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comparison of 1H-NMR profiles of organic-phase urine in 

normal- and high- sperm count group of rats for the 

presence of testosterone (H4, 5.76 ppm); SC: sperm count 
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Figure 4.26 

 

LC chromatograms of A eurycomanone at 3.72 min. and B 

testosterone at 2.74 min 
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Figure 4.27 The electrospray ionization positive mode (ESI+) mass 

spectrum of eurycomanone (the spectrum at the bottom) 

and the corresponding MS/MS spectrum (the spectrum on 

top) 
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Figure 4.28 A The electrospray ionization positive mode (ESI+) mass 

spectrum of testosterone (the spectrum at the bottom) and 

the corresponding MS/MS spectrum (the spectrum on top); 

B The possible fragmentation patterns for testosterone 

daughter ions at m/z 97.1 and 108.9 
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Figure 4.29 TIC chromatograms of eurycomanone, the aqueous-phase 

urine sample from normal-sperm count (SC) group and that 

of the high-sperm count (SC) group 
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Figure 4.30 The MS profile of eurycomanone, the representative urine 

sample of the normal-sperm count group and that of the 

high-sperm count group. Unlike the urine samples of the 

high-sperm count group, the samples of normal-sperm 

count group did not contain  eurycomanone and its 

molecular ion 
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Figure 4.31 The MS/MS profiles of eurycomanone, the representative 

urine sample of the normal-sperm count group and that of 

the high-sperm count group. As expected based on the MS 

profile, no fragmented ion of eurycomanone was detected 

in the samples of normal-sperm count. Although the 

samples of high-sperm count group contained 

eurycomanone, no fragmented ion was detected 
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Figure 4.32 TIC chromatograms of testosterone, the org-phase urine 

sample from normal-sperm count (SC) group and that of 

the high-sperm count (SC) group 
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Figure 4.33 The MS profile of testosterone, the representative org-phase 

urine sample of the normal-sperm count group and that of 

the high-sperm count group. Both samples contained 

testosterone 
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Figure 4.34 

 

 

 

 

The MS/MS profile of testosterone, the representative org-

phase urine sample of the normal-sperm count group and 

that of the high-sperm count group. Both samples 

contained testosterone 
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Figure 4.35 Comparison of testosterone amount in urine samples of 

normal-and high- sperm count (SC) group of rats. * The 

results are significant at p < 0.05 and reported based on the 

mean ± SD 
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Figure 4.36 Comparison of line width at half height (W h/2) values of 

the internal standards DSA and TSP peaks in rat plasma 

samples at pH7.4. * The results are significant at p < 0.05 

and reported based on the mean ± SD 
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Figure 4.37 A Principal component analysis (PCA) score plot derived 

from the combined CPMG plasma spectra of normal- and 

high-sperm count rats; B Hotelling’s T2 ellipse constructed 

from the PCA score plot. The results are based on the 95% 

confidence interval 
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Figure 4.38 OPLS-DA score plot of the first four components from the 

analysis of CPMG NMR spectra of high-sperm count 

group (circles) and those of the normal-sperm count group 

(squares). R2= 0.947 and Q2= 0.892 
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Figure 4.39 Integrated intensity (relative to DSA as the reference for 

each CPMG spectrum) of detected discriminatory 

metabolites from OPLS-DA-extracted VIP plot of plasma 

samples from low- and high-sperm count group of rats. The 

figures are related to the following discriminatory 

metabolites: A alanine, B lactate, C histidine and D 

ethanol. 

The significant differences are marked with asterisk. * 

Significant at p < 0.05. The bars show the associated 

values of standard deviation 
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Appendix 4.6B 

 

 

 

 

 

 

 

The representative HSQC spectrum of a randomly-

picked E. longifolia root aqueous extract from Perak 

confirmed the existence of plant metabolites identified by 
1H-NMR spectra: 1 α- Glucose, 2 alanine, 3 formic acid, 

4 succinic acid, 5 methylsuccinic acid, 6 fumaric acid, 7 

lactic acid, 8 syringic acid, 9 choline, 10 eurycomanone 

H3,11 eurycomanol H3, 12 13,21- dihydroeurycomanone 

H1, 13 eurycomanol-2-O-β-D-glucopyranoside H3, 14 

phenylalanine, 15 tyrosine, 16 acetic acid, 17 

eurycomanone, 13,21-dihydro eurycomanone H19, 18 

eurycomanone, eurycomanol, eurycomanol-2-O-β-D-

glucopyranoside H12, 19 eurycomanone H1, 20 β- 

Glucose, 21 eurycomanol-2-O-β-D-glucopyranoside H1’, 

22 eurycomanone, eurycomanol, 13,21-dihydro-

eurycomanone, eurycomanol-2-O-β-D-glucopyranoside 

H15, 23 eurycomanone, eurycomanol, eurycomanol- 

2-O-β-D-glucopyranoside H21 and 24 eurycomanone, 

13,21-dihydroeurycomanone H18. The same metabolites  

existed in the samples of Selangor, Kedah and 

Terengganu 
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Sperm count of individual rats (SC: Sperm Count, The 

first digit in the “Rat” column, signifies the treatment 

group, while the second digit represents the rat number, 

e.g. 35 indicates rat number 5 from treatment group 3 

(TAQP)). Sperm count group was assigned based on the 

median value of normal epididymal SC in control rats 

obtained in our study, which is (25.35 ± 6.42) x 106/mL/g 

testis and also the results from sperm count comparison 

of four experimental groups in which TAQP-treated and 

control groups were not significantly different. As a 

result, TAQP-treated and control groups were labeled as 

normal-SC group (group 1), while group 2 was 

considered to be high-SC group (including TAW- and 

TAQR-treated rats) 
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Appendix 4.8 Overlaid 1H-NMR spectra of TAW, TAQP and TAQR 
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no trigonelline was observed at 8.82 and 9.12 ppm; B no 

ethanol was observed at 1.18 ppm; C no benzoic acid 

was observed at 7.54 and 7.86 ppm; D no alanine was 

observed at 1.46 ppm; E no signal at 3.42 ppm was 

detected 
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Correlation matrix between sperm count (SC) and the 

discriminatory metabolites of normal- and high-sperm 

count groups. Sperm count is positively correlated with 

trigonelline (trig), alanine (Ala), benzoic acid and the 

unknown metabolite (X) levels, while it is negatively 

related to ethanol (EtOH) level. r represents correlation 

coefficient and p is the significance 
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the existence of metabolites identified by CPMG spectra 
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(21), methanol (22), free EDTA (23), tyrosine (24) and 

succinic acid (25) were detected in the plasma NMR 

Region 0.8-5.5 ppm. The above-mentioned metabolites 

exist in all plasma samples 
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ACN  acetonitrile  

APS  ammonium persulfate  

CD3OD deuterated methanol 
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PENDEKATAN METABOLOMIK BERDASARKAN NMR UNTUK 

MENILAI KESAN EKSTRAK EURYCOMA LONGIFOLIA KE ATAS 

SPERMATOGENESIS TIKUS 

 

ABSTRAK 

Eurycoma longifolia (Tongkat Ali, TA) dikenali untuk meningkatkan kesuburan 

lelaki dan libido. Suatu analisis metabolomik analisis berasaskan resonans magnetik 

nuklear (NMR) dikombinasi dengan kaedah kimometrik termaju telah dibangunkan, 

divalidasikan dan digunakan serentak untuk pengenalan dan kuantifikasi serentak 

metabolit dalam E. longifolia dan cecair mamalia (air kencing dan plasma tikus). Suatu 

profil umum ekstrak akueus yang diperolehi daripada 30 sampel di Perak, Malaysia 

telah ditentukan untuk metabolit terutamanya bagi kuasinoid bioaktif eurikomanon, 

eurikomanol, 13,21-dihidroeuricomanon dan euricomanol-2-O-β-D-glikopiranosida. 

Profil rujukan kemudian dibandingkan dengan ekstrak akueus yang lain dari Selangor, 

Kedah dan Terengganu untuk menyiasat sebarang metabolit diskriminasi berkaitan 

dengan lokasi dan variasi seperti suhu alam sekitar dan pH tanah. Satu lagi kajian adalah 

berkaitan dengan analisis NMR pada air kencing tikus untuk menyiasat sebarang 

korelasi antara metabolit didiskriminasi dengan status bilangan sperma (SC) berikutan 

rawatan tikus dengan pelbagai kandungan kuasinoid dalam air (TAW, 125 mg/kg), 

Tongkat Ali kurang kandungan kuasinoid (TAQP, 125 mg/kg) dan ekstrak kuasinoid 

yang kaya dengan Tongkat Ali (TAQR, 21 mg/kg). Suatu peningkatan 6-kali ganda dos 

TAW, sama dengan TAQP dalam kepekatan kuasinoid, telah diadministrasi untuk 

menyiasat sama ada sebatian dalam kedua-dua ekstrak yang bertanggungjawab bagi 
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peningkatan dalam SC tikus. Tikus-tikus itu kemudian dikategorikan ke dalam 

kumpulan SC normal dan tinggi berdasarkan nilai median rujukan bagi tikus SC yang 

normal. Profil NMR air kencing kumpulan SC normal dan tinggi telah diperiksa untuk 

diskriminasi metabolomik. Tambahan lagi, keputusan rawatan yang sama pada profil 

NMR plasma tikus telah disiasat. Bahagian terakhir kajian bertujuan bagi penemuan 

penanda bio kesuburan daripada metabolit air kencing dan plasma. Profil min ekstrak 

akueus E. longifolia mengandungi α-glukosa, alanina, fenilalanina, tirosina, kolina, asid 

formik, suksinik, metilsuksinik, fumarat, syringik, laktik dan asid asetik dan juga 

eurikomanon, eurikomanol, 13,21-dihidroeuricomanon dan euricomanol-2-O-β-D-

glikopiranosida. Profil metabolomik kuantitatif akar E. longifolia tidak berbeza 

berdasarkan suhu dan pH tanah. Kuantitatif NMR yang divalidasikan (qNMR) dengan 

pastinya menentukan tahap kuasinoid dalam ekstrak akueus E. longifolia, menunjukkan 

eurikomanon (% w/w ± SD) dengan kepekatan kuasinoid yang paling tinggi pada julat 

5.984 ± 1.949 to 7.752 ± 2.892 dan tidak berbeza secara statistik dalam sampel di empat 

lokasi. Sebaliknya, sampel dari lokasi yang berbeza menunjukkan kepekatan yang 

berbeza secara statistik untuk kolina, euricomanol, euricomanol-2-O-β-D-

glikopiranosida, asid laktik dan succinik. Haiwan yang dirawat dengan TAW dan TAQR 

mempunyai bilangan sperma jauh lebih tinggi dan signifikan berbanding dengan dua 

kumpulan lain. Nilai SC (x106/mL/g testis) adalah 25.35 ± 6.42, 65.9 ± 26.11, 28.73 ± 

17.42 dan 68.27 ± 14.96 untuk masing-masing kumpulan kawalan, dirawat dengan 

TAW, dirawat dengan TAP dan dirawat dengan TAQR. Daripada analisis air kencing, 

paras trigonelina, asid benzoik dan alanina meningkat dengan signifikan dalam 

kumpulan SC tinggi berbanding dengan yang SC normal, manakala paras etanol 
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menurun secara statistik dalam kumpulan SC tinggi. Berdasarkan data literatur, 

perubahan paras metabolit diskriminasi berkorelasi dengan paras testosteron yang 

berbeza dalam sampel air kencing, selepas rawatan dengan ekstrak E. longifolia yang 

mengandungi kepekatan kuasinoid yang berbeza. Bukti lanjut diperolehi dengan 

mengukur paras testosteron dalam kencing tikus. Fasa organik (org) air kencing, kaya 

dengan testosteron, telah diperolehi daripada air kencing yang diekstrak dengan 

dietileter. Air kencing fasa organik dan berair masing-masing dianalisis dengan LC-

MS/MS untuk testosteron dan eurikomanon (sebagai kuasinoid yang paling banyak). 

Kehadiran eurikomanon (hanya dalam kumpulan SC tinggi) telah terbukti dalam fasa 

akueus (aq) air kencing dari puncak isotop [M+H]+ pada m/z 409.02. Testosteron telah 

dikenal pasti dalam kumpulan SC normal dan tinggi dengan ion molekul pada m/z 289.2 

[M+H]+ dan ion yang terserpih pada m/z 96.8 and 108.8. Jumlah testosteron (%w/v) 

dalam kumpulan SC tinggi adalah 2.2 kali ganda lebih tinggi daripada SC normal. 

Analisis statistik plasma tikus juga mendedahkan peningkatan paras alanina, laktat dan 

histidina dalam kumpulan SC tinggi berbanding dengan kumpulan SC normal. Walau 

bagaimanapun, paras etanol menurun dengan signifikan dalam kumpulan SC tinggi. 

Metabolit diskriminasi yang sama telah ditemui dalam plasma seperti yang ditemui 

dalam air kencing. Kesimpulannya, profil metabolomik piawai dari sampel Perak telah 

diperolehi sebagai rujukan. Sampel dari Perak dan yang berada di tiga lokasi yang 

berlainan telah didiskriminasi mengikut paras metabolit mereka. Keberkesanan 

kuasinoid pada peningkatan dalam jumlah sperma telah disahkan oleh peningkatan paras 

kuasinoid dan testosteron air kencing, bersama-sama dengan beberapa metabolit primer 

seperti yang dinyatakan di atas. Pendekatan metabolomik berdasarkan NMR telah 
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memberikan penanda bio air kencing dan plasma yang dikaitkan dengan peningkatan 

jumlah sperma, dan mempunyai potensi untuk penilaian status kesuburan lelaki tanpa 

memerlukan sampel air mani. 
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NMR-BASED METABOLOMIC APPROACHES TO EVALUATE THE 

EFFECTS OF EURYCOMA LONGIFOLIA EXTRACTS ON RAT 

SPERMATOGENESIS  

 

ABSTRACT 

Eurycoma longifolia (Tongkat Ali, TA) is known for boosting male fertility and 

libido. A nuclear magnetic resonance (NMR)-based metabolomics analysis in 

combination with advanced chemometric methods was developed, validated and applied 

for the simultaneous identification and quantification of metabolites in E. longifolia and 

mammalian fluids (rat urine and plasma). A general profile of the aqueous extract 

derived from 30 samples in Perak, Malaysia was established for metabolites especially 

for the bioactive quassinoids of eurycomanone, eurycomanol, 13,21-

dihydroeurycomanone and eurycomanol-2-O-β-D-glycopyranoside. The reference 

profile was then compared with other aqueous extracts from Selangor, Kedah and 

Terengganu to investigate any discriminatory metabolites with respect to location and 

variations such as environmental temperature and soil pH. Another study dealt with the 

NMR analysis of rat urine to investigate any correlation of the discriminated metabolites 

with the sperm count (SC) status following the treatment of rats with varying quassinoid 

content in water (TAW, 125 mg/kg), quassinoid-poor Tongkat Ali (TAQP, 125 mg/kg) 

and quassinoid-rich Tongkat Ali (TAQR, 21 mg/kg) extracts. A 6-fold increase in dose 

of TAW, equal with TAQP in concentration of quassinoids, was administered to 

investigate whether the compounds in the two extracts were responsible for the increase 

in rat SC. The rats were then categorized into normal- and high-SC groups following the 
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reference median value of normal rat SC. The urine NMR profiles of the normal- and 

high-SC groups were next examined for metabolomic discrimination. In addition, the 

results of the same treatment on the rat plasma NMR profiles were investigated. The last 

part of study aimed at the fertility biomarker discovery of the urine and plasma 

metabolites. The E. longifolia aqueous extract general profile contained α- glucose, 

alanine, phenylalanine, tyrosine, choline, formic, succinic, methylsuccinic, fumaric, 

syringic, lactic and acetic acids and also eurycomanone, eurycomanol, 13,21-

dihydroeurycomanone and eurycomanol-2-O-β-D-glycopyranoside. The quantitative 

metabolomic profiles of E. longifolia roots were not different with respect to 

temperature and soil pH. The validated quantitative NMR (qNMR) reliably determined 

the quassinoid levels in E. longifolia aqueous extracts, showing eurycomanone (% w/w 

± SD) with the highest quassinoid concentration at a range of 5.984 ± 1.949 to 7.752 ± 

2.892 and not statistically different in the samples at the four locations. In contrast, the 

samples from different locations were statistically different in concentration of choline, 

eurycomanol, eurycomanol-2-O-β-D-glycopyranoside, lactic and succinic acids. TAW- 

and TAQR-treated animals had significantly higher sperm number compared to the other 

two groups. The SC values (x106/mL/g testis) were 25.35 ± 6.42, 65.9 ± 26.11, 28.73 ± 

17.42 and 68.27 ± 14.96 for control, TAW-treated, TAQP-treated and TAQR-treated 

groups, respectively. From the urine analysis, trigonelline, benzoic acid and alanine 

levels significantly increased in high-SC group compared to the normal-SC one, 

whereas the ethanol level statistically decreased in high-SC group. Based on the 

literature data, the altered level of discriminatory metabolites correlated with the 

different levels of testosterone in urine samples, following the treatment with E. 
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longifolia extracts containing different quassinoid concentration. Further evidence was 

obtained by measuring testosterone level in rat urine. The organic-phase (org) urine, rich 

in testosterone, was obtained from the diethylether extracted urine. The organic and 

aqueous phase urine were analyzed by LC-MS/MS for testosterone and eurycomanone 

(as the most abundant quassinoid), respectively. The presence of eurycomanone (only in 

high-SC group) was proven in aqueous-phase (aq) urine by the isotope peak [M+H]+ at 

m/z 409.02. Testosterone was identified in normal- and high-SC groups displaying the 

molecular ion at m/z 289.2 [M+H]+ and the fragmented ions at m/z 96.8 and 108.8. The 

testosterone amount (% w/v) in the high-SC groups was 2.2 fold higher than that of the 

normal-SC. The statistical analysis of rat plasma also revealed the increased levels of 

alanine, lactate and histidine in the high-SC group compared to the normal-SC group. 

However, the ethanol level significantly decreased in the high-SC group. Similar 

discriminatory plasma metabolites as those of urine were found. In conclusion, a 

standardized metabolomic profile of Perak samples was obtained as a reference. The 

samples in Perak and those in three other locations were discriminated according to their 

metabolite levels. The efficacy on the increase in sperm count of the quassinoids was 

confirmed by the increase in urinary quassinoid and testosterone levels, together with 

some of the above-mentioned primary metabolites. The NMR-based metabolomic 

approach has provided urine and plasma biomarkers associated with an increase in 

sperm count, and has potential for the evaluation of male fertility status without 

requiring semen sample. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Infertility as a public health issue 

Infertility, defined as the inability of a couple to conceive after a year of frequent 

unprotected intercourse, is a worldwide health issue influencing nearly up to one in five 

couples during reproductive age (Chamley and Clarke, 2007). Male infertility 

contributes to an almost 50 % of all cases of infertility across the globe and is the most 

difficult form of infertility to cure (Irvine, 1998). 

 

1.2 Male fertility assessment 

The traditional method of male fertility assessment is mainly based on the analysis of 

sperm count, morphology and motility on the semen sample provided by subjects 

through masturbation (Guzick et al., 2001). Despite the availability and the effectiveness 

of the advanced conventional methods for fertility evaluation through semen analysis 

and given the inconvenience felt by subjects during masturbation, there is still a high 

demand for a fast, non-invasive and accurate approach to evaluate fertility without 

requiring semen sample. 

 

1.3 Traditional remedies for boosting male fertility 

Medicinal plants are non-directed therapy, easy to collect and less expensive compared 

to prescription medications. Consequently, many people have been attracted to such 

remedies. There are natural remedies becoming extensively popular in boosting fertility 

and serving as aphrodisiac supplements (Rowland and Tai, 2003). 
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Plants such as Eurycoma longifolia, Smilax myosotiflora, Polyalthia bullata, Labisia 

pumila, Terminalia catappa and Rafflesia sp. have been claimed to possess aphrodisiac 

properties in Malay traditional medicine. However, the aphrodisiac properties of only E. 

longifolia (Ang et al. 2000) and T. catappa (Ratnasooriya and Dharmasiri, 2000) have 

been scientifically proven. Roots of Eurycoma longifolia (E. longifolia, Tongkat Ali, 

TA), from the family of Simaroubaceae, have been also traditionally used for treating 

various ailments including body aches, dysentery and glandular swelling (Darise et al., 

1982). In general, plant phytochemicals are among either primary or secondary 

metabolites. A primary metabolite is directly involved in normal growth, development 

and reproduction. It performs a physiological function such as an intrinsic function. 

Many organisms or cells contain primary metabolites. The structural variety of such 

metabolites is rather limited to a set of compound classes such as carbohydrates, amino 

acids, organic and fatty acids. In contrast, secondary metabolites are not involved in 

primary life supporting functions. Instead, they usually have important ecological 

functions. They mainly include nucleosides, peptides, alkaloids, terpenoids and 

polyphenols (Wink, 2003; Ratcliffe and Shachar-Hill, 2006). 

E. longifolia consists of a variety of phytochemicals, one of the most important of which 

is quassinoids. Quassinoids are highly oxygenated triterpenes and the major secondary 

metabolites indigenous only to the plants from the Simaroubaceae family which are 

widely researched. The other secondary metabolites of the plant, however, have not been 

extensively studied. A wide range of in vitro pharmacological properties, such as 

antimalarial (Chan et al., 2005), antiulcer (Tada et al., 1991) and also cytotoxic 

properties against human cell lines (Kardono et al., 1991) has been reported on 

https://en.wikipedia.org/wiki/Ecology
https://en.wikipedia.org/wiki/Nucleosides
https://en.wikipedia.org/wiki/Peptides
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quassinoids. More importantly, the studies by Wahab et al. (2010) and Chan et al. 

(2009) on rat models proved the efficacy of E. longifolia root extracts on 

spermatogenesis and sperm quality. The water-soluble extract of E. longifolia root 

improved sperm quality in infertile patients and led to 14.7% spontaneous pregnancies 

(Tambi and Imran 2010; Tambi et al., 2012). Such findings, in general, cast doubt on the 

efficacy of E. longifolia and quassinoids, especially on male fertility. 

 

1.4 The necessity of a new approach to E. longifolia analysis and the 

management of fertility 

Due to the fact that E. longifolia has a myriad of pharmacological effects, specially 

fertility boosting properties, a robust and accurate approach is required for the 

simultaneous identification and quantification of the plant phytochemicals particulary its 

active constituent, quassinoids. The simultaneous identification of primary and 

secondary metabolites of E. longifolia will create a general profile which can serve as a 

reference for the metabolomic comparison of plants being exposed to different 

variations with respect to the region of origin, age, soil pH and environmental variations 

such as temperature. Moreover, the overall profile can be referred to in the future studies 

on E. longifolia metabolomic analysis. 

The lack of a fast, non-invasive and robust method for the evaluation of sperm quality 

and male fertility status has created a big challenge in the management of male fertility. 

To overcome such limitation, a new field of science known as metabolomics has been 

emerged. One of the functions of metabolomics is to analyze body fluids (e.g. urine and 

plasma, etc.) to create a cost-effective and informative means of measuring related 
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metabolites of different health-related issues such as male fertility. Metabolomics is the 

study of a group of small molecules, known as metabolites, representing functional 

phenotype in a cell, tissue, organ or organism (Rochfort, 2005; Hollywood et al., 2006). 

There are other branches of “omics” such as transcriptomics or proteomics which 

regulate metabolic fluxes. However, metabolome, rather than transcriptome and/or 

proteome, is closer to the phenotype (ter Kuile and Westerhoff, 2001). Although 

alteration in the level of individual enzymes does not have much impact on metabolic 

fluxes, it significantly affects the level of individual metabolites. As a result, 

metabolomics can provide richer and more useful information at a lower cost compared 

to genomics, transcriptomics and proteomics (Raamsdonk et al., 2001).  

 

1.5 NMR-based metabolomics 

Nuclear magnetic resonance (NMR) spectroscopy combined with the statistical analysis 

approaches has been extensively used in the metabolomic analysis of plants and 

biological fluids including urine and plasma. It has been employed in plant sciences 

mostly for the purpose of quality control, detecting the biomarkers of plant diseases and 

studying the effect of different environmental conditions and regions of origin on plant 

metabolomic profile. 

Brassica rapa has nutritional and health benefits due to its high content of antioxidant 

metabolites (phenolics, flavonoids, vitamins C and E). Abdel-Farid et al. (2007) used an 

NMR-based metabolomic approach to investigate the metabolic discrimination of 

different cultivars and ages of Brassica rapa leaves. In another study, 1H-NMR 

spectroscopy was used to acquire the metabolite fingerprints of two sunflower genotypes 
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(Kruger et al., 2008). A fast and sensitive 1H-NMR-based metabolomic profiling of 

deuterated methanol-D2O buffer extracts of transgenic tomato flesh was performed by 

Fatma et al. (2012). The same approach was used by Kim et al. (2010) for the 

discriminatory analysis of 11 South American Ilex species. A clear separation between 

species was achieved and finally resulted in four distinct classes with respect to 

metabolomic similarities. High resolution magic angle spinning-1H-NMR (HRMAS-

NMR) spectroscopy was employed by Ritota et al. (2012) to analyze red and white 

varieties of garlic (Allium sativum L.) collected in different geographical regions in Italy, 

in order to address the traceability issue and identify the discriminatory metabolites of 

different varieties and origins. Plants which have undergone different type of treatments 

can also be analyzed with NMR-based metabolomics approaches (Liang et al., 2006). 

Pereira et al. (2014) performed the metabolomic analysis of lettuce (Lactuca sativa L.) 

leaves to characterize metabolic variations during exposure to mancozeb and the impact 

of variations on plant metabolism. 

Metabolomics studies have been conducted on E. longifolia using other technologies 

except NMR. LC-MS/MS-based secondary metabolomic analysis of E. longifolia 

aqueous extracts from two locations in Malaysia (Perak and Pahang) was investigated 

by Chua et al. (2011). Zaini et al. (2016) reported a solid phase extraction-liquid 

chromatography (SPE-LC) approach for the fingerprinting of E. longifolia roots. A more 

comprehensive and straightforward metabolomics approach using NMR was studied in 

the current research. Enough number of E. longifolia aqueous extracts from Perak were 

used to establish a metabolomic profile of primary metabolites and major biologically 

active quassinoids. The aqueous extracts of Perak and three other locations (Selangor, 
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Kedah and Terengganu) were then compared using chemometric tools for the 

discriminatory metabolites. 

The above-mentioned facts on the health promoting effects of E. longifolia (especially 

fertility improvement) (Section 1.3) and the informative nature of NMR-based 

metabolomics made us develop a validated approach to establish a mean reference 

profile of the 30 plant aqueous extracts from Perak for metabolites, particularly the 

major biologically active quassinoids due to their large number of pharmacological 

effects discussed in Section 1.3. The potential of the approach for distinguishing E. 

longifolia roots from different geographical locations in Malaysia (Perak, Selangor, 

Kedah and Terengganu) and of different environmental conditions (soil pH and 

temperature) was also assessed. A quantitative NMR (qNMR) method was then 

developed for the simultaneous determination of the discriminatory metabolite levels. 

In pursuit of a new method for evaluating male fertility without requiring semen 

analysis, an animal experimental procedure was designed in which rats were treated with 

variable content of quassinoids in TA extracts such as the water (TAW, 125 mg/kg), 

quassinoid-poor TA (TAQP, 125 mg/kg) and quassinoid-rich TA (TAQR, 21 mg/kg) 

extracts. TAW and TAQR extracts contained same amount of quassinoids, while TAQP 

extract was purposely depleted of quassinoids. The effect of quassinoids on sperm count 

(SC) increase was evaluated and the animals were then classified into normal- and high- 

SC groups considering the reference median value of normal rat SC. An NMR-based 

metabolomic approach was then applied on urine samples of the normal- and high-SC 

groups to detect discriminatory metabolites. Furthermore, the discriminatory metabolites 

of plasma were also investigated following the same treatment on the rats. The 
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discriminatory metabolites of urine and plasma may be considered as the potential 

biomarkers for male fertility evaluation without requiring semen analysis. Such an 

approach may be applicable to human for assessing male fertility status.  

 

1.6 Objectives of the current study 

The aims and objectives of the present study are as follows: 

1. To develop a standardized mean NMR profile for the identification of primary 

metabolites and particularly major biologically active quassinoids in crude aqueous 

extracts of Eurycoma longifolia using the Perak samples 

2. To develop a validated NMR method for the quantification of major quassinoids in 

E. longifolia aqueous extracts 

3. To compare the 1H-NMR profiles of aqueous extracts of E. longifolia from four 

different regions in Malaysia 

4. To determine the efficacy of major quassinoids on sperm count increase in rats 

treated with different extracts of E. longifolia containing different quassinoids 

5. To evaluate the post-treatment changes of rat urinary metabolites and fertility status 

without performing semen analysis 

6. To evaluate the post-treatment changes of rat plasma metabolites and fertility status 

without performing semen analysis 
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1.7 Expected outcomes of the current study 

Based on the study objectives the following outcomes were expected: 

1. A standardized general NMR profile of E. longifolia crude aqueous extracts from 

Perak on abundant primary metabolites and major quassinoids as a reference for 

further future research on E. longifolia 

2. NMR-based validated quantification of major quassinoids in E. longifolia 

aqueous extracts 

3. Metabolomic discrimination of aqueous extracts of E. longifolia from Perak, 

Selangor, Kedah and Terengganu 

4. The effectiveness of quassinoids (vs. glycoproteins) in increasing sperm count in 

rats and in general improving male fertility 

5. A non-invasive approach for evaluating male fertility status through urine 

metabolites and without requiring semen analysis 

6. Confirmation of the accuracy of male fertility biomarkers in urine through 

plasma metabolomic analysis 

7. High potential of NMR spectroscopy combined with chemometric tools in the 

discovery of male fertility biomarkers 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Eurycoma longifolia Jack 

Eurycoma longifolia Jack, E. longifolia (locally known as Tongkat Ali (TA) or Penawar 

Pahit in Malaysia, Pasak Bumi in Indonesia, Ian-don in Thailand and Cay ba binh in 

Vietnam), is a plant from the family of Simaroubaceae (Kuo et al., 2004). It is an 

unbranched tree or shrub with the height of up to 8 m with a few upright branches which 

are crowned by umbrella-like rosettes of leaves. It grows in well-drained sandy soils 

most effectively (Corner, 1952). The biological information of the plant (Ismail et al., 

1999) together with the plant pictures are included in Fig. 2.1.  

 

2.1.1 Chemical constituents of E. longifolia 

E. longifolia constituents include quassinoids, squalenes, biphenylneolignan, triterpene-

like tirucallanes, canthin-6-one alkaloids, β-carbolines and glycopeptides. Major 

squalene derivatives of E. longifolia include eurylene, 14-deacetyl eurylene, longilene 

peroxide and teurilene (Itokawa et al., 1991a and b; Morita et al., 1993). 

Biphenylneolignan compounds isolated from E. longifolia are two isomeric 2,2’-

dimethoxy-4-(3-hydroxy-1-propenyl)-4’-(1,2,3-trihydroxypropyl) diphenyl ethers, two 

isomers of 2-hydroxy-3,2’,6’-trimethoxy-4’-(2,3-epoxy-1-hydroxypropyl)-5-(3-

hydroxy-1-propenyl)-biphenyl and also 2-hydroxy-3,2’-dimethoxy-4’-(2,3-epoxy-1-

hydroxypropyl)-  
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Fig. 2.1 Eurycoma longifolia Jack; A the whole plant, B leaves, C root and D 

flowers 

hydroxypropyl)- 5-(3-hydroxy-1-propenyl)-biphenyl (Morita et al., 1992). The isolated 

triterpene-like tirucallanes include niloticin, dihydroniloticin, piscidinol A, 

bourjotinolone A, 3-episapelin A, melianone and hispidone (Itokawa et al., 1992). 9,10-

Dimethoxycanthin-6-one, 10-hydroxy-9-methoxycanthin-6-one, 11-hydroxy-10-

methoxycanthin-6-one and 5,9-dimethoxycanthin-6-one are the isloated canthin-6-one 

alkaloids from E. longifolia (Kardono et al., 1991; Mitsunaga et al., 1994; Choo and 

Chan, 2002). β-Carboline derivatives of E. longifolia are β-carboline-1-propionic acid 

and 7-methoxy-β-carboline-1-propionic acid (Kardono et al., 1991; Kuo et al., 2004). A 

biologically active glycopeptide (4.3 kDa) has been isolated from an aqueous extract of 

E. longifolia (Asiah et al., 2007). Most of the therapeutic properties of E. longifolia has 

been attributed to quassinoids as the indigenous phytochemicals of the plant. On the 

other hand, although not evidently proven, Sambandan et al. (2006) attributed the 
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fertility boosting properties of E. longifolia to its glycoprotein content, although 

glycoproteins are the ordinary constituents which may be found in many plant families 

(Galili et al., 1998). As a result, these constituents of E. longifolia (quassinoids and 

glycoprotein) are worthy of further literature search included in the following sections 

(Sections 2.1.1(a) and 2.1.1(b)). 

 

2.1.1(a) Quassinoids 

Quassinoids are the bitter constituents of the plants from the Simaroubaceae family and 

the secondary metabolites characteristic of this family. Nearly 120 quassinoid 

derivatives have been isolated and identified. The term quassinoids is derived from 

quassin which is the first identified member of this class of compounds isolated from the  

specimen Quassia Amara. Quassinoids are chemically defined as highly oxygenated 

degraded triterpenoids derived from tetracyclic triterpenes. They are categorized into 

groups based on their basic skeleton. The basic skeletons of quassinoids include C18, 

C19, C20, C22 and C25 (Fig. 2.2) (Joshi et al., 2013; Nuddin et al., 2015). 

 

Fig. 2.2 Basic skeletons of quassinoids 
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2.1.1(b) Glycoproteins 

2.1.1(b)(i) Glycoproteins in E. longifolia extract 

A biologically-active glycopeptide with the molecular mass 4.3 kDa was previously 

isolated from E. longifolia aqueous extract (Patent No. PI 20003988, MAL; 10/362697, 

USA). According to the patent and some conference presentations, the aphrodisiac and 

fertility boosting properties of E. longifolia aqueous extract has been claimed to be due 

to the glycoprotein (especially the 4.3 kDa glycopeptide) content of this plant to an 

extent where the administration of E. longifolia to rats was reported to increase 

testosterone level in Leydig cells (Sambandan et al., 2006). However, such claims only 

originate from the above-mentioned sources and have not even been published in peer-

reviewed journals, yet (Tambi, 2003; Sambandan et al., 2006). 

As a part of the current research, aqueous extract of E. longifolia (TA water extract, 

TAW) was intentionally depleted of quassinoids to result in a quassinoid-poor TA 

extract (TAQP). The details on the experimental procedure can be found in Section 3.11. 

The TAQP extract could be tested using the chromatographic methods such as high-

performance liquid chromatography (HPLC) to ensure zero or negligible amount of 

quassinoids remaining. However, it was also important to analyze the glycoprotein 

content in both the original extract (TAW) and the one depleted of quassinoids (TAQP) 

to ensure the glycoprotein content of TAQP extract remained intact as that of the TAW 

extract. As a consequence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) was used for such analysis (Section 2.1.1(b)(ii)). 
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2.1.1(b)(ii) Sodium dodecyl sulfate-polyacrylamide gel electrophoresis  

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) has been used 

as a powerful technique for the identification and separation of proteins and 

glycoproteins from plant and tissue samples. In this technique, an electric field is applied 

and the charged molecules in a gel matrix migrate, in response. Proteins and 

glycoproteins, with the molecular weight range of 10–200 kDa, in a complex mixture 

can be separate using this technique. 

Useful information can be derived from the SDS-PAGE analysis. It can be an evidence 

for the presence of glycoproteins in a complex matrix such as plant extract, biological 

fluids, etc. It is also useful in estimating the molecular weight of the glycoprotein.  

A number of staining reagents have been commonly used for the detection of protein 

bands among which Coomassie Briliant Blue, amido black, nigrosine, Procion Blue and 

periodic acid-Schiff (PAS) (Koiw et al., 1952) can be mentioned. A very common 

glycoprotein detection kit is the modification of periodic acid Schiff (PAS) methods 

which yields magenta bands with a light pink or colorless background (Zacharius et al., 

1969; Jay et al., 1990). The detection limit of this technique has been reported in the 

range of 25-100 ng for carbohydrates depending on the nature and the degree of protein 

glycosylation. Horseradish peroxidase has a carbohydrate content of approximately 16% 

and is used as a positive control in the glycoprotein detection kit. 

SDS-PAGE can be performed in the presence of either reducing or nonreducing agents.  

Under reducing conditions, proteins are linearized through the dissociation of inter- and 

intra-chain disulfide bonds. It includes a short heating of the protein sample in a boiling 

water bath in the presence of a reducing agent. The presence of the anionic detergent 
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SDS causes proteins to become coated with a negative charge. The proteins migrate in 

an electric field through the molecular “sieving” action of the gel matrix. As a result, 

they are separated as discrete bands (Racusen 1979). 

 

2.1.2 Therapeutic effects of E. longifolia 

E. longifolia has been traditionally used to treat various ailments including body aches, 

dysentery and glandular swelling (Darise et al., 1982). It has been proven in vitro that E. 

longifolia serves as an antibacterial agent against Gram-positive and Gram-negative 

bacteria (Farouk and Benafri, 2007). It also affects libido and sexual function and serves 

as an aphrodisiac supplement (Ang and Sim, 1997). Furthermore, a wide range of in 

vitro pharmacological properties has been attributed to quassinoids. It includes 

antimalarial (Kuo et al., 2003; Trager and Polonsky, 1981; Kardono et al., 1991; Chan et 

al., 2005), anticancer (Okano et al., 1981; Wong et al., 2012) and antiulcer (Tada et al., 

1991) properties. Moreover, quassinoids and some triterpenes isolated from E. longifolia 

show anti-tumor activities against some type of cancer cells, in vitro (Itokawa et al., 

1992; Jiwajinda et al., 2002). Another in vitro assay showed that a eurycomanone-rich 

fraction of the plant was able to induce cell apoptosis in HepG2 liver cancer (Zakaria et 

al., 2009). In a study performed on human, it was proven that the water-soluble extract 

of E. longifolia root enhanced sperm quality in patients and finally resulted in 14.7% 

spontaneous pregnancies (Tambi and Imran 2010; Tambi et al., 2012). Besides, there are 

also studies on rat models which prove the efficacy of E. longifolia root extracts on 

spermatogenesis and sperm quality (Wahab et al., 2010; Chan et al., 2009). 
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2.2 Male fertility 

Infertility is a worldwide health-related issue influencing 10 to 15 percent of the couples 

(Callister, 2010) in which 8 % of males need to seek medical attention during 

reproductive years (Esteves et al., 2011). Male infertility is among the main leading 

causes of infertility in young adults (World Health Organization, WHO 1999). In 10-20 

percent of the cases, the exact cause of infertility is unidentifiable and unexplained, 

although in general, it may happen as a result of physiological, endocrinal, 

environmental and/or genetic mutations. Surgical and medical treatments are available 

for such conditions. However, the successful treatment of male infertility is difficult and 

unaffordable, to some great extent (Gupta et al., 2013).  

In recent years, many patients have gained interest to natural remedies such as herbal 

supplements to cure infertility. Such supplements are easily obtainable and more cost-

effective than prescription drugs (Rowland and Tai, 2003). Eurycoma longifolia, 

Withania somnifera and Terminalia catappa are among these herbal supplements (Ang 

and Sim, 1997; Sharma et al., 2011; Ratnasooriya and Dharmasiri, 2000). 

Semen analysis is a routine examination of male fertility status through the analysis of 

sperm count, morphology and motility and also blood monitoring of hormones such as 

testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) (World 

Health Organization, WHO 1999; Dohle et al., 2004). Fertility evaluation is usually 

performed on sperm samples obtained through masturbation that may be awkward and 

inconvenience to the patients. Moreover, blood hormonal investigation is an invasive 

procedure. All these protocols necessitate considering an alternative to investigate 

semen profile (especially sperm count) without requiring semen sample. 



16 

 

2.2.1 Physiology of testis and its functions 

A testis consists of a large number of coiled seminiferous tubules in which spermatozoa 

are produced and then transferred to epididymides. The epididymis is connected to vas 

deferen, which then leads to urethra by passing the prostate gland. Urethra is the last part 

of the reproductive system which connects the whole reproductive system to the exterior 

(Guyton and Hal, 1996). Seminiferous tubules contain different types of germinal cells 

which undergo spermatogenesis. There are spaces between the stacked tubules called 

interstitial tissue which contains lymph vessels, blood vessels and interstitial or Leydig 

cells. These cells produce the major amount of steroid hormones, most importantly 

testosterone.  

The testes functions are to produce male gametes or spermatozoa and male sex 

hormones (androgens). These two functions are closely correlated in that sufficient 

production of androgens is required for the efficient production of spermatozoa 

(Setchell, 1978). 

 

2.2.2 Steroidogenesis and spermatogenesis  

Steroid hormones (androgens) are produced and secreted by testis and required for a 

successful spermatogenesis (Ohkura et al., 2000). Gonadotropin from the anterior 

pituitary regulates the production of androgens. These androgens include testosterone 

(A), dihydrotestosterone (B), 5α-androstan-3β,17β-diol (C), ∆4-androstenedione (D), 

17α-hydroxyperogesterone (E), dehydroepiandrosterone (DHEA) (F), 17α-

hydroxypregnenolone (G), pregnenolone (H), progesterone (I) and oestradiol (J) (Fig. 
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2.3). The building block of all these androgens is cholesterol (Setchell, 1978; Ohkura et 

al., 2000).  

Spermatogenesis is an active replication process which occurs in the seminiferous 

tubules. The mechanism by which spermatozoon (sperm) is produced, is almost the 

same in human and other mammals. In rats, which are the main focus of this research, 

there are roughly 10-20 seminiferous tubules in each testis. Primitive, diploid, stem cell 

spermatogonia finally produce haploid spermatozoa. This process involves a few mitotic 

divisions on the spermatogonia. The last mitotic division leads to the formation of 

spermatocyte. The spermatocyte then undergoes several meiotic cell division, the first 

part of which is spermatocyte DNA duplication during preleptotene stage, chromosome 

pairing and condensing during pachytene stage and eventually culminating in two 

divisions for the production of haploid spermatid. The spermatid undergoes a rapid 

series of morphological changes. The nuclear DNA then gets very condensed and 

elongated to a head region covered by a glycoprotein acrosome coat. The cytoplasm, on 

the other hand, forms a whip-like tail comprising flagellum and mitochondria. The 

sequential morphological steps in the differentiation of the spermatid (19 steps of 

spermatogenesis) is included in Fig.2.4 (OECD, 2001; Cheng and Mruk, 2010). 

The effect of testosterone on maintaining spermatogenesis has been well-documented 

(Steinberger, 1974). Setchell (1978) proved that the administration of high-dose 

testosterone to rats prevented the regression of the seminiferous tubules, a process which 

takes place after hypophysectomy. Furthermore, Steinberger (1970) proved that the 

conversion of gonocytes to type A spermatogonia was regulated by testosterone. 
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Fig. 2.3 The chemical structure of androgens produced in testis 
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Testosterone also enables diakinesis, which is the fifth and last stage of the meiosis 

prophase. Moreover, testosterone plays an active role in the early stages of spermatid 

formation (Steinberger, 1970). 

 

2.2.3 Sperm count 

Sperm count is one of the most critical indicators of male fertility. Any impairments in 

sperm count, due mainly to lifestyle, infection, occupational and environmental hazards 

and genetic mutations can cause infertility (Evens 2004; Parekattil and Agarwal, 2012). 

Normal semen is a mixture of spermatozoa suspended in testicular and epididymal 

secretions. Semen analysis provides a wealth of information on the clinical status of an 

individual. That is the reason why proper care must be taken while collecting and 

analyzing semen. Standardized procedures are available to ensure valid analysis results 

(World Health Organization, 1999). 

