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PEMILIHAN IN VITRO JASAD SEPERTI PROTOKOM Dendrobium SONIA-

28 TERHADAP Fusarium proliferatum 

ABSTRAK 

Dendrobium sonia-28 adalah hibrid orkid yang penting dalam industri bunga 

di Malaysia kerana berkeupayaan berbunga berulang kali dan berbunga padat yang 

kini sedang menghadapi masalah pengeluaran yang serius akibat penyakit 

disebabkan kulat, terutamanya oleh Fusarium proliferatum. Untuk mengatasi 

masalah ini, salah satu strategi yang sedang diusahakan adalah dengan penghasilan 

orkid mutan baru. Mutagenesis secara in vitro dengan cara kultur turasan Fusarium 

proliferatum (CF), asid fusarik (FA) dan sinaran gama boleh digunakan untuk 

menghasilkan mutan yang lebih baik dari segi ekonomi. Dalam kajian ini, pemilihan 

jasad seperti protokom (JSP) yang bertoleransi terhadap F. proliferatum telah 

dijalankan dengan menilai kesan kepekatan CF (5-20%) dan FA (0.05-0.2 mM) dan 

pelbagai dos sinaran gama (10-200 Gy). Hasil kajian menunjukkan bahawa kadar 

hidup dan berat JSP berkadar songsang terhadap inokulasi dan sinaran dos. Selain 

itu, kadar kematian dan kekurangan berat JSP meningkat di kalangan JSP yang lebih 

kecil selepas rawatan CF dan FA. Keputusan menunjukkan bahawa ujian sensitiviti 

radio (LD50) bagi JSP lebih kurang pada 43 Gy. Kajian biokimia menunjukkan 

bahawa pengurangan yang ketara jumlah protein larut dan kandungan klorofil JSP 

yang dirawat bergantung kepada masa pendedahan dan kepekatan rawatan. 

Sebaliknya, terdapat peningkatan aktiviti peroxidase dalam JSP yang dirawat dengan 

peningkatan masa pendedahan dan kepekatan rawatan. Dos penyinaran yang rendah 

mempunyai kesan rangsangan terhadap  jumlah protein larut dan kandungan klorofil. 

Analisis histologi,  mikroskop elektron imbasan (SEM) dan mikroskop elektron 

transmisi (TEM) mengesahkan terdapatnya permukaan yang rosak dan kerosakan sel 
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organel menutup liang stomata JSP yang telah disuntik dan disinarkan. Tambahan 

pula, kloroplas yang herot mengesahkan kecekapan pigmen klorofil yang kurang. 

Pengurangan pertumbuhan anak pokok adalah lebih besar pada kepekatan dengan 

rawatan tertinggi. Anak pokok yang didedahkan dengan dos radiasi gamma yang 

rendah mempunyai perkembangan pucuk, akar dan dedaun yang lebih baik. Penanda 

RAPD menunjukkan corak jalur yang berbeza untuk setiap dos rawatan dan jalur 

khusus untuk anak pokok terpilih dan anak pokok kawalan. Keputusan bioasai 

jambatan-daun menunjukkan daun yang diperolehi daripada JSP yang dirawat 

dengan kepekatan yang lebih tinggi, menunjukkan gejala penyakit yang kurang 

selepas diinokulasi. Oleh itu, terdapat pertalian di antara Dendrobium sonia-28 

secara in vivo dan in vitro terhadap rintangan penyakit. Justeru itu, pemilihan in vitro 

CF, FA dan radiasi gamma boleh menjadi kaedah yang berkesan untuk mendapatkan 

klon soma Dendrobium sonia-28. Selain itu, sinaran gamma yang diberikan pada dos 

rendah hingga dos sederhana boleh menghasilkan mutan JSP dengan ciri-ciri unggul. 

Keupayaan Dendrobium sonia-28 untuk terus hidup selepas jangkitan dan 

penyinaran membuka lembaran baru untuk pembangunan masa depan orkid 

transgenik yang rintang kulat. 
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IN VITRO SELECTION OF Dendrobium SONIA-28 PROTOCORM-LIKE 

BODIES AGAINST Fusarium proliferatum 

ABSTRACT 

Dendrobium sonia-28 is an important orchid hybrid in Malaysian flower 

industry for its flowering recurrence and dense inflorescences which currently facing 

serious production problems due to fungal diseases, especially caused by Fusarium 

proliferatum. To overcome this impediment, one of the strategies being pursued is 

by the production of new orchid mutants. In vitro mutagenesis by means of 

Fusarium proliferatum culture filtrate (CF), fusaric acid (FA) and gamma irradiation 

can be used to produce economically improved mutants. In this study, selection of 

Fusarium proliferatum-tolerant protocorm-like bodies (PLBs) was carried out by 

assessing the effects of different concentrations of CF (5-20%) and FA (0.05-0.2 

mM) and various doses of gamma irradiation (10-200 Gy). Results showed that 

PLBs survival rate and weight were inversely related to the inoculation and 

irradiation doses. Additionally, PLBs death and weight reducing increased among 

smaller PLBs after CF and FA treatments. Results indicated that the radio sensitivity 

test (LD50) for the PLBs was approximately at 43 Gy. Biochemical studies indicated 

that there was significant reduction in total soluble protein and chlorophyll contents 

in the treated PLBs depending upon the time of exposure and concentrations. 

Conversely, there were increased in peroxidase activity in the treated PLBs with 

increase in time of exposure and concentration of treatments. Low doses of 

irradiation have a stimulating effect on total soluble protein and chlorophyll contents. 

Histological, scanning electron microscope (SEM) and transmission electron 

microscopy (TEM) analyses confirmed severe surface and cell organelles damage 

and stomatal closure in inoculated and irradiated PLBs. Moreover, distorted 
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chloroplasts confirmed reducing the efficiency of chlorophyll pigments. Reductions 

in plantlet growth were much greater at the highest concentrations of treatments. 

Plantlets infected with low doses of gamma radiation had better development of 

shoot, root and the foliage. RAPD markers showed different banding patterns for 

each doses of treatments and specific bands for selected and control plantlets. Leaf-

bridge bioassay results revealed that leaflets obtained from PLBs challenged with 

higher concentrations of treatments showed less disease symptoms after being 

inoculated. Therefore, there is a relationship between in vivo and in vitro resistance 

of Dendrobium sonia-28 to infection. Hence, in vitro selection by CF, FA and 

gamma radiation could be an efficient method for obtaining Dendrobium sonia-28 

somaclones. Moreover, gamma irradiation administered at low to moderate doses 

may generate PLB mutants with superior characteristics. The ability of the 

Dendrobium sonia-28 to survive after infection and irradiation opens new avenues 

for future development of fungal resistant transgenic orchids. 
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                                                     CHAPTER ONE 

INTRODUCTION 

 

The flowering plant family of Orchidaceae is large in size as well as being 

economically significant to the international floriculture industry, primarily as cut 

flowers and potted plants (Arditti, 1992; Khosravi et al., 2009; Poobathy et al., 

2013a). In tropical Asia, a total of 6,800 orchid species were discovered in which 

over 1,000 wild species are located in Malaysia alone (Yang and Chua, 1990; Cribb 

et al., 2003; Antony et al., 2010). 

A number of orchid species are becoming extinct as naturally growing plants 

are being harvested at random and habitats of these plants are greatly disturbed. 

Since traditional methods used for cultivation of orchids have proven to be quite 

difficult, it is extremely important to develop efficient and authentic techniques for 

conservation of orchids in the form of germplasm conservation (Hirano et al., 2005, 

2009). Furthermore, endangered plant species and genetic resources may be 

effectively conserved using in vitro methods (Engelmann, 2011).  

The genus Dendrobium belongs to one of the three largest families of 

Orchidaceae (Leitch et al, 2010). Dendrobium species are widely employed in 

horticultural, agricultural and medicinal practices (Chattopadhyay et al., 2012). 

Dendrobium sonia-28 is a commercially valuable Dendrobium orchid popular as a 

cut flower and ornamental plant because of its frequent flowering and large number 

of flowers for each inflorescence (Martin and Madassery, 2006; Ching et al., 2012).  

Protocorm-like bodies (PLBs) can be used as a reliable source of potentially 

regenerable orchid tissues (Ishikawa et al., 1997; Saiprasad and Polisetty, 2003; Yin 

et al., 2011). In vitro techniques appear to be  very suitable for conserving plant 

biodiversity as it is considered to produce a large number of clones in a relatively 
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short time (Khoddamzadeh et al., 2013), which has provided an efficient way to rare 

or mass propagate commercially valuable plant germplasms especially for orchids 

(Hossain et al., 2013). However, there are some disadvantages such as somaclonal 

variations and microbial contamination under in vitro micropropagation conditions 

(Srivastava et al., 2009; Goncalves et al., 2010; Konieczny et al., 2010). 

Dendrobium orchids are sensitive to pests and diseases. A considerable threat 

to these commercially important flowers is fungal disease. Fusarium proliferatum is 

regarded as a major pathogen of commercially cut-flower plants (Fattahi et al., 2014) 

including orchids (Swett and Uchida, 2015). Latiffah et al. (2009) reported that root 

discolourification and a yellowing of stem are strong indications of mold, chiefly 

associated with species from the genus Fusarium such as F. proliferatum. Thus, 

monitoring and management practices could be the best way to conserve orchids 

(Kani, 2011; Machaka-Houri et al., 2012).  

In support of this contention, it has been reported that Dendrobium sonia-28, 

an important ornamental orchid in Malaysia is experiencing a reduced germination 

pace and risks of producing unsought progenies (Poobathy et al., 2013a). Chemical 

control of such pathogens is often problematic, expensive, labour and resource-

intensive and can cause environmental pollution (Jayasankar et al., 2000). Moreover, 

conventional breeding methods for orchids present some limitations, including their 

long growing cycle, complicated reproductive process, and cross-incompatibility 

among some orchid species (Manshardt, 2004).  

Accordingly, in vitro selection could be the best approach for pathogenic 

control because of benefits such as rapid testing of a broad range of individuals, easy 

mutant manipulation, and the presence of somaclones with higher variability in the 

genome (Hamid and Strange, 2000). Somaclonal variation is described as the 
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occurrence of genetic and epigenetic changes in cell and tissue cultures (Larkin and 

Scowcroft, 1981; Kaeppler et al., 2000; Leva et al., 2012). Plant improvement 

through in vitro selection and somaclonal variation is a technique of in vitro culture 

for obtaining plant genotype tolerance to the abiotic or biotic stress, such as high 

salinity, drought and disease tolerance (Ahmed et al., 1996; Yusnita et al., 2005; 

Leva et al., 2012). A valuable approach for improving crop productivity in the 

presence of Fusarium wilt fungi is to select regenerated clones which are resistant or 

tolerant to fungal diseases. This can be done through mutagenic treatment or co-

cultivation with pathogenic fungi (Krishna et al., 2013). The selecting agents usually 

employed for in vitro selection in disease-resistance include phytotoxin such as 

fusaric acid (FA) or specific fungal culture filtrate (CF) or the pathogen itself 

(Purohit et al., 1998; Mahlanza et al., 2013). Certain Fusarium species produce 

toxins such as FA with toxicity level ranges from low to moderate degree (Wu et al., 

2008).   

In vitro selection method has been used for plant disease resistance in last 

two decades. Over 30 plant species and selective agents from about 40 plant 

pathogens were examined (Švàbova and Lebeda, 2005). Some studies have also 

successfully used FA to select resistant planting materials (Chawla and Wenzel, 

1987; Bouizgarne et al., 2006; Wu et al., 2012; Wang et al., 2014). Similarly, there 

were many reports on the use of culture filtrates which confirmed to be effective in 

selecting tolerant or resistant plants against biotic stresses (Gonzalez et al., 2006; 

Kumar et al., 2008; Tripathi et al., 2008; Svábová et al., 2011). Remotti et al. (1997) 

reported that since culture filtrates contain some phytotoxic compounds produced by 

pathogens, plants selected after culture filtrate inoculation may well be resistant to 

factors other than the main pathogen. 
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Plants in their natural habitat are persistently exposed to insect herbivores, 

fungi, viruses and bacteria. In response to attack by these organisms, plants have 

developed certain defence mechanisms such as induction of structural and 

biochemical changes (Agrios, 2005). Changes of the external environment and the 

inherent instability of the genetic structure in plants under natural conditions can be 

resulted to induced spontaneous genetic mutations. However, frequency of such 

mutations differs between plant species and genes and is extremely low (Drake et al., 

1998). In plant breeding, induced mutation is an alternative and complementary 

technique for genetic modification and establishment of new genetic resources. 

There are a lot of physical and chemical mutagens currently used in mutation 

breeding (Ahloowalia and Maluszynski, 2001; Medina et al., 2005; Jain et al., 2007; 

Jain, 2012). X-, β- and γ-rays, neutrons and protons are some of the several energy 

rays that are widely used in mutation breeding.  

Gamma rays are one of the most efficient sources of ionizing radiation, 

which induces a high frequency of mutations in plants. It has been reported that 

gamma rays can induce about 70 % of the world‘s mutant varieties (Nagatomi and 

Degi, 2009). Gamma rays are typically divided into two types of irradiation; chronic 

and acute (Nagatomi and Degi, 2009). Radiation rays can enhance mutation rate 

ranges more than a thousand-fold in the plants (Kovács and Keresztes, 2002). 

Cobalt-60 as the usual radiation source for induced-mutation, is widely used in 

agriculture and forestry, especially in ornamental and economically-valuable plants 

(Thapa, 2004; Borzouei et al., 2010). Gamma rays are an ionizing radiation that 

interacts with atoms or molecules to generate free radicals in cells. These free 

radicals can destroy important components of plant cells and differentially affect the 

morphology, anatomy, biochemistry and physiology of plants depending on the level 
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of irradiation. Gamma radiation can affect plant photosynthesis, depending on the 

irradiation dosage (Kovacs and Keresztes, 2002; Kim et al., 2004; Wi et al., 2007). 

Recently, mutation breeding has been used for some important ornamental plants 

including orchids (Kikuchi, 2000).  

            Zeng et al. (2010) indicated that stomata represent a major route for pathogen 

invasion and stomata closure appears to be part of a plant‘s immune response. 

Identification of plants resistant to diseases can be carried out by detecting changes 

in metabolites produced by plants and changes in enzyme activities once they are 

exposed to any stressor (Krishna et al., 2013). Different plants have evolved different 

complicated mechanisms for protecting themselves from the damages caused by 

plant pathogens. For instance, it has been demonstrated through research that 

antioxidative enzymes play a crucial role in conferring resistance to plants in 

response to biotic stresses (Mittler, 2002). Resistance to a disease involves activation 

of several different defence mechanisms which work in coordination to protect the 

plant from infection. When a plant is infected by a pathogen, higher quantities of 

ROS (reactive oxygen species) are produced which interact with wide range of 

cellular molecules including nucleic acids, proteins and lipids (Rebeiz et al., 1988; 

Sahoo et al., 2007). 

Since these basic molecules are essentially required for structural and 

functional integrity of the cell, their reaction with ROS may result in irreversible 

harm to the cell and these damages may end up at cell death (Rebeiz et al., 1988; 

Sahoo et al., 2007). DNA-based markers are powerful and reliable tools for 

discerning genetic variation in studying evolutionary relationships (Zhang et al., 

2013; Bhattacharyya and Kumaria, 2015). The RAPD analysis has been used to 

assess altered genetics in Fusarium tolerant cells (Nasir et al., 2012; Ghag et al., 
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2014a). In vitro selected variants should be finally plant-tested inoculated with the 

pathogen to compare the response between in vitro selected agents and plants 

inoculated with the pathogen and confirm the genetic stability of the selected traits 

(Jain, 2001; Flores et al., 2012). 

In Malaysia, orchid industry has seen a significant increase. Furthermore, the 

genus of Dendrobium is accounted to be the main orchid cut-flower export for 

Malaysia. Fusarium species including Fusarium proliferatum causes yellow and 

black spots on root and leaves in Dendrobium’s orchid. The controlling of the 

Fusarium infection is very difficult. The crucial economic importance to the genus 

Dendrobium holds increases the importance of conserving the valuable orchid 

germplasm. Thus, careful surveillance and management practices will be the best 

way to preserve the various different orchid genera. 
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1.1  Main objectives of research  

 The objectives of the present study are: 

(i) To carry out and determine in vitro selection of disease resistant 

Dendrobium sonia-28 PLBs using F. proliferatum CF, fusaric acid and 

gamma irradiation, 

(ii)  To investigate biochemical, morphology, histology, and RAPD analyses and 

comparison of culture filtrate, fusaric acid and gamma irradiation treated 

PLBs and plantlets, 

(iii) To establish leaf bridge assay technique and evaluate disease resistance of 

Dendrobium sonia-28 plantlets obtained from culture filtrate, fusaric acid 

and gamma irradiation treated PLBs using Fusarium proliferatum 

inoculation under in vitro condition. 
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 CHAPTER TWO 

LITERATURE REVIEW 

2.1     Orchids: Geography, morphology and importance  

          The flowering plant family of Orchidaceae is very huge in size and being 

economically critical to the international floriculture industry, primarily as potted 

plants and cut flowers (Arditti, 1992; Khosravi et al., 2009). Orchidacea can be 

considered as one of the best recorded of all angiosperm families (Chase et al., 

2015). The orchid family is one of the largest in the flowering plant kingdom, and 

there were around 880 genera with recent estimation ranging from 20,000 to 35,000 

species in five subfamilies (Dressler, 1981; Cribb et al., 2003), with extra 800 

species were being recognized and added to the orchid lists yearly (Nicoletti 2003; 

Bektas et al., 2013) and new orchid genera were being portrayed at a rate of around 

13 per year (the average over 10 years prior to 2004) (Schuiteman, 2004; Chase et 

al., 2015). Over 100,000 registered commercial orchid hybrids were grown as cut 

flowers and potted plants (Martin and Madassery, 2006; Vendrame et al., 2007). 

            Both hybrids and wild orchids have the following features: bilaterally 

symmetrical flowers, sticky masses of pollen grains called pollinia, minute seeds 

containing undeveloped embryos with no nutritive materials and the ability of seeds 

to only germinate with the presence of a symbiotic fungus under natural conditions 

(Jezek, 2003; Seaton et al., 2010). At the present, numerous descriptions of new 

genera incorporate molecular analysis to exhibit their necessity, whereas in earlier 

decades, morphology has been generally accepted basis for the description of new 

taxa (Chase et al., 2015). Most of the orchids that are threatened and endangered are 

listed under the Convention on International Trade in Endangered Species of Wild 

Fauna and Flora (CITES) (Nikishina et al., 2007; Swarts and Dixon, 2009).  
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Orchids can be found in almost every region of the world, apart from marine 

environments and perpetually icy regions (Sharma et al., 2011). About 90% of 

populations of the world‘s orchids are found in the tropical climatic regions with 

Asia alone between 10,000 to 15,000 species. Mostly orchids were thermophilic, but 

some species can be found at the lowland, montane or submontane levels (Jezek, 

2003). Besides its aesthetic value, orchids were also known as widely favoured food, 

beverages, spices, flavouring, medicine, drugs, arts and religions (Arditti, 1992; 

Arditti and Pridgeon, 2013). Although orchids are expensive, but highly in demand 

in the national and international markets due to their diversity in terms of size, shape, 

flower colour and longevity (Saiprasad et al., 2004). 

 

2.1.1   Orchid’s market 

The Asia-Pacific region has the prime share of all the world area under 

floriculture production (FAO, 2010). Cut flowers and many other floricultural 

products are key export products for many countries. These include Malaysia, where 

the horticultural sector has recorded phenomenal growth over the past years. In 

Malaysia, the floriculture industry has seen a significant increase in land under 

cultivation, for example, the area of land devoted to floral production from 3370 ha 

in 2005, has reached 7,000 ha in 2008 (Hamir et al., 2008). The export of orchids 

have increased from RM 12.8 million in 2003 to RM 14.3 million in 2005 (Fadelah, 

2007).  

Orchids are mostly traded as potted plants or cut flower in the flower industry 

globally (Japan Flower Trade Association, 2009; Supnithi et al., 2011). Its 

commercial importance, both as cut flowers and pot plants, increases globally year 

after year (Manners et al., 2013). Orchids share 8% of the global floriculture trade 
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(Martin and Madassery, 2006; Vendrame et al., 2007). Export and import trading of 

orchids in the world is estimated more than US $150 million dollars which 80% and 

20% of this are composed of cut and potted orchids respectively.  

 

2.2      Dendrobium orchid genus 

Since the 18
th

 century, more than 8000 novel Dendrobium hybrids and 

cultivars have been produced in horticulture through interspecific hybridization as 

been reviewed by Pongsrila et al. (2014). This genus consists of more than 1100 

species distributed throughout the world, ranging from Southeast Asia to New 

Guinea and Australia (Puchooa, 2004). Some characters of Dendrobium such as its 

floriferous flower sprays, long flowering life, year round availability and the genus‘s 

wide spectrum of shapes, colours, and sizes are reasons of Dendrobium expanding 

popularity (Kuehnle, 2007; Fadelah, 2007; Khosravi et al., 2009). 

Dendrobium is also mostly used as in medicinal products and cosmetic 

(Chang et al., 2010). Dendrobium orchid also known Sekkoku in Japanese or Shih-hu 

in Chinese was used in Chinese traditional medicine as tonic to improve digestion, 

eliminating heat and nourishing yin and promoting body-fluid production (Shiau et 

al., 2005; Yin and Hong, 2009). The cane of Dendrobium huoshanense is also used 

to treat ophthalmic disorder, salivary, and stomach (Hsieh et al., 2008; Yin and 

Hong, 2009). Dried drug of Shih-hu reach up to US$ 4000 Kg
-1 

(Shiau et al., 2005).  

Most of the Dendrobium hybrids produce flowers that are white, golden-

yellow or lavender in colour, with some having combinations of these colours 

(Puchooa, 2004; Kuehnle, 2006). Rare specimens may consist of bluish, ivory, 

brilliant orange or scarlet flowers, with exotic markings. Most of the evergreen 

species of Dendrobium do not produce fragrance while some deciduous species may 
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produce fresh citrus-like scents, or smell of raspberries (Puchooa, 2004). Annually, 

Dendrobium usually blooms several times as well as the flower sprays make 

interesting cut flowers for arrangements (Puchooa, 2004; Fadelah, 2004). 

Since Japan is the biggest world‘s importer of cut orchids, therefore Asia 

dominates the world trade in orchids industry. Japan imports cut flower mostly from 

its surrounding ASEAN countries mainly from Malaysia, Thailand, and Singapore 

which 90% of its imported flowers were Dendrobium (Japan Flower Trade 

Association, 2009). In the cut flower industry, Dendrobium has one of the top 

positions (Martin and Madassery, 2006; Fadelah, 2007). The genus of Dendrobium 

is accounted to be the main orchid cut-flower export for Malaysia and also for other 

Southeast Asian countries including Philippines and Thailand (Fadelah, 2007). 

Dendrobium is contributed 11.7% from Malaysia´s orchid exports almost for the past 

10 years (Khosravi et al., 2008; Antony et al., 2010). Dendrobium accounts for 

around 80% of the total micropropagated tropical orchids usually by protocorms 

(Saiprasad et al., 2004; da Silva, 2013). 

Small seedlings and heterozygous seedlings progenies which does not result 

to true-to-type plants of hybrid cultivars are accounted as problems in germination of 

Dendrobium (Martin and Madassery, 2006; Poobathy et al., 2013b). Small seed size, 

presence of reduced endosperm and the need of a symbiotic relationship between 

orchids and mycorrhizal fungi are other problems in Dendrobium germination 

(Saiprasad and Polisetty, 2003; Swarts and Dixon, 2009).  
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2.2.1    Dendrobium sonia-28  

           Dendrobium sonia-28 (Figure 2.1) and its other hybrid siblings are mostly 

popular because of their floriferous inflorescense, bright colour flowers, durability 

with long shelf life, free flowering characteristics and fast gowing cycle (Fadelah, 

2007). Dendrobium sonia-28 orchid hybrid can be created by crossing two hybrids 

that are Dendrobium Caesar X Dendrobium Tomie Drake it is cherished for its pink-

coloured blossoms as well as the quality of the cut florae (Van Rooyen Orchids 

Catalogue, 2007). Good air movement and strong light are essential growth 

conditions for the evergreen and warm-growing hybrid (Van Rooyen Orchids 

Catalogue, 2007).  
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Figure 2.1: The orchid hybrid Dendrobium sonia-28 (OrchidBroad.com, 2012). 
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2.3      Micropropagation of orchids and protocorm-like bodies (PLBs) 

The choice of explant source plays a significant role in the outcome of the 

micropropogation (da Silva, 2013). Different explants such as shoot tips, apical buds, 

stem segments, root tips, leaf segments, flower buds, mature seeds, and seed- derived 

rhizomes have been widely used as explants to obtain regenerative plantlets in 

several orchids (Kuehnle, 2006; Zhao et al., 2008; Mohanty et al., 2012). 

Dendrobium generally propagated by seeds or by division of off shoots which called 

sexually or asexually respectively (Martin and Madassery, 2006; Qiang, 2014).  

           Orchid regeneration through seed needs the infection of suitable myccorhiza 

fungus which usually supplies carbohydrates and nutrients to the orchid seeds 

(McKendrick et al., 2000; Yoder et al., 2000; Godo et al., 2010). This relationship 

between the fungi and orchid is called ―symbiosis‖ where the fungus provides 

nutrition for orchid growth, while, the orchid provides shelter to the fungi. In nature 

this mycorrhizal association with an orchid seed is not common and thus a high 

proportion of seeds fail to survive. However, the in vitro technique decreases 

mycorrhiza dependence for seed germination and excludes disease infection and 

reinfection to the clonal products (Razdan, 2003, Kauth et al., 2008). 

