overcoming the brittle characteristics of porous AAO originated from Al bulk after 

removal the Al backing, porous AAO grown onto thin Al film (˃ 1 μm) deposited on 

conductive or metal-coated substrates would potentially offer much broader 
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application than those on bulk Al foils [71, 72]. The substrate could be 

semiconductor such as Si [73-78], non-valve metal (e.g., Cu, Ag, Au, Pt, etc.)-  

coated Si substrates [72, 79-82], valve-metal (e.g., Ti, W, Ta, etc.)-coated Si 

substrates [83-85] and transparent indium tin oxide (ITO) [86-89]. 

Most of the developed methods for producing porous AAO generally yield 

highly ordered arrays on bulk Al foil. Until now, the fabrication of highly ordered 

thin porous AAO on substrates is difficult to be formed mainly due to the 

complicated surface states (roughness and crystallite sizes) and non- uniformity of 

the deposited Al film [71, 87] and still remains a major challenge from the scientific 

and technological point of view [90]. Moreover, the degree of pore ordering remains 

relatively not highly, even if a two-step anodization process is used, because of the 

limited thickness (  1 μm) of the Al film [88]. 

 Porous AAO formed by anodizing thin Al films on substrates have been 

successfully utilized not only as patterning masks, but also as templates for 

fabricating various functional nanostructures (nanotubes, nanorods, nanowires and 

nanodots), including ordered arrays of metal [71, 91-93], semiconductor [84, 94-96], 

carbon nanotubes (CNT) [97-99], or polymer [100, 101] on various substrates.  

2.7.2  Removing Bottom Barrier Layer 

Despite the broad range of potential applications of Si- based or ITO/glass- 

based AAO film, the prevalent problem is the barrier layer formed at the bottom of 

the AAO pores, which inhibits direct physical and electrical interaction with the 

substrate. Hence, diverse techniques have been employed to remove the bottom 

barrier layer such as, pore widening [72, 102], cathodic polarization [74, 103], 

voltage drop [104, 105] and  reactive ion etching (RIE) [106, 107]. 
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