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PENJANAAN PERPUSTAKAAN FAJ PAPARAN DOMAIN ANTIBODI 

SINTETIK TUNGGAL UNTUK APLIKASI DIAGNOSTIK MOLEKUL 

 

ABSTRAK 

 

 

Antibodi domain telah dieksploitasi secara meluas sebagai perancah untuk 

penjanaan perpustakaan antibody sintetik kerana saiz tanpa bergantung dengan 

mekanisma lipatan mudah. Dalam kajian ini, penjanaan perpustakaan yang pelbagai 

menggunakan rangka manusia tunggal (VH3-23(DP47)) dan kepelbagaian sintetik 

diperkenalkan melalui kaedah mutasi rawak yang berlaku secara semula jadi dalam 

kawasan kaset saling melengkapi (CDR), CDR1,CDR2 dan CDR3 pada rantaian 

berat telah menghasilkan 10^9 saiz perpustakaan. Kepelbagaian sikuen bagi semua 

CDR dapat ditentukan hasil daripada 28 klon yang dipilih secara rawak. Daripada 28 

klon, 18 klon telah dipulihara dengan kepelbagaian panjang CDR3 yang berbeza dan 

juga kepelbagaian dalam sisa amino asid. Kualiti perpustakkan yang dihasilkan dapat 

dinilai melalui proses seleksi terhadap dua jenis antigen protein; penyakit dan protein 

pendarfluor. Pelbagai klon sasaran unik khusus telah diperolehi bagi kebanyakan 

antigen. Walau bagaimanapun, terdapat 2 antibodi monoclonal yang telah berjaya 

diraih hasil daripada seleksi dengan Mycobacterium tuberculosis 16 kDa Hsp antigen 

(Mtb 16 kDa Hsp) yang berpotensi untuk digunakan untuk tujuan teraputik. 

Kesimpulannya, himpunan kepelbagaian perpustakaan naïf boleh digunakan pada 

masa hadapan untuk menyaringi antibodi pengikat dengan antigen berpotensi yang 

lain. 
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CONSTRUCTION OF A SYNTHETIC SINGLE DOMAIN ANTIBODY 

PHAGE DISPLAY LIBRARY FOR MOLECULAR DIAGNOSTIC 

APPLICATIONS 

 

ABSTRACT 

 

Domain antibodies have been widely exploited as a scaffold for the 

generation of synthetic antibody libraries because of their relatively small size and 

simple folding mechanism. In this study, the generation of a highly diverse library  

using a single human framework (VH3-23(DP47)) and synthetic diversity introduced 

by randomly mutating naturally occurring within complementarity-determining 

regions (CDRs) CDR1,CDR2 and CDR3 of heavy chain yielded a library size of 

10^9. The sequence diversity of all CDRs was determined from 28 randomly 

selected clones. Out of the 28 clones, 18 clones were conserved with different length 

of CDR3 and highly diverse amino acids residues. The quality of the library was also 

validated by panning against two different types of protein antigens; diseases and 

fluorescent proteins. Multiple unique target specific clones were obtained for most 

antigens. However, two monoclonal antibodies were successfully raised against 

Mycobacterium tuberculosis 16 kDa Hsp (Mtb 16 kDa Hsp) antigens which could 

potentially be used for therapeutics. In conclusion, the diverse repertoire of the naïve 

library can be used in the future to screen for binders against other potential antigens. 
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CHAPTER 1 

 

1.0 Introduction 

The rise of recombinant antibody technology was made possible by a 

combination of innovations like polymerase chain reaction technology (Orlandi, 

Güssow et al. 1989; Hoogenboom 2005), phage display technology  (Siegel 2002) 

and evolution of online data collection of human immunoglobulin genomic 

sequences (Hust and Dübel 2004; Benhar 2007). For the past decade, the exploration 

of an array of recombinant antibody libraries for various applications was carried out. 

Improvements in molecular biology have paved the way towards improving 

parameters in order to produce libraries with higher diversity, larger sizes and better 

quality. Numerous studies have been done with the aspiration to mimic the uniquely 

human adaptive immune system that constantly generates diverse binding capacities 

of antibodies in a miniature sized test tube. 

In 1975, the very first monoclonal antibody was introduced via hybridoma 

technology that requires the immunization of animals (Muyldermans 2001). 

Generation of these monoclonal antibodies involved the incorporation of myeloma 

cells with antibody producing spleen cell (Kohler and Milstein 1975). Thus, the 

hybrid will feature traits from both cells by maintaining immortality and antibody 

production. Inevitably, the use of hybridoma technology to produce monoclonal 

antibodies suffered several setbacks (Hoogenboom 2005). Some of the main 

disadvantages of murine derived antibodies are the use of animal host, longer periods 

of time required for production, unable to generate functional human antibodies and  

incapable of generating antibodies against toxic antigens (Geyer, McCafferty et al. 

2012). It is these bottlenecks that have made hybridoma technology an unattractive 
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prospect for antibody production. The degree of freedom on offer for researchers by 

recombinant antibody technology has led to it gaining popularity in diagnostic 

applications (Marks, Hoogenboom et al. 1991; Holt, Enever et al. 2000; Siegel 2002; 

Ohara, Knappik et al. 2006). 

In vitro display methods such as phage display, yeast display, ribosome 

display technology were introduced as a major alternative for the generation of 

recombinant human monoclonal antibodies (Barbas, Kang et al. 1991; Silacci, Brack 

et al. 2005). It is an in vitro process that is independent of any regulation by the 

immune system. The most widely used method is the phage display technology. This 

method employs the use of filamentous bacteriophage M13 as the display machinery 

(Barbas and Barbas 1994). The ability of a bacteriophage to present a recombinant 

target on its surface was first evident with the pioneering work by George Smith with 

peptides. 

 

1.1 Phage Display Antibody Library 

Phage display has earned its spotlight as the gold standard in vitro display 

system that caters for the increasing demand for the generation of peptides and 

recombinant proteins especially antibodies. The underlying concept of this display 

technology is the physical linkage between genotype and phenotype. The robustness 

of this technology lies in its ability to control and manipulate selection conditions. It 

is therefore, independent of any regulation by the immune system. In addition, 

antibodies can be harvested without having to go through animal immunization. Over 

the last decade, in vitro display methods have been very successful in the generation 

of diagnostic and therapeutic antibodies.  
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In general, there is an array of bacteriophages that has been exploited for 

surface display such as T7, T4 and Lambda. However for phage display systems, the 

most commonly used bacteriophage is the Ff class of filamentous phage. The Ff 

phage comprises of M13, f1 and fd that belongs to the inoviridae family that infects 

gram negative bacteria bearing the F-episome. It is a long rod like shape particle that 

is made up of coat proteins encapsulating the single stranded genome. The viral coat 

is mainly made up of 5 types of coat protein (pIII, pVIII, pIX, pVII, pVI). The 

unique feature of the filamentous phage virus is the non-lytic lifecycle that has paved 

the way for an in vitro tool to study the protein-protein interaction as well as 

peptides. Phage propagation under the non –lytic cycle has allowed the phage display 

system to function as a tool for surface display. In the early 1980s, George P. Smith 

demonstrated the display of peptides via the fusion to the gIII gene of filamentous 

phage surface. From this discovery, we are able to obtain information on the phage 

physical linkage between genotype and its phenotype. The successful presentation of 

peptides was achieved, the first phage derived antibody library for monoclonal 

antibody production was reported (Winter, Griffiths et al. 1994)  

  Given the technological advancements over recent years, many researches 

have attempted to display numerous proteins through fusion with different coat 

proteins. However, with several limitations for display on each coat protein, only pIII 

is vastly used to display large proteins. The major advantage of gIII fusion is that it 

can tolerate relatively large insert without compromising the integrity of the F-pilus 

infection. It’s worth mentioning that pVIII coat protein has also been used for display 

of proteins and peptides. On the contrary, this fusion suffers from few drawbacks. 

Because of the phage particles are vastly made up of pVIII coat protein, fusion of 

large proteins or peptide for display may compromise the stability and structure of 
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the phage particles (Iannolo, Minenkova et al. 1995). Moreover, the fusion to gVIII 

will correspond to avidity effects due to high copies of the protein being presented on 

the surface, hence hindering affinity binding. In addition, the favored detection 

system for M13 phage is based on antibodies to pVIII coat protein, therefore any 

alteration to the gene VIII may interfere with the phage detection. 

There are two ways for foreign proteins or peptides to be inserted as a fusion 

to the phage coat proteins. It can be carried out using the phage vector or phagemid 

vector system. In this study, the phagemid system with gene III fusion is employed 

for the synthetic antibody library construction. Phagemids in general, are plasmids 

with an existing E.coli plasmid origin of replication, multiple cloning sites and an 

antibiotic-resistance gene inclusive of an additional Ff phage-derived origin of 

replication and gene III or gene VIII. This addition allows for the phagemid to be 

packaged as single stranded DNA (ssDNA) in viral particles. Phagemids can 

function as normal plasmids or packaged as recombinant single stranded DNA in the 

M13 capsid with the aid of a helper phage (Azzazy and Highsmith 2002). The added 

advantage of using this phagemid system over phage vector is that soluble proteins 

can be readily expressed in E.coli host without having to undergo any form of 

alteration. 
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Figure 1.1 : Illustration of filamentous phage particle adapted from Eubanks 2007 

(Eubanks, Dickerson et al. 2007). The phage particles are in linear rod like shape in 

which consisting of single stranded DNA and five coat proteins. pVIII coat protein 

also known as major coat protein makes up the vast structure of the phage protein 

capsid. Fusion of foreign proteins and peptides are usually to the gene VIII and gene 

III thus will be displayed fusion to pVIII and pIII coat protein. 

 



6 

 

1.2 Antibody Format 

The classical format of antibodies are represented graphically as a Y-shape 

structure (Figure 1.2) with two identical ends (Wood 2006). At N-terminus, a heavy 

chain is linked via interchain disulphide bonds to a light chain to generate the 

Fragment Antigen Binding (Fab) (Rader and Barbas 1997).  The binding pockets of 

the antibody is derived from the variable light and variable heavy domains within the 

Fab structure (Huston, Margolies et al. 1996). The advancement of recombinant 

antibodies through phage display has led to a wide array of different forms of 

antibody formats to be introduced (Hudson 1998).  

To date, formats such as the human domain antibodies, camelid domain 

antibodies (Harmsen and De Haard 2007), single domain shark antibodies (Dooley, 

Flajnik et al. 2003), single chain fragment variable (scFv), tandem scFv, diabody, 

tetrabody, minibody and single chain fragment antigen binding have been 

extensively employed as formats for monoclonal antibody generation  (Andris-

Widhopf, Rader et al. 2000; Little, Kipriyanov et al. 2000; Holt, Herring et al. 2003; 

Hussack, Keklikian et al. 2012). Moreover, the limitation introduced by the folding 

machinery of Escherichia coli (Holliger and Hudson 2005) has  resulted in the 

preferred use of smaller fragments such as domain antibodies to be heavily utilized 

for phage display  (Holt, Herring et al. 2003; Dudgeon, Famm et al. 2009). Thus, the 

introduction of the current formats is essential for researchers to curb such 

limitations. 
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Figure 1.2 : Illustrations depicting the basic Y shape of an immunoglobulin and 

smaller antibody derivatives commonly used for phage display, Fab (Fragment 

antigen binding) and scFv (single chain fragment variable) adapted from Kierny 

2012 (Kierny, Cunningham et al. 2012). 
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1.3 Domain Antibody: Unique Biophysical Properties 

The first smallest known antigen-binding fragment coined as “nanobodies”, 

‘‘domain antibody’’, or ‘‘dAb’’ was identified when a murine VH repertoire was 

selected against the model antigen hen-egg lysozyme with high affinity and 

specificity (Andris-Widhopf, Rader et al. 2000). Unlike scFv which is twice the size 

and Fab, four times the size of dAbs (Holt, Herring et al. 2003), their relatively 

smaller size is well suited for phage display (Chen, Zhu et al. 2009). Basically, dAb 

is the variable regions of either the heavy (VH) or light chains (VL) of 

immunoglobulins (Holt, Herring et al. 2003). 

Recent commercial interest revolves around manufacturing humanized 

antibody with high specificity and affinity for potential diagnostic and therapeutic 

applications (Brekke and Sandlie 2003). The production of domain antibodies brings 

about the advantages over the use of conventional antibodies. To add to its 

commercial value, the antibody produced must meet the requirement of biophysical 

properties (Harmsen and De Haard 2007) such as high yield and soluble expression  

(Muyldermans 2001), heat stability (Goldman, Anderson et al. 2006) such as 

resistance to proteolysis, resistance to harsh condition (Dona, Urrutia et al. 2009) 

such as chemical degradation (Wang, Singh et al. 2007), aggregation and 

denaturation. 

Initial studies of domain antibody showed that the expression and solubility 

of the first murine VH domain antibodies were low. The selection of the VH domain 

was done in mouse with the presence of a cognate VL, therefore, it was thought that 

the absence of the VH-VL hydrophobic interface contributed to the instability of the 

structure. After the setbacks, a modification was introduced in cloning of camelid 
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VHH domains. It was found that the solubility improved due to a hydrophilic 

mutation of a tetrad at the VL interface. Soon after, similar modifications of residues 

at positions 44, 45 and 47 was done in human VH domains with those frequently 

found in camel VHH domains. This approach is best known as ‘camelisation” 

(Davies and Riechmann 1994; Conrath, Vincke et al. 2005). However, despite having 

to overcome aggregation, the modified VH domains remained expressed at low 

yields and relatively unstable due to the deformation of the ß-sheet.  

 In resolving this issue, many researchers studied the effect of the VHH tetrad 

on solubility (Barthelemy, Raab et al. 2008) which resulted in a VH dAb library 

produced based on a murine germline gene with a substitution at the VL interface. 

Phage display panning was done with monomeric IgG-specific dAb and found to be 

soluble at a concentration of 2 mM (Holt, Herring et al. 2003). On the same note, 

good expression of fragments selected from the llama dAb library was attributed to 

the framework substitutions that differs from the VHH tetrad. Mutation and 

manipulation of the CDRH3 loop length also plays an important role to achieve good 

expression and solubility of the VH antibody (Riechmann and Muyldermans 1999). 

Besides having good expression yield and solubility, another attractive 

property of several camelid VHH domains and llama VH domains is the heat 

stability (Dudgeon, Famm et al. 2009). In general, antibodies and their fragments 

derived from human VH dAbs tend to aggregate irreversibly upon heat denaturation. 

However, it was reported that when camel and llama VHH domains (Dolk, van Vliet 

et al. 2005) were subjected to heat ranging between 80–90⁰C, they were able to 

maintain its antigen binding specificity despite prolonged incubation at high 

temperatures. Advancements made to cater for the thermo stability includes site-

directed mutagenesis based approaches for directed evolution of antibodies. 
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Undoubtedly, successful isolation of recombinant antibodies from libraries 

depend heavily in the quality of the libraries produced. Factors such as the number of 

correctly folded functional antibodies have brought a paradigm shift towards 

developing human domain antibody. An example of recent studies showed functional 

antibody of HEL4 domain antibody library mimicking the natural human immune 

response designed with only CDR3 diversity (Mandrup, Friis et al. 2013).  This 

library also includes mutations of the amino acid composition with regards to the 

positions critical for the folding and aggregation of domain antibodies.  

With regards to dAbs high affinity and specificity, their small size and short 

half-life are best suited for targeting antigens in tissue and blood vessel where 

penetration is often obstructed and for clearance purpose. For example in tumour 

cells, dAb can be used to assist delivery of specific toxins to the tumour cells in a 

short time without damaging healthy cells. However, in some applications, such as in 

cancer treatment (Revets, De Baetselier et al. 2005) in which the target antigen 

resides in the blood stream, prolonged serum half-life is crucial to maximize time for 

antibody antigen reaction to minimizes the dosage amount. 
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Figure 1.3 : Schematic representation of antibody formats ranging from conventional 

whole antibody to variable heavy and variable light chain domain antibody as the 

smallest unit (Chakravarty, Goel et al. 2014). 
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1.4 Synthetic Antibody Technology 

The rise of synthetic antibody stems from the limitation of natural repertoire 

diversity. For the past twenty years, studies have shown a particular interest in 

producing antibody with high affinity antigen-binding sites by introducing diversity 

mutation in CDR loops. The construction of semi- or fully synthetic antibody library 

genes were assembled using chemically synthesized DNA. One of the classical 

methods of in-vitro antibody production derived from the natural antibody genes is 

via PCR.  Naïve antibody repertoires via synthetic platforms are not biased for 

binders of any particular antigen and bypass the redundancies of naturally occurring 

antibody. Hence, the advantage of synthetic antibody over the natural repertoire is 

that it provides a wider diversity for any type of target.  

Notably, technical advances have allowed the development of highly 

functional synthetic antibody libraries that rival or even exceed the recognition 

potential of natural immune systems. The first semi-synthetic library was reported in 

1992 by Nissim and colleague with a human VH genes repertoire from 49 human 

germline VH gene segments with combinatorial synthetic CDR3 of five or eight 

residues (Hoogenboom and Winter 1992; Griffiths, Williams et al. 1994). Later on, it 

was again followed up with a ‘single pot’ human scFv library built from a diverse 

repertoire of in vitro human VH gene segments assembly with random nucleotide 

sequence for CDR3 lengths between 4 – 12 residues (Benhar 2007). 

The second generation of synthetic platform is based on a more limited 

collection of variable domain genes however, emphasizing more on robustness. The 

overall design took into consideration the yields of functional antibody fragments 

based on cellular folding in the E. coli expression machinery (Welch, Govindarajan 

et al. 2009). Since then, Pini’s group explored a semi synthetic antibody library that 
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was prepared using a single VH (DP47) and Vκ (DPK22)(Pini and Bracci 2000). The 

VH component of the library was created using partially degenerate primers in a 

PCR-based method to introduce random mutations at positions 95 – 98 in CDR3. It 

was found that creating antibody libraries starting from well-expressed frameworks 

was able to retain the diversity and stability (Hoogenboom, de  ru  ne et al. 1998). 

The ‘HuCal’ libraries were constructed with a more diverse sequence space 

although it is confined by the limited set of variable domain scaffolds (Benhar 2007). 

All the genes assembled were synthetically synthesized with a total of seven VH and 

VL (four Vκ and three Vλ) germline families that accounts for more than 95% of the 

human antibody diversity (Knappik, Ge et al. 2000). In addition, the genes were also 

optimized for expression in E. coli. The design of the library was based on cloning 

the V genes of scFv in all 49 combinations into a phagemid vector. Diversity was 

introduced in the CDR3 cassettes via generation of mixed trinucleotides sequences 

by substitution CDR3 regions of the master genes. Interestingly, the outcome of the 

library selection has resulted in obtaining high affinity binders with Kd between 10^9 

M and 10^10 M. The variation of the CDR3 cassettes resulted in a highly diverse 

library producing antibodies against a vast number of antigens with high affinity. 

 

1.5 Synthetic Domain Antibody Generation 

Interestingly, the unique nature of generating highly diverse antibodies 

against a plethora of antigens by the immune system has intrigued researchers to 

mimic such processes in vitro with synthetic gene platforms. The genetic sequence of 

the variable domain is chemically synthesized with the introduction of randomization 

at fixed positions corresponding to the CDR of the variable domain with a fixed 

framework  (Rothe, Urlinger et al. 2008; Yang, Kang et al. 2009; Prassler, Thiel et al. 
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2011). These degenerate oligonucleotides function as substitutes for the naturally 

occurring in vivo diversity. Synthetic platforms also take into account the variation in 

length of the CDR regions to fully maximize the diversity.  

These oligonucleotides are designed using highly randomized codons which 

are used to code for unspecified amino acids. The generation of amino acids 

sequence depends on the codon usage. There are two commonly used codon scheme 

of encoding unspecified amino acids sequences; 1) NNK ( A/T/C/G  as an equimolar 

representation of N and K codes for G/T ) 2) NNS ( N represents four bases and S 

codes for G/C) (Barbas, Burton et al. 2001). These schemes produce 32 codons with 

one stop codon. N in general, produces 64 possible codons, hence coding for 20 

amino acids. The most commonly used is NNK as it is able to produce high 

frequency of stop codon when used to encode for very large peptide consisting of 

more than 50.  

Construction of recombinant domain antibody requires the chemically 

synthesized genes to be assembled in a manner that resembles the complete gene 

sequence. The first method of assembly was introduced by Stemmer and colleagues 

where full-length genes were generated  (Stemmer, Crameri et al. 1995). This 

approach is known as the conventional one-pot gene assembly (Prodromou and Pearl 

1992; Stemmer, Crameri et al. 1995; Wu, Wolf et al. 2006). It is an annealing and 

assembling process by incorporating the mixture of all synthetic oligonucleotide in a 

single step PCR.  However, due to the variation in the length of degeneracy, it is 

rather difficult for gene assembly via the conventional method of polymerase chain 

reaction. One-pot gene assembly is likely less efficient for degenerate 

oligonucleotide with higher complexity as PCR is known to work well with a fixed 

sequence and not randomized sequences (Young and Dong 2004). Confined by the 
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limitation, two-step approaches have been proposed to assist in the assembly of 

genes with higher complexity for example by two-step PCR (Cherry, 

Nieuwenhuijsen et al. 2008), ligation chain reaction of fragmented segments (Au, 

Yang et al. 1998), gap filling and ligation (Ostermeier 2003).  

Two-step PCR methods involve the assembly of multiple overlapping 

oligonucleotides by PCR to generate the template DNA followed by the 

amplification of the DNA template with two outermost oligonucleotides as primers. 

The ligation chain reaction confers ligation of smaller fragments to form a unit and 

subsequently amplified by PCR.  The ligation chain reaction method however is 

slightly similarl of the ligation chain reaction wherein, the genes are assembled by 

polymerase gap filling in by ligating the ends together. Despite numerous proposed 

approach proposed, it is worth noting however that these method are not routinely 

used. 

 

1.6 Antibody Selection by In Vitro Panning  

Generation of antibodies by the immune system is involves the B cell 

repertoire where the V genes segments have undergone rearrangement.  As a result, a 

single antibody is displayed on the surface of the each cell. The selection process 

occurs by the interaction between antibodies with the antigen. Selected antibodies 

will either segregate to short-lived plasma cells or to long-lived memory cells in 

lymph nodes, spleen, and bone marrow (Winter, Griffiths et al. 1994). For memory 

cells, the V genes of the selected antibodies will undergo hyper mutation. At this 

point, binding affinity may be improved with successive selection with antigen. With 

regards to mimicking the whole process of B cell antibody generation process, 

“panning” or “biopanning” is used.  iopanning refers to the iterative in vitro process 
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of antibody selection from antibody libraries  based on target affinity (Kretzschmar 

and von Rüden 2002).  

There are several conditions that need to be taken into consideration during 

the selection process. The first factor is the imperative proficiency of isolating the 

gene pool to construct an antibody library with high diversity, capability of 

expressing functional antibody fragment in soluble form and lastly, the efficiency of 

simultaneous expression and display of genetic information being packaged. The 

population of target specific antibodies are enriched relative to the number of 

panning rounds (Mullen, Nair et al. 2006).  

Target antigens are commonly coated on various solid phase. The most 

common solid phase used are nitrocellulose, magnetic beads, agarose columns, 

monolithic columns, polystyrene tubes and 96 well microtitre plates (Kontermann 

and Dübel 2010). The solid phase bound phages are subjected to stringent washing to 

eliminate nonspecific binders. The subsequent step is then followed by recovery of 

the bound phages by elution.  This process can either be by competitive elution 

(Krishnaswamy, Kabir et al. 2009) or harsh acidic (Barbas, Kang et al. 1991) or 

alkaline condition (Marks, Hoogenboom et al. 1991). Phage recovery or rescue plays 

a pivotal role in the whole panning process as this will ensure retrieval of high 

affinity binders. The phages are normally grown in bacterial culture for amplification 

thus the recovered phages can be subjected to further rounds of selection.  Moreover, 

for each round of panning, phages can be enriched 20-1000 fold (McCafferty, 

Griffiths et al. 1990). 
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1.6.1 Panning Via Conventional Method (Immunotubes and Microtitre Plate) 

Prior to selection, the target antigens are coated on the surface of the solid 

phase for presentation. Figure 4 shows the overall illustration of the conventional 

panning process. This will be followed by an incubation step with the antibody 

bearing phage particles to allow binding of antibodies to the antigen. Parameters such 

as physical, chemical or biological are essentially introduced  (Lee, Iorno et al. 

2007). Stringent washing steps are necessary to ensure the removal of unbound 

phage particles from bound phage particles. Discrepancy in the washing approach 

will result in the variation of enriched clones. Lastly, an elution step can be 

conducted in many ways either by enzymatic digestion, pH shift or competitive 

antigen elution. The eluted phage particles are then enriched by infection of E. coli. 

At this time, the phage particles can either be repackaged to be used in the 

subsequent panning round or for final analysis.  

After 4 to 6 rounds of panning, identification of bound phage can be 

evaluated by antibody presenting phage or in the soluble form of antibodies on an 

immunoassay format  (Walter, Konthur et al. 2001). The positive clones will then be 

sequenced to obtain the genotypic information pertaining to the positive clone. As 

the genetic information of the clone is now available, modifications to the antibody 

can be done and produced in different host depending on the platform the antibodies 

will be used in. The availability of the genetic information of the antibodies would 

also facilitate additional modifications in terms of stability and affinity maturation 

(Pini and Bracci 2000).  
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Figure 1. 4 : Biopanning protocol adapted from Kügler 2013 (Kügler, Zantow et al. 

2013). (a) Pooled phage library will be subjected to panning (b) Antigens are 

immobilized onto solid surfaces and blocked to ensure nonspecific binding of phages 

onto the plastic surface. (c) The pooled phages will then be incubated with the 

immobilized antigen. (d) Unbound phages were then washed off by stringent 

washing subsequently followed by elution. (e) Antigen bound phage will be rescue 

by E.coli infection and followed by phage enrichment. (f) After every round of 

enrichment, the phage can either be subjected to phage ELISA or carried forward 

until the successive rounds completed.  
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1.6.2 Semi-Automated Panning 

Screening large sample sizes is tedious with conventional panning procedures 

that require repetitive rounds of panning, phage infection and propagation. However 

in semi-automated systems to streamline the laborious process of phage display, such 

as semi-automated magnetic bead-based antibody selection (Konthur, Wilde et al. 

2010), allows high-throughput screening of antibodies to be carried out with 

maximum convenience and minimal handling.  

Conventional method of antigen immobilization using 96 well microtiter 

plates involve two methods, either by adsorption of antigens to the plate surface 

(Bora, Chugh et al. 2002) or coating the plates with streptavidin to capture the 

antigen s(Välimaa, Pettersson et al. 2003). In contrast to using the microtiter plate, 

another alternative is by allowing biotinylated antigens to be coated onto the 

streptavidin magnetic beads (Cox and Ellington 2001). These magnetic beads have 

larger surface area which contributes to the efficiency in the panning process as 

compared to using microtiter plates.   

In practice, the panning method utilizes a pin-based magnetic particle 

processor (Kingfisher, Thermo) as shown in Figure 5(a). This machine enables the 

handling of 96 magnetic pins in which it is positioned similar to the common 96 well 

plate (Walter, Konthur et al. 2001; Rhyner, Konthur et al. 2003). The basic concept 

of using the processor is to streamline processes such as washing step, incubation 

times, and to conduct selections on same targets under different buffer conditions 

simultaneously. The software-driven procedure dictates the transferring process of 

magnetic particles between wells by capture and release motions shown in Figure 

5(a). The rod-shaped magnets are covered with plastic caps during the transferring 

process to prevent contamination.  However, the automation process only involves 
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the panning procedure wherein the subsequent step of phage rescue and enrichment 

is done manually. The advantage of semi-automated panning allows standardization 

of panning parameters and reduces background of non-specific binder when 

transferring from one well to another (Konthur and Walter 2002). The application of 

this method allows better reproducibility and a faster turnover rate in comparison to 

conventional plate based protocols. Therefore, the implementation of this method 

allows for high-throughput antibody discovery.  



21 

 

 

 

 

Figure 1.5 : Semi-automated panning. (a) Diagram of King Fisher Flex machine 

used to control automated beads panning. (b) Overall panning process from 

incubation to washing and plate switching is done automatically. Figure adapted 

from (Konthur, Wilde et al. 2010) 
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1.7 Statement of Problem  

A vast number of commercially therapeutic antibodies approved by the U.S. 