In vitro propagation of orchids has emerged as a choice for swift propagation 

of commercially cultivars as the conventional in vivo vegetative propagation presents 

with problems such as slow multiplication rate, high financial demand and 

insufficient production of clones within a short timeframe (Saiprasad and Polisetty, 

2003; Martin and Madassery, 2006; Mohanty et al., 2012). In vitro culture has also 

made it possible to preserve orchids, since the advent of asymbiotic seed germination 

(Andronova et al., 2000; Nikishina et al., 2001; Nikishina et al., 2007; Mohanty et 

al., 2012). However, the maintenance of in vitro collections requires manual labour 



 

15 
 

and causes the accumulation of somaclonal variations and phenotype-based 

involuntary selections, which result in the homogeneity of the orchid population 

(Butenko, 1999; Ivannikov, 2003; Maneerattanarungroj et al., 2007) and depletion of 

the gene pool (Nikishina et al., 2007; Thorpe, 2007; Sorina et al., 2013). 

Micropropagation is the producing of microplants via tissue culture by which is 

created through initiation of meristematic material such as shoot buds, stem apices 

and seedlings from fully-developed plants into the culture process (Debnath et al., 

2006; Leva et al., 2012). Protocorm-like bodies (PLBs) resemble true protocorms 

(germinated orchid seed) in being round shaped (Figure 2.2) but they are derived 

from bud explants or shoot tips (Kuehnle, 2006; Lee et al., 2013).  

Orchid tissue culture propogation has been found almost immediate 

commercial trading in which placed orchids within the economic reach of the 

average person (Arditti, 1984; Arditti, 1990; Ahmed et al., 2001; Arditti, 2010). 

Orchid producers have adopted the propogation technique, so that it would increase 

the mass and the quality of the orchids (Chugh et al., 2009; Azman et al., 2014). 

Dendrobium sonia-28 is produced via an in vitro system based on 

regeneration of advanced plantlets through protocorms and PLBs (Saiprasad and 

Polisetty, 2003). Stages of pro-meristematic, leaf primordial and formation of the 

first embryonic leaves are developmental phases for Dendrobium sonia-28 PLBs 

which happened between eight to 10 days old, 13 to 15 days old and 18 to 20 days 

old PLBs, respectively (Saiprasad and Polisetty, 2003).  
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Figure 2.2: In vitro proliferation of PLBs and plantlets from a single PLB of 

Dendrobium sonia-28 within three months of culture on semi-solid 

half-strength MS medium supplemented with 2% (w/v) sucrose and 

0.2% (w/v) charcoal. Bar = 1cm. 
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2.4     Diseases of Dendrobium 

Survivality of orchid is correlated with the abiotic and biotic factors and their 

interactions for growth, development and reproduction. Particularly, in the face of 

climate change, abiotic elements foist significant and dreaded threats to orchid 

conservation (Dixon et al., 2003; Barman and Devadas, 2013). Factors such as 

overharvesting, climate change, habitat demolition, and decreasing pollinator 

populations bestow to the susceptibility of orchids to extinction (Machaka-Houri et 

al., 2012).  

Fusarium diseases have been reported in orchids from various locations 

around the world which mostly in the tropics and sub-tropics (Swett and Uchida, 

2015). Dendrobiums are susceptible to several pathogens and the infections they 

transmit (Samuels and Brayford, 1994: Hirooka et al., 2005; Hirooka et al., 2006; 

Halleen et al., 2006). Dendrobium´s susceptibility expands in regions with high night 

temperatures and humid climate. Above 50% loss of orchid is mainly because to 

Fusarium wilt (Wedge and Elmer, 2008). The controlling of the infection is very 

difficult, because the spores of Fusarium which are easily dispersed through 

irrigation water, air, and contact to infected plant or infected soil (Wedge and Elmer, 

2008). Despite years of selection of resistant cultivars and conventional breeding due 

to the evolution of divergent lineages of virulent races of Fusarium, the desease is 

not controllable (Swarupa et al., 2014). 

The crucial economic importance to the genus Dendrobium holds increases 

the importance of conserving the valuable orchid germplasm. Thus, careful 

surveillance and management practices will be the best way to preserve various 

orchid genera (Kani, 2011; Machaka-Houri et al., 2012). Furthermore, it has been 

reported that Dendrobium sonia-28, an important ornamental orchid in Malaysia is 
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experiencing a reduced germination pace, susceptible to fungal diseases and risks of 

producing unsought progenies (Poobathy et al., 2013a). 

 

2.4.1     Fusarium proliferatum 

Fusarium proliferatum is a species with increased potential for producing 

diverse mycotoxins and a major pest of many crops (Kushiro et al., 2012), including 

commercially important such as cut-flower plants (Fattahi et al., 2014). Due to 

Fusarium proliferatum, it has been found to cause black spot disease on 

Dendrobium´s leaf, result in unfavourable effect on the orchid valuable, stunted its 

growth and traits (Ichikawa and Takayuki, 2000). Small black speckles on the leaves 

are symtoms of an infected leaf which appeared at an early stage, then, they tend 

enlarge to irregular, angular black spots of 5.0×2.0 mm and spread rapidly (Ichikawa 

and Takayuki, 2000). Five Fusarium species have been confirmed to be pathogens of 

orchids which Fusarium proliferatum has been detailed as a foliar pathogen that 

causes yellow and black spots on root and leaves in orchids (Swett and Uchida, 

2015). Latiffah et al. (2009) reported that Dendrobium’s orchid root yellowish and 

discolourification stem mainly associated with Fusarium proliferatum attacks. 

 

2.5      Fusarium control 

Susceptibility to various fungal, bacterial and viral pathogens is the reason 

for the yield decreasing in many commercially important plants. Attempts to control 

these infections which can seriously decrease marketability rely heavily on the 

increased use of chemical insecticides and fungicides. Although some such as 

chlorothalonil, azoxystrobin, fludioxonil and Palladium worked well, the 
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development of resistance has a severely hindered success (Wedge and Elmer, 2008; 

Wedge et al., 2013). 

