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STRATEGI-STRATEGI PEMECUTAN UNTUK ALGORITMA 
PE:MBELAJARAl'l RANGKAIAN NEURAL PERAl\1BATAN BALIK 

ABSTRAK 

Algoritma perambatan balik telah terbukti sebagai salah satu algoritma rangkaian neural 

yang paling berjaya. Namun demikian, seperti kebanyakan kaedah pengoptimuman 

yang berasaskan kecerunan, ianya menumpu dengan lamb at dan keupayaannya 

berkurangan bagi tugas-tugas yang lebih besar dan kompleks. 

Dalam tesis ini, faktor-faktor yang menguasai kepantasan pembelajaran algoritma 

perambatan balik diselidik dan dianalisa secara matematik untuk membangunkan 

strategi-strategi bagi memperbaiki prestasi algoritma pembelajaran rangkaian neural ini. 

Faktor-faktor ini meliputi pilihan pemberat awal, pilihan fungsi pengaktifan dan nilai 

sasaran serta dua parameter perambatan, iaitu kadar pembelajaran dan faktor 

momentum. 

Bagi pilihan pemberat awal, satu prosedur pengawalan pemberat telah dibangunkan 

untuk menentukan suatu titik awal yang mungkin. Daripada titik ini" satu arah carian 

dapat dikira. Analisis secara teori faktor momentum telah membawa kepada 

pembangunan suatu kaedah baru, Faktor Momentum Dinamik, yang menyelaraskan 

faktor momentum untuk menyesuaikan sendiri secara setempat kepada keadaan fungsi 

koso Begitu juga, analisis teori parameter kadar pembelajaran telah memberi 

pemahaman penting dalam pembangunan dua kaedah yang berhubung dengan 

parameter ini, iaitu Kadar Pembelajaran Dinamik Kaedah 1 dan 2. 
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I Simulasi komputer yang meluas dan perbandingan prestasi dengan algoritma 

t 
~' perambatan tradisional dan dua lagi kaedah berasaskan kecerunan, iaitu kaedah 

~ Conjugate Gradient dan Steepest Descent, telah menunjukkan penumpuan pantas 

{ kaedah-kaedah yang dimajukan di dalam tesis ini. Kaedah-kaedah ini telah 
~,.'.:' 

~, . 

. ~. dilaksanakan dan diuji pada beberapa masalah dan keputusan yang diperolehi 
f_ 
~--;. 

menunjukkan bahawa kaedah-kaedah ini berkemampuan untuk menambahkan 

penumpuan dan seterusnya memecutkan latihan. Pengiraan eksplisit untuk menentukan 

nilai optimum faktor momentum dan kadar pembelajaran adalah tidak diperlukan serta 

pengiraan dan beban storan yang berat tidak diperlukan. 

Masalah pengecaman muka manusia dipilih untuk membuktikan keberkesanan kaedah-

kaedah yang dimajukan pada satu masalah penggunaan dunia sebenar. Selain daripada' 

itu, keupayaan rangkaian yang terlatih terhadap pengumuman dan penolakan diselidiki. 

Kesan mengubah bilangan nod terlindung terhadap prestasi rangkaian dan juga prestasi 

rangkaian terhadap imej hingar juga dikaji. Bukti berangka menunjukkan bahawa 

kaedah pengawalan pemberat dan kaedah-kaedah pecutan yang telah dimajukan adalah 

kukuh dan mempunyai prestasi purata yang baik dari segi penumpuan, keupayaan 

pengumuman dan penolakan, serta pengecaman imej hingar. 
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ABSTRACT 

The backpropagation algorithm has proven to be one of the most successful neural 

network learning algorithms. However, as with many gradient based optimization 

methods, it converges slowly and it scales up poorly as tasks become larger and more 

complex. 

In this thesis, factors that govern the learning speed of the backpropagation algorithm 

are investigated and mathematically analyzed in order to develop strategies to improve 

the performance of this neural network learning algorithm. These factors include the 

choice of initial weights, the choice of activation function and target values, and the two 

backpropagation parameters, the learning rate and the momentum factor. 

For the choice of initial weights, a weight initialization procedure is developed to 

determine a feasiblt? initial point from which a search direction can be computed. 

Theoretical analysis of the momentum factor leads to the development of a new method, 

the Dynamic Momentum Factor, which dynamically adjusts the momentum factor to 

adapt itself locally to the cost function landscape. Similarly, theoretical analysis of the 

learning rate parameter provides important insights into the - development of two 

learning rate related methods, namely, Dynamic Learning Rate Methods 1 and 2. 

Extensive computer simulations and performance comparisons with the conventional 

::' backpropagation algorithm and two other gradient based methods, the Conjugate 

Gradient and Steepest descent methods have demonstrated the fast convergence of the 

proposed methods. The proposed methods have been implemented and tested on 

XVlll 



I several benchmark problems and the results indicate that these methods are able to 

~~ !£ provide enhanced convergence and accelerated training. Explicit computations to 

f 
~'C. determine the optimal momentum factor and learning rate values are not needed and no 
l-
~"----

heavy computational and storage burden is necessary. 

The human face recognition problem is chosen to demonstrate the effectiveness of the 

proposed methods on a real world application problem. In addition, the capabilities of 

the trained networks on generalization and rejection are investigated. The effect of 

varying the number of hidden nodes on the network's performance and the performance 

of the network on noisy images is also examined. Numerical evidence shows that the 

proposed weight initi~ization and acceleration methods are robust with good average 

performance in terms of convergence, generalization and rejection capabilities and 

recognition of noisy images. 

xix 



CHAPTER! 

INTRODUCTION 

The majority of information processing today is carried out by digital computers. This 

has led to the widely held misperception that information processing is dependent on 

digital computers. However, if we look at cybernetics and the other disciplines that 

form the basis of information science, we see that information processing originates 

with living creatures in their struggle to survive in their environments, and that the 

information being processed by computers today accounts for only a small part - the 

automated portion of this. Viewed in this light, we can begin to consider the possibility 

of information processing devices that differ from conventional computers. In fact, 

research aimed at realizing a variety of different types of information processing devices 

is already being carried out, albeit in the shadows of the major successes achieved in the 

realm of digital computers. One direction that this research is taking is toward the 

development of an information processing device that mimics the structures and 

operating principles found in the information processing systems possessed by humans 

and other living creatures. 

Digital computers developed rapidly in and after the late 1940's, and after originally 

being applied to the field of mathematical computations, have found expanded 

applications in a variety of areas, to include text (word), symbol, image and voice 

processing, i.e., pattern information processing, robot control and artificial intelligence. 

However, the fundamental structure of digital computers is based on the principle of 
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sequential (serial) processing, which has· little if anything in common with the human 

nervous system. 

The human nervous system, it is now known, consists of an extremely large number of 

nerve cells, or neurons, which operate in parallel to process various types of 

information. By taking a hint from the structure of the human nervous system, we 

should be able to build a new type of advanced parallel information processing device. 

In addition to the increasingly large volumes of data that we must process as a result of 

recent developments in sensor technology and the progress of information technology, 

there is also a growing requirement to simultaneously gather and process huge amounts 

of data from multiple sensors and other sources. This situation is creating a need in 

various fields to switch from conventional computers that process information 

sequentially, to parallel computers equipped with multiple processing elements aligned 

to operate in parallel to process information. 

Besides the social requirements just cited, a number of other factors have been at work 

during the 1980's to prompt research on new forms of information p·rocessing devices. 

For instance, recent neurophysiological experiments have shed considerable light on the 

structure of the brain, and even in fields such as cognitive science, which study human 

information processing processes at the macro level, we are beginning to see proposals 

for models that call for multiple processing elements aligned to operate in parallel. 

Research in the fields of mathematical science and physics is a!'so concentrating more 

on the mathematical analysis of systems comprising mUltiple elements that interact in 

complex ways. These factors gave birth to a major research trend aimed at clarifying 
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the structures and operating principles inherent in the infonnation processing systems of 

human beings and other animals, and constructing an infonnation processing device 

based on these structures and operating principles. The tenn "neurocomputing" is the 

name used to refer to the infonnation engineering aspects of this research. 

1.1 WHAT IS AN ARTIFICIAL NEURAL NETWORK? 

Neurocomputing involves processing infonnation by means of changing the states of " 

networks fonned by interconnecting extremely large numbers of simple processing 

elements, which interact with one another by exchanging signals. Networks such as the 

:me just described are called artificial neural networks (ANNs), in the sense that they 

:epresent simplified models of natural nerve or neural networks. The basic processing 

!lement in the nervous system is the neuron (Figure 1.1). The human brain is composed 

)f about 10 billion of over 100 types of neurons. Tree-like networks of nerve fiber 

:alled dendrites are connected to the cell body or soma, where the cell nucleus is 

Dcated. Extending from the cell body is a single long fiber called the axon, which 

ventually branches into strands and sub strands , and are connected" to other neurons 

trough synaptic junctions, or synapses. 

Axon (Carries 
signals away) 

Synapse size changes in 
response to learning 

"= Figure 1.1. A simple neuron cell 
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Figure 1.2. A schematic diagram of a neuron 

The transmission of .signals from one neuron to another at a synapse is a complex 

chemical process in which specific transmitter substances are released from the sending 

end of the junction. The effect is to raise or to lower the electrical potential inside the 

body of the receiving cell. If the potential reaches a threshold, a pulse is sent down the 

axon - we then say the cell has "fired". 

In a simplified mathematical model of the neuron (Figure 1.2), the effects of the 

synapses are represented by "weights" which modulates the effect of the associated 

input signals, and the nonlinear characteristics exhibited by neurons is represented by a 

transfer function which is usually the sigmoid function. The neuron impulse is then 

computed as the weighted sum of the input signals, transformed by the transfer function. 

The learning capability of an artificial neuron is achieved by adjusting the weights in 

accordance to the chosen learning algorithm, usually by a small amount. 

Since psychologist Frank Rosenblatt (1958) proposed the "Perceptron" , a pattern 

recognition devic.e with learning capabilities, the hierarchical neural network has been 

:he most widely studied form of network structure. A hierarchical neural network is one 

:hat links multiple neurons together hierarchically, as shown in Figure 1.3. The special 
-.r;:\ 
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OUT 

Figure 1.3. A feed forward neural network 

characteristic of this type of network is its simple dynamics. That is, when a signal is 

input into the input layer, it is propagated to the next layer by the interconnections 

between the neurons. Simple processing is performed on this signal by the neurons of 

the receiving layer prior to it being propagated on to the next layer. This process is 

repeated until the signal reaches the output layer completing the processing process for 

that signal. 

The manner in which the various neurons in the intermediary (hidden) layers process 

the input signal will determine the kind of output signal it becomes (how it is 

transformed)". It is clear then, hierarchical network dynamics are determined by the 

weight and threshold parameters of each of their units. If input signals can be 

transformed to the proper output signals by adjusting these values (parameters), then 

hierarchical networks can be used effectively to perform information processing. 

Since it Js difficult to accurately determine mUltiple parameter values, a learning method 

is employed. This involves creating a network that randomly determines parameter 

values. This network is then used to carry out input-to-output transformations for actual 

-r-

problems. The correct final parameters are obtained by properly modifying the 
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parameters in accordance with the errors that the network makes in the process. There 

are many learning methods that have been proposed. Probably the most representative 

of these is the error back-propagation learning method proposed by Rumelhart, et al. 

(1986). This learning method has played a major role in the recent neurocomputing 

. boom. 

There are multitudes of different types of ANNs. Some of the more popular include the 

multilayer perceptron which is generally trained with the backpropagation of error 

algorithm (Rumelhart, et ai., 1986), learning vector quantization (Kohonen, 1986; 

Kohonen, 1990), radial basis function (Broomhead & Lowe; 1988, Moody & Darken, 

1989; Renals, 1989; Poggio & Girosi, 1990), Hopfield (Hopfield, 1982), and Kohonen 

(Kohonen, 1982a; Kohonen, 1982b) to name a few. Some ANNs are classified as 

feedforward while others are recurrent (i.e., implement feedback) depending on how 

data is processed through the network. Another way of classifying ANN types is by 

their method of learning (or training), as some ANNs employ supervised training while 

others are referred to as unsupervised or self-organizing. Supervised training is 

analogous to a student guided by an instructor. Unsupervised algorithms essentially 

perform clustering of the data into similar groups based on the measured attributes or 

features serving as inputs to the algorithms. This is analogous to a student who derives 

the lesson totally on his or her own. ANNs can be implemented in software or in 

specialized hardware. 

Although ANNsi'have been around since the late 1950's, it wasn't until the mid-1980's 

that algorithms became sophisticated enough for general applications. Today ANNs are 

being applied to an increasing number of real-world problems of considerable 
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f'comPlexity. They are good pattern r~cognition engines and robust classifiers, with the 
~. 

~. ability to generalize in making decisions about imprecise input data. They offer ideal 
l . 
F 
L solutions to a variety of classification problems such as speech (Morgan & Bourlard, 
~--,

r=:oo 

r 1990), character (Le Cun, et ai., 1990b) and image recognition (Lawrence, et ai., 1997), 

as well as functional prediction as in economic forecasting (Utan, et ai., 1991; Moody, 

1995) and system modeling (Uhrig & Guo, 1989) where the physical processes are not 

understood or are highly complex. ANNs may also be applied to control problems 

(Talebi, et ai., 1998), where the input variables are measurements used to drive an 

output actuator, and the network learns the control function. The advantage of ANNs 

lies in their resilience ,against distortions in the input data and their capability of 

learning. They are often good at solving problems that are too complex for conventional 

technologies (eg. problems that do not have an algorithmic solution or for which an 

algorithmic solution is too complex to be found) and are often well suited to problems 

that people are good at solving, but for which traditional methods are not. 

As indicated above, there are many different ANN architectures designed for different 

purposes. We will concentrate on the most popular, the multi layer perceptron (MLP). 

The details of the MLP will be discussed in the next chapter. The most common way of 

training the MLP is the Back Propagation (BP) algorithm. This involves repeated 

presentation of inputs in the training set to the network and subsequent adjustment of 

the weights and biases until the network produces the desired outputs. The popularity 

of the BP algorithm can be attributed to its simplicity and genericity. The MLP is 

capable of approximating arbitrary nonlinear mappings, and given a set of examples, the 

BP algorithm can be employed to learn the mapping at the example points. However, 

there are a number of practical concerns. The first is the matter of choosing the network 
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J. 
K'size. The second is the ability of the network to generalize; that is, its ability to produce 

r 
[ accurate results on new samples outside the training set. Finally, the time complexity of 

co learning; that is, its ability to learn the desired mapping in a reasonable amount of time. 

~ These issues have stirred considerable ongoing research and numerous theories and 
~ 

algorithms have been proposed to this end. One of the principal concerns in BP 

learning is associated to the last,. issue above, that is, the complexity of learning. 

BP learning is too slow for many applications, and it scales up poorly as tasks become 

larger and more complex. Its slow ~peed at which the current algorithm learns has been 

the greatest single obstacle to the widespread use of connectionist learning networks in 

real-world applications. Viewed in this light, the approach and emphasis taken in this 

thesis is to investigate factors governing the convergence rate of the BP learning 

algorithm. The goal is twofold: to develop faster learning algorithms and to contribute 

to the development of a methodology that will be of value in future studies of this kind. 

The problem of finding a set of correct weights for a fixed size network is an inherently 

difficult problem. This problem has been formulated by Judd (1990) as the loading 

problem and recently it has been shown that it is NP-complete (Blum & Rivest, 1992; 

Sima, 1996). This implies that if we have a very large problem, for example, if the 

dimension of the input space is very large, then it is unlikely that we will be able to 

determine if a weight solution exists in a reasonable amount of time. 

Learning algorithms like BP are based on a gradient search, which is a greedy algorithm 

that seeks out a local minimum and they may nut yield the exact mapping. As with 

other gradient based methods, BP is very time consuming and learning bigger networks 

can be intractable (Tesauro, 1987; Tesauro & Janssens, 1988). One way to explain this 
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I" 
~' sluggishness is to characterize the error surface which is being searched. In the case of 

r' 
~: a single perceptron with linear activation function the error surface is a quadratic bowl 
(,." 

r 
~-., 

(with a single (global) minimum), making it a relatively agreeable surface to search. 