Food and Drug Administration are full-size antibodies of IgG1 format at about 150 

kDa size (Holt, Herring et al. 2003). Due to their relatively large-size, these 

molecules have limitations in terms of poor penetration into tissues (e.g., solid 

tumors) and eventually results in weak binding to functionally important regions 

(Dimitrov and Marks 2009). The use of using smaller formats can bring about 

therapeutic relevance. As an example, the human immunodeficiency virus envelope 

glycoprotein that can only be access by smaller molecules (Labrijn, Poignard et al. 

2003). Therefore, by decreasing the size of the molecule it can aid tissue penetration 

(Yokota, Milenic et al. 1993). 

  Over the last decade, a large amount of work has been focused on the 

development of alternatives for smaller novel scaffolds. (Holt, Herring et al. 2003; 

Holliger and Hudson 2005; Dimitrov and Marks 2009). Amongst the most explored 

scaffold includes the relatively small domain antibody, which comprises of only the 

domain antibodies and synthetic domain antibodies for various fields of research.  

Most domain antibodies are derived from camelids, sharks and murine. This is 

because fully human domain scaffolds of the variable gene repertoire are more likely 

to aggregate.  Since then, human heavy chain variable fragments (VH) have been 

compared with those found naturally in camelids.  

The determining factor for successful isolation of these antibodies relies 

heavily on the quality of the library generated. Among the critical factors are based 

on the diversity of the libraries as well as the functionality (Prassler, Thiel et al. 

2011). While most of the studies conducted on the synthetic human domain antibody 

tackles the issue of library construction (Silacci, Brack et al. 2005), biophysical 
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properties such as proper protein folding (Forrer, Jung et al. 1999) and  aggregation 

(Dudgeon, Famm et al. 2009) or diversity (Mondon, Dubreuil et al. 2008; Yang, 

Kang et al. 2009).  To circumvent this problem, mutational studies have been 

conducted to understand the factors attributed to these problems.  

The main focus for the antigen binding specificity lies within the CDR region 

of the variable domain. In the early stages, in depth studies of domain antibody 

sequence analysis have found that aggregation is likely to occur at the regions in or 

adjacent to the CDR regions. Thus, the generation of synthetic domain antibodies 

will allow for design of highly stable frameworks. Introducing diversity artificially 

will eliminate any bias introduced by the host immune system. A full control of the 

amino acid composition in the CDRs is possible by using the trinucleotide synthetic 

design. Knappik et al pioneered a rather complex library by introducing diversity in 

the CDR3 cassette in both variable heavy and light chain thus incorporating it in all 

49 combination into phagemid vector (Knappik, Ge et al. 2000). 

As more antibody sequence information was generated, several different 

approaches have been proposed to improve diversity. Christ and his group developed 

a synthetic human domain antibody library where the diversity was introduced in all 

three of the CDR region (Lee, Iorno et al. 2007) in the heavy variable region to be 

used in screening a wide array of antigen. In this study, the human domain antibody 

constructed will be based on a known antibody framework that is reported to have 

good solubility and stability (Lee, Liang et al. 2004; Mandrup, Friis et al. 2013). 

Similarly, the method introduced in this study is aimed to focus on the assembly of 

highly diverse genes of all three CDR regions with a defined single framework using 

single-pot synthesis. The CDR lengths were determined via analysis of the average 

length of CDRs naturally available. 
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  The introduced method would help to establish a synthetic human domain 

antibody library with unique and diverse CDR regions for functional antigen binding 

by the extension of CDR-H2 and CDR-H3 distribution length. As more disease 

specific biomarkers are being discovered, one of the major bottlenecks for the 

development of diagnostic tests or even for basic research is the availability of 

specific antibodies against these targets. 

  Therefore, this study has been conducted specifically for the production of 

monoclonal antibodies against biomarkers with the use of a synthetic human domain 

library. The naïve synthetic library will be used for selection of binders against a 

wide range of disease specific recombinant antigen that can potentially be used in 

diagnostic or even therapeutics platform. 

 

1.8 Research Objectives 

1. To design, assemble and clone a collection of synthetic human antibody variable 

heavy genes 

2. To generate a highly diverse in-house synthetic domain antibody phage display 

library. 

3. To identify monoclonal domain antibodies for potential binders against disease 

specific recombinant antigen. 