Chemical control of Fusarium is highly in cost, laboures and resource-

intensive (Bezier et al., 2002; Egel and Martyn, 2007). Furthermore, some 

chemically synthesized fungicides are non-biodegradable, caused environmental 

pollution, build up hefty concentrations in soil, and lowering its productivity in the 

water table causing health hazards to flora and fauna (Jayasankar et al., 2000; 

Komárek et al., 2010). In the case of antifungal compounds, a better understanding 

of orchid-fungus interactions is relevant (Kani, 2011; Machaka-Houri et al., 2012). 

Chemical control methods of Fusarium using fungicides are practically not effectual, 

particularly, steam sterilization of the soil as a Fusarium chemical control is an 

expensive method (Esmaiel et al., 2012; Ghag et al., 2014a).  

In plant improvement, proper management strategies and traditional breeding 

technologies play an essential role. The standard breeding programs have been 

employed to integrate flattering genes of interest from inter crossing genera and 

breed into the plants to influence stress tolerance. Even with that conventional 

breeding methods have not been successful and have failed to provide succesful 

results (Rai et al., 2011). The program also needs big areas of cultivation, expensive 

labour, material and maintenance (Matsui, 2010). Moreover, conventional breeding 

is also at drawback because there is a need of specific cultivation of certain orchids 

to overcome problems such as diseases, pest, fungal interaction and environmental 

stresses (Mishiba et al., 2008).  

Transgenesis is another strategy that has been and is being pursued which has 

led to the engineering of stable transformants of orchids (Chai et al., 2007; 

Swarnapiria, 2009; da Silva, 2013). Genetic transformation is now a globaly used 
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procedure for introducing genes from distant gene pools into many plant species by 

using this technique it has progressed  stress tolerant plants and substantial efforts 

have been made to produce stress-tolerant plants (Borsani et al., 2003; Yamaguchi 

and Blumwald, 2005; Singh and Singh, 2014). But, the main problem in extension of 

this technique to various is the supress of transgene, consequent reducing of low 

transformation frequency and gene expression (Mandal et al., 1997; Rai et al., 2011). 

The transgenic approach is limited by the availability of the desired gene and by the 

lack of efficient transformation and plant regeneration protocols (Kumar et al., 

2012). Therefore, the aptness to produce orchid transgenics with high germination 

tolerance and potentials to fungal infections still remains a main challenge. The 

production of such plants necessitates the discovery of potential target molecules 

(Kani, 2011; Machaka-Houri et al., 2012).  

Selection of suitable somaclonal variants having desired characteristics is 

another alternative strategy to develop plants with improved characters (Esmaiel et 

al., 2012; Ghag et al., 2014b). Resistance is a qualitative character and consequently, 

through selection, it is possible to obtain more resistant variaties (Esmaiel et al., 

2012). 

 

2.6     Somaclonal variation system 

The maturation of plant cells in the vitro and their regeneration into mature 

plants is an asexual process that only involves mitotic division of the cells. In this 

context, the happening of uncontrolled and random impetous variation when 

culturing plant tissue is a major problem (Leva et al., 2012; Nwauzoma and Jaja, 

2013). Gao et al. (2010) and Bairu et al. (2011) stated that occurred variation in plant 

micropropogation is mostly undesired.  



 

21 
 

Undirected genetic variability happening in plant tissues culture may have 

novel agronomic traits that might not be accomplished by conventional breeding 

(Jain, 2001; Piagnani et al., 2008). The happening of genetic variation between 

plants regenerated from in vitro culture which has been referred to as somaclonal 

variation (Larkin and Scowcroft, 1981; Lestari, 2006; Nwauzoma and Jaja, 2013; 

Bhojwani and Dantu, 2013). Somaclonal variation may yield desirable genotypes as 

novel cell lines or plants of agronomic and commercial advantages (Bhojwani and 

Dantu, 2013). Somaclonal variation can suit a very important component of the plant 

breeding in which variation regenerated from somatic cells can be utilised for the 

introduction of new tolerance, agronomic or quality traits (Jain, 2013). 

Larkin and Scowcroft in 1983 have proposed the word of somaclones' and 

have described 'Somaclonal variation' in sugarecane plants (soma=vegetative, 

clone=identical copy). Tissue culture regenerated variants have also been called 

calliclones, phenovariants, protoclones and subclones (Skirvin et al., 1994; Yadav et 

al., 2009). Somaclonal variation is not limited to the plant kingdom. There have been 

hundreds of reports of cell line variants among animal tissue cultures (Skirvin et al., 

1994; Bairu et al., 2011).  

Somaclonal variation has been caused because of alterations in chromosome 

number, structure and point mutations, or amplification, transposition and deletion of 

deoxyribonucleic acid (DNA) order (Neelakandan and Wang, 2012; Landey, 2013; 

Jain, 2013). Cytogenetic changes such as variation in ploidy level, structural 

changes, and number of chromosomes represent big alterations to the genome and 

they are sometimes generated during in vitro differentiation and proliferation 

(Kaeppler et al., 2000; Neelakandan and Wang, 2012; Landey, 2013). The 
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chromosomal changes may produced a stable alteration which transferred to the 

progeny (Haines, 1994; Fu et al., 2013).  