For MLPs however, the error surface turns out to be quite harsh (Hush, et ai., 1992). 

These surfaces tend to have a large amount of flatness as well as extreme steepness, but 

not much in between. It is difficult to determine if the search has even terminate with 

this type of surface since the transient flat spots "look" much the same as minima, that 

is, the gradient is very small. Moreover, with this type of surface a gradient search 

moves very slowly along the flat parts. 

Increasing the learning rate to compensate for the sluggishness in these areas can be 

dangerous because the algorithm may then exhibit instabilities when it reaches the steep 

parts of the surface. Attempts to speed learning include variations on simple gradient 

search (Jacobs, 1988; Plaut, et al., 1986; Rumelhart, et al., 1986) line search methods 

(Hush & Salas, 1988), and second-order methods (Becker & Le Cun, 1988; Watrous, 

1987). Although most of these have been somewhat successful, they usually introduce 

additional parameters which are difficult to determine, must be varied from one problem 

to the next, and if not chosen properly can actually slow the rate of convergence. 

Recently there has been a focus of training feed-forward NNs with optimization 

techniques that use higher-order information such as the conjugate gradient method 

(Van Der Smagt, 1994) and Newton's method (Becker & Le Cun, 1989). Both of these 

methods use the gradient vector (first-ordet partial derivatives) and the Hessian matrix 

(second-order partial derivatives) of the cost function to perform the optimization, albeit 

in different ways. Despite the fact that these techniques possess good convergence 
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properties, they are .computationally more complex. Furthermore, the application of 

second order methods like the Newton's method to the training of the MLP is hindered 

by this requirement of having to calculate the Hessian matrix and its inverse which can 

. be computationally expensive. 

The main contribution of this thesis consists of efficient BP learning using dynamically 

optimal momentum factor (MF) and learning rate (LR). These methods exploit the first-

order derivative information of the objective function with respect to the MF and LR 

~ respectively. Since these approaches do not involve explicit calculation of derivatives 
t r-
~. 
~. 

in weight space, but rather uses information gathered from the forward and backward 

propagation, the computational and storage burden scales with the network size exactly 
1'-

like the conventional BP. 

1.2 GUIDE TO THESIS 

The aim of this thesis is to investigate the factors that govern the learning speed of the 

BP algorithm in order to develop strategies to improve the performance of this neural 

network learning algorithm. The investigation includes analyzing the choice of initial 

weights, the choice of activation function and target values, and the back propagation 

parameters, in particular, the momentum factor and the learning rate. Three acceleration 

algorithms to accelerate steepest descent involving the momentum factor and the 

learning rate respectively are derived and implemented. A comparison is then made 

between these methods and the conventional BP algorithm An addition, two classical 

gradient based training methods - steepest descent gradient search and conjugate 

gradient are compared with the above algorithms. All programs for the simulations 

10 



were performed on the Sequent Balance. In order to evaluate the performance of these 

algorithms, three benchmark problems are chosen to give a good insight into how these 

- various algorithms will perform on the real-world tasks we eventually want to tackle. 
x 

The benefit of these algorithms is demonstrated on a real-world application problem, the 

human face recognition problem using continuous-valued training data that contain 

random noise. 

Basic mathematical and neural network concepts needed to understand multilayer 

perceptrons trained with the back propagation algorithm are discussed in Chapter 2. 

Particular emphasis is given to the formulation and derivation of the back propagation 

algorithm. In Chapter 3, the MLP issues and limitations are discussed, eventually 

leading to a comprehensive survey of current methods in improving the convergence of 

the backpropagation algorithm. This includes first and second order optimization 

techniques applied to supervised learning. 

Chapter 4 considers the investigation of the choice of initial weights, choice of target 

values and activation function. An initialization of weights rule is also proposed here. 