There are different categories of semen variables in terms of number of sperm such as 

normospermia (ejaculate with normal sperm concentration based on the reported value 

in the references), oligospermia (ejaculate with less sperm concentration than that of 

reported for normospermia), azoospermia (no spermatozoa in the ejaculate) and 

aspermia (no cjaculate at all) (Eliasson et al., 1970; World Health Organization, 1999; 

Gupta et al., 2013). 
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Fig. 2.4 Drawing depicting the development stages of spermatogenesis in rat 

germ cells (depicted from Cheng and Mruk, 2010) 
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2.3 Comparison of different ‘OMICS’ platforms 

There are different branches of OMICS technology such as metabolomics, genomics and 

transcriptomics as a sub-branch of genomics (Lee et al., 2005). These three OMICS 

technologies together with proteomics form ‘Systems Biology’ (Nicholson and Wilson, 

2003). It is possible through genome sequencing to develop new approaches for 

understanding gene functions. This field of study is known as ‘functional genomics’ 

(Ward and German, 2004). Transcriptomics is about profiling the expression of mRNA 

molecules which are transcribed from the genes. Proteomics, is related to profiling the 

proteins encoded by mRNA molecules. A fact in genomics is that the regulation of gene 

activity is performed on the basis of different levels. Chemical modification of the DNA 

encoding a gene affects its transcription.  

In general, metabolomics is concerned with phenotype and deals with the exhaustive 

profiling of metabolites in an organism. Phenotype is defined as a collection of 

observable characteristics of an individual cell or organism resulting from the interaction 

of genes with the environment (Mahner and Kary, 1997). Proteomics and 

transcriptomics are, however, a flow of media concerning genetic information which do 

not directly indicate gene function. Metabolomics is advantageous over proteomics and 

transcriptomics in that it is a stand-alone field of OMICS which does not require 

genome information. Furthermore, metabolites are a better measure of enzyme activity 

than genes and proteins (Schad et al., 2005; Fukusaki and Kobayashi, 2005). 
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2.4 Metabolomics  

Metabolomics, in general, is defined as the comprehensive evaluation of endogenous 

low-molecular weight metabolites in a biological system which may provide additional 

insight into the molecular mechanisms (Yao et al., 2014). These metabolites are context 

dependent and also different based on the physiological and developmental state of the 

cell, tissue, organ or organism” (Jove et al., 2014). Although the terms metabolomics 

and metabonomics are used interchangeably in the literature, the former is defined as the 

unbiased analysis of all metabolites in a mixture, whereas the latter is the measurement 

of metabolic response to stimuli or genetic modifications (Fiehn, 2001; Fiehn, 2002). 

 

2.4.1 Metabolomics technologies 

Different metabolomic technologies are available, among the most important of which 

GC-MS, LC-MS, FT-IR and NMR can be mentioned (Bino et al., 2004; Schripsema, 

2010). 

GC-MS technique was used for the metabolic analysis of potato tubers. The same 

approach was also employed towards the fast and unbiased comparative multivariate 

analysis of the volatile metabolite composition of different tomato genotypes (Roessner 

et al., 2000; Tikunov et al., 2005). GC-MS technique is also used for the metabolomic 

analysis of biological fluids. Lu et al. (2008) discovered the potential plasma biomarkers 

of hypertension in a rat model through a GC-MS approach. The same approach was used 

to identify the plasma biomarkers of hepatocellular carcinoma in a human model 

(Nezami Ranjbar et al., 2015). In general, there are large GC-MS databases available 

which make the metabolite identification rapid. However, a serious drawback of GC-MS 
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is the fact that metabolites should be volatile for the analysis. Considering the fact that 

high temperatures are applied during the analysis, the metabolites should also be stable. 

As a consequence, less number of metabolites can be detected by GC-MS. The non-

volatile compounds should be derivatized to convert to usable volatile adducts for GC-

MS analysis (Krishnan et al., 2005; Schripsema, 2010). 

Metabolic profiling of transgenic rice plant seedlings was performed through an LC-MS 

method (Mustada et al., 2010). An LC-MS-based approach was employed in another 

study for the global metabolite profiling of grapes (Theodoridis et al., 2011). The 

discriminatory metabolites of colorectal cancer (CRC) patients and healthy subjects 

were investigated using an LC-MS-based approach (Fukui and Itoh, 2010). LC-MS was 

employed in another study for detecting low molecular weight metabolite in maternal 

fluid (Luan et al., 2015). In LC-MS analysis, metabolites can be separated by LC and 

subsequently analyzed by MS. High–resolution spectra can be obtained using modern 

LC columns. However, the problem with the use of LC-MS is that large and 

comprehensive databases do not exist, yet. Besides, all the techniques coupled to MS are 

intrinsically biased against special classes of compounds. For instance, when the MS 

ionization mode is electrospray (ESI) in LC-MS, simple terpenes, carotenoids and 

aliphatics are semi-inert and these compounds cannot be detected successfully by the 

analytical method. The effects of ion suppression due to matrix effect is another 

drawback which should not be denied (Sterner et al., 2000; Choi et al., 2001; 

Weckwerth, 2003). 

FT-IR has also been extensively studied in the field of metabolomics. Wu et al. (2008) 

successfully managed to perform a rapid discrimination of two similar natural products, 
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the extracts of Chinese propolis and poplar buds, by this technique. A FT-IR 

metabolomics fingerprinting approach was performed to analyze the interactions 

between structural variants of N-alkyltropinium bromide surfactants with the Gram 

negative and the Gram positive bacteria. The metabolomic damage exerted by these 

compounds was then determined (Corte et al., 2015). Furthermore, FT-IR was also used 

for the metabolomic analysis of lyophilized and fresh Saccharomyces cerevisiae yeast 

cells. The FT-IR spectral data provided interesting and informative data on the 

metabolic status of the whole yeast cell (Correa­García et al., 2014). FT-IR has both 

benefits and drawbacks. It is a non-destructive, simple and fast method with high 

repeatability. The IR spectrum of a specific chemical compound is unique due to the 

unique bonding arrangements and functional groups. However, despite the usefulness of 

FT-IR in the identification of the metabolites in a mixture and its being as a requisite 

method in the Pharmacopoeia, some limitations exist in the identification of unknown 

compounds in such a way that the metabolite identification is only possible if the FT-IR 

spectrum of the pure compound is available as a reference for further analysis. As a 

result, this technique lacks a comprehensive database of metabolites (Levine et al., 

1989; Wu et al., 2008). 

There are myriad of advantages to the use of NMR spectroscopy in the field of 

metabolomics. One of the major benefits of NMR is its robustness and the lack of 

sample pre-treatment (separation/fractionation) which reduces the analysis time to a 

great extent. NMR is a quantitative and non-destructive approach which provides a 

complete and comprehensive picture of the whole metabolome in a way that no 

metabolite is lost in the matrix, although some metabolites might be represented by only 