However, the amount of somaclonal variation depends on the plant genotype, 

age of plant, culture medium compounds, the time of culture and the number of 

subculture cycles (Duncan, 1997; Sahijram et al., 2003; Peredo et al., 2006; Bairu et 

al., 2011; Landey, 2013). The true rate of somaclonal variation is difficult to 

ascertain because of many individual genes to examine. Many somaclones were 

identical which suggests a common origin.  

One of the vital potential benefits of somaclonal variation is the creation of 

additional genetic variability in co-adapted, agronomically useful cultivars, without 

the need to retreat to hybridization. Somaclonal variation will be useful if in vitro 

selection method is available (Brown and Thorpe, 1995; Ketema, 1997; 

Roychowdhury and Tah, 2013). It was supossed that somaclonal variants can be 

entensified during in vitro culture for some haracters, which includes resistance to 

disease pathotoxins, tolerance and herbicides to chemical stress or environmental 

(Bhojwani, 2012).  

Somaclonal variation has a few disadvantages. For instance, somaclonal 

variation is not always resulted to the wanted plant lines (Niizeki and Lu, 2003; 

Semal, 2013). It is very necessary to screen a lot of materials as possible. Second, 

somaclonal variation usually results in changes in multiple traits. Finally, it is very 

crucial to point out that a big deal of effort is needed to screen the somaclones. Most 

of the time somaclonal variants are not novel or useful (i.e. aberrant phenotypes), the 

variation generated could be unstable or not reproducible (Duncan, 1997, Jain, 

2001), although some variants show positive changes other traits could be altered in 

a negative way (Karp, 1994; Landey, 2013). 
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 Somaclonal variants can be detected using a few techniques which are mainly 

categorized as morphological, leaf morphology, physiological/biochemical such as 

plant height, and abnormal pigmentation (Israeli et al., 1995; Leva et al., 2012) and 

molecular traits to determine somaclonal variation (Sorina et al., 2013). Somaclonal 

variation has led to the selection of several variants with increased resistance to 

pests, diseases, and herbicides (Brar and Jain, 1998; Predieri, 2001; Pandey and 

Mukerji, 2006; Lee, 2015).  

Epigenetic variation is also known as physiological variation or 

developmental. It involves nonpermanent changes which may be unstable and non-

heritable and potentially reversible (Kaeppler et al., 2000; Leva et al., 2012). In 

disparity, enduring changes are heritable and sometimes represent expression of 

preexisting variation in the source of plant or are an effect of induced variation 

(Larkin and Scowcroft, 1981; Leva et al., 2012). Epigenetic modifications are mostly 

found in DNA (methylation) and histones and are associated with changes in the 

gene expression (Kaeppler et al., 2000; Zhang and Meaney, 2010; Ahmad et al., 

2010; Vanyushin and Ashapkin, 2011). In general, genetic stability is high in shoot 

tips than from explants that have no preformed shoot meristems, such as leaves, 

roots, or protoplasts (Skirvin et al., 1994; Kaur and Sandhu, 2015). 

 Plant advancement through somaclonal variation and in vitro selection are a 

few techniques of in vitro culture to procure plant genotype tolerance to the abiotic 

or biotic stresses (Ahmed et al., 1996; Yusnita et al., 2005; Xu et al., 2012).  

 

2.6.1   Mutation breeding 

Somaclonal variation may be one of the most advantageous sources when 

reliable early selection methods for the trait of interest are available (Kumar and 
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Arya, 2009; Gupta, 2011). Mutagenesis is a skill which is being utilized by both 

human beings and nature in order to upgrade the quantitative and qualitative traits in 

plants against diverse abiotic and biotic stresses (Maluszynski et al., 1995; 

Ahloowalia and Maluszynski, 2001; Wu et al., 2012; Yunus et al., 2013; Perera et 

al., 2015). Mutagenic agents are more helpful than harmful and without them 

evolution of species would have been arrested at a very primitive stage (Fishbein, 

2012). 

          Plant water content is significant in its radiosensitivity, since most of the 

frequent main quarry of ionizing radiation is the water molecule (Predieri, 2001; 

Miguel and Marum, 2011; Draganic, 2012). Mutation affects cells and mutated cells 

have to grow out into group and layer of cells. Various layers have different 

radiosensitivity, maybe because of differential mitotic activity and organogenic 

properties (Broertjes and Van Harten, 2013). If more than one cell is present at the 

moment of mutagenic event, chimerism will be occurred. Chimeras will be 

transformed into the plant progenies by repeated multiplication (Yang and Schmidt, 

1994; Mba, 2013). Consequently, it is mostly advantageous to dissociate chimeras 

by following subcultures up to M1V3–M1V4 generations (Jain et al., 1998; Mandal 

et al., 2000; Yunus et al., 2013). Subculture will maintain and secure the stability of 

mutant traits and guarantee that the chosen mutants are secure from chimeras (Yunus 

et al., 2013). Induced mutation needs screening of very large population, since, 

induced mutation lays in the low recovery frequencies (10
-4

 to  10‾
6
) of specific 

single gene mutants in M2 populations (Esmaiel et al., 2012). Nevertheless, 

somaclonal variation frequently happens at very high frequencies (up to 10% per 

cycle of regeneration) than radiation or chemical  persuade mutation, making it a 

feasible alternative to mutagenesis and a preciouse tool for the plant geneticist to 