In Chapter 5, the derivation of a dynamic momentum factor (DMF) BP algorithm is 

presented and a momentum factor update rule is proposed. This method is tested and 

compared with the conventional BP algorithm and two popular deterministic steepest 

descent based training methods on several benchmark problems. The results presented 

include both the on-line and batch modes of training. 
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A similar derivation of a dynamic learning factor (DLR) BP is presented in Chapter 6 

. leading to a proposal of two dynamic LR update rules. Similarly, these methods are 

tested and compared with the conventional BP algorithm and deterministic methods on 

the same benchmark problems as above. Again, the results of both modes of training 

are considered. 

This thesis would not be complete without a real-world application. Therefore, in 

Chapter 7, in order to evaluate the performance of the BP algorithm using the above 

proposed algorithms, the human face recognition problem is considered as an example 

of practical application. A brief survey of the literature on human face recognition is 

first presented followed by a description of the data set and image database. The 

numerical results employing the DLR and DMF algorithms against the conventional BP, 

steepest· descent gradient search and conjugate gradient on convergence and 

generalization capabilities are given. Factors governing the performance of the NN, in 

particular, network size and training set are also considered and results presented. The 

performance of the network on noisy images is also investigated. Lastly, a discussion 

and suggestions for future work pertaining to this research will be given in Chapter 8. 
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CHAPTER 2 

MULTILAYER PERCEPTRONS 
AND BACKPROPAGATION ALGORITHM 

In this chapter, an important architecture of neural networks, namely, multilayer 

feedforward networks are discussed. Typically, the network consists of a set of sensory 

units (source nodes) that constitute the 'input layer', one or more hidden layers of 

computational nodes, and an output layer of computational nodes. The input signal 

propagates through the network in a forward direction, on a layer-by-Iayer basis. These 

ANNs are commonly referred to as multilayer perceptrons (MLPs), which represent a 

generalization of the single-layer perceptron. 

Multilayer perceptrons have been applied successfully to solve some difficult and 

diverse problems by training them in a supervised manner with a highly popular 

algorithm known as the error backpropagation (BP) algorithm. This algorithm is based 

Dn the error-correction learning rule and hence, it may be viewed as a generalization of 

the least-mean-square algorithm for the special case of a single linear neuron model. 

A. multilayer perceptron has three distinctive characteristics: 

1. The model of each neuron in the network includes a nonlinearity at the output end. 

In contrast to the hard-limiting used in Rosenblatt's perceptron, the nonlinearity here 

is smooth that is, differentiable everywhere. A commonly used form of nonlinearity 

is the sigmoidal nonlinearity defined by the logistic function 

1 
Y -----

j - l+exp(-v
j

) 

where Vj IS the net internal activity level of neuron j and Yj is the output of the 
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neuron. It is these nonlinearities that make the input-output relation of the network 

different from a single-layer perceptron. 

2. The network comprises of one or more layers of hidden neurons that are not part of 

the input or output of the network. These hidden neurQns provide the network the 

ability to learn complex tasks by successively extracting meaningful features from 

the input patterns. 

3. The network displays a high degree of connectivity which is determined by the 

synapses of the network. A change in the connectivity of the network requires a 

change in the population of synaptic connections or their weights. 

These characteristics combined with the ability to learn from experience endows the 

multilayer perceptron its computing power. However, these same characteristics are 

also responsible for the deficiencies in the behavior of the network. First, the presence 

of a distributed form of nonlinearity and the high connectivity of the network make the 

theoretical analysis of a multilayer perceptron difficult to undertake. Second, the use of 

hidden neurons makes the learning process harder to visualize. The learning process 

must decide which features of the input pattern should be represented by the hidden 

neurons. The learning process is made difficult because the search has to be conducted 

in a much larger space of possible functions, and a choice has to be made between 

alternative representations of the input pattern (Hinton & Nowlan, 1987). 

Research interest in multilayer feedforward networks dates back to the pioneering work 

of Rosenblatt (1962) on perceptrons and that of Widrow and his students on Madalines 

(Widrow, 1962). The development of the back-propagation algorithm represents a 
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in neural networks in that it provides a computationally efficient method for 

training of multilayer perceptrons. Although it cannot be claimed that the back-

ULJ.;l):',"'UVU algorithm can provide a solution for all solvable problems, it is fair to say 

it has put to rest the pessimism about learning in multilayer machines that may have 

inferred from the book by Minsky and Papert (1969). 

chapter begins with a detailed derivation of the backpropagation algorithm in 

2.1. Using the chain rule of calculus, the essential calculations in focus are 

that will be employed in the derivation of the three acceleration methods 

LJH;,",",U.L,",'" in this thesis. Then, Section 2.2 addresses some basic issues relating to 

backpropagation learning covering the rate of learning, pattern and batch modes of 

.' learning and the issue of initialization which plays a very important role in successful 

applications of the backpropagation algorithm. A summary of the backpropagation 

algorithm outli?ing the principal steps is presented in Section 2.3. 

2.1 DERIVATION 
ALGORITHM 

OF THE BACK-PROPAGATION LEARNING 

Figure 2.1 shows the architectural graph of a multilayer perceptron with two hidden 

layers. A neuron in a layer of the network is connected to all the nodes in the previous 

layer. Signal flow through the network progresses in a forward direction from left to 

right and on a layer by layer basis. The input nodes constitute the first layer and the 
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Figure 2.1. Architectural graph of a multilayer perceptron with two hidden layers. 

layers of the network. The input vector is presented to the input layer and the signals 

are propagated forward to the first hidden layer; the resulting output of the first hidden 

layer are in tum applied to the next hidden layer and so on for the rest of the network . 

. Each hidden or output neuron of a multilayer perceptron is designed to perform two 

computations: 

I. The computation of the net internal activity level produced at the input of neuron j 

which is expressed as the summation of input values multiplied by their 

corresponding weights. 

2. The computation of the activation of neuron j which is computed by passing 

the net internal a2.tivity through a continuously differentiable nonlinear activation 

function. Usually, the sigmoid logistic function is used. 
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error signal e/n) at the output of neuron} at iteration n (i.e., presentation of the nth 

• .u" .... ,.., pattern) is defined by 

(2.1) 

din) and Yin) is the desired and the actual response of neuron} at iteration n 

, the instantaneous value ~(n) of the sum of squared errors over all neurons is 

(2.2) 

where· C includes all the neurons in the output layer of the network. The average 

.- squared error over the total number of patterns N is given by 

1 N 

~av = -I~(n). 
N n=l 

(2.3) 

The objective of the learning process is to adjust the free parameters (i.e., synaptic 

weights and thresholds) of the network so as to minimize ~av' The gradient descent 

method is used to perform the minimization where the weights are updated (adjusted) in 

accordance with the respective errors computed for each pattern to the network. Taking 

the arithmetic average of these independent weight changes over the training set would 

therefore give an estimate of the true change that would result from modifying the 

weights based on minimizing the cost function ~av over the training set. Figure 2.2 

depicts neuron j being fed by a set of function signals produced by neurons in the 

previous layer. 
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Yo= -1 

y{n) -1 
e.(n) 

} 

vin) C/1(.) 
0E~~-~ y/n) 

~. 
Figure 2.2. Signal-flow graph highlighting the details of output neuron j. 

k .. 

~ ... 

J 
if 
~~he net internal actively level v/n) produced at the input of neuron j is 
~i 
!,<.T_ 
; p 

v/n) = I. W ji (n)Yi (n) 
i=O 

(2.4) 

where p is the total number of inputs (excluding the threshold) applied to neuron j and 

wjiCn) denotes the synaptic weight connecting the output of neuron i to the input of 

neuron j at iteration n. The synaptic weight WjO (corresponding to the fixed input 

Yo = -1) equals the threshold or bias 8j applied to neuron j. 

Hence, the function signal Yin) appearing at the output of neuron j at iteration n is 

(2.5) 

where CfJ/.) is the activation function describing the input-output functional relationship 

)f the nonlinearity associated with neuron j. 
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correction L1Wji(n) applied to the synaptic weight Wji(n) is proportional to the 

s gradient d~(n);aWji(n). Employing the chain rule, the gradient can be 

d~(n) _ d~(n) de/n) dYj(n) dvj(n) 

dwj;(n) dej(n) dy/n) dvj(n) dwj;(n) . 
(2.6) 

gradient d~(n);aWji(n) determines the direction of search in weight space for the 

Differentiating both sides of Eq .(2.2) with respect to eJCn), we get 

(2.7) 

and differentiating both sides of Eq. (2.1) with respect to YJCn), we get 

dej(n) 
---=-- =-l. 
dy(n) 

J 

(2.8) 

Differentiating Eq. (2.5) with respect to vJCn), we get 

(2.9) 

Finally, differentiating Eq. (2.4) with respect to Wji(n) yields 

dvj(n) 
-:.. ()=y;(n). 
OWjj n 

(2.10) 

Hence applying Eqs. (2.7) to (2.10) in (2.6) yields 

(2.11) 

According to the delta rule, the correction L1Wji(n) applied to Wji(n) is defined by 
:, 

L1W .. (n) = -17 d~(n) 
Jl dw .. (n) 

. Jl 

(2.12) 

where 17 is the learning rate parameter. 
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Eq. (2.11) in (2.12) yields 

L1wji (n) =ryoj(n)yi(n) 

the local gradient 0(n) is itself defined by 

d~(n) dej(n) dy/n) 

de/n) dy/n) dv/n) 

local gradient points to required changes in synaptic weights. 

(2.13) 

(2.14) 

i": There are two distinct cases associated to the error signal eJCn) at the output of neuron j: 
E:
E~ I Case I. Neuron j is an Output Node. . 

(t- When neuron j is located in the output layer of the network, it would be supplied with a 
~-

t: 
t desired response of its own. Hence, 
r 

(2.15) 

Case II. Neuron j is a Hidden Node. 

When neuron j is located in a hidden layer, there is no specified desired response for 

that neuron. Accordingly, the error signal for a hidden neuron is determined 

recursively in terms of the error signals of all the neurons to which that hidden neuron is 

directly connected. 

Figure 2.3 depicts neuron j as a hidden node of the network. From Eq. (2.14), the local 

gradient 0(n) for hidden neuron j can also be written as 

8 .(n) = _ d~(n) dyj(n) 

J dYj(n) dv/n) 
(2.16) 

= _ d~(n) ql(v.(n)). 
dYj(n) J J 
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Neuron j Neuron k 

Signal-flow graph highlighting the details of output neuron k connected 
to hidden neuron j. 

The partial derivative ag(n) can be calculated as follows. From Fig. 2.3, we see that 
aYj(n) 

neuron k is an output node. (2.17) 

;. Differentiating Eq. (2.17) with respect to the function signal yin), we get 

(2.18) 

U . h . 1 h . d' . aek(n) . E 8' h smg t e cham ru e for t e partIal envatIve , we can rewnte q.(2.1) In t e 
ay/n) 

equivalent form 

(2.19) 

From Fig. 2.3, 

ek (n) = d k (n) - Yk (n) 

neuron k is an output node. (2.20) 

21 



from Fig. 2.3, the net internal activity level for neuron k is given by 

q 

vk(n) = L wk/n)y/n) 
j=O 

(2.21) 

(2.22) 

..... 'r'prp q is the total number of inputs (excluding the threshold) applied to neuron k. 

IUJ~.I..I."'.I."'ULJ_""'U'O Eq. (2.22) with respect to yin) yields 

dVk (n) = w
k

-(n) . 
~ ~j~) J 

(2.23) 

i -
~-

~Thus, using Eqs. (2.21) and (2.23) in (2.19), we get the desired partial derivative: 
~: 

~. 
~--

(2.24) 

Finally, using Eq.(2.24) in (2.16), we get the local gradient 8.i(n) for hidden neuron j, as 

follows: 

D j (n) = CP~ (v /n)) L Dk (n)wkj (n), neuron j is hidden. (2.25) 
k 

Z.1.1 The Two Passes of Computation 

fhe back propagation algorithm consists of two distinct passes of computation, the 

°orward pass and backward pass. In the forward pass the synaptic weights remain 

maltered throughout the network and the function signals are computed on a neuron-by-

leuron basis. The output of neuron j, Yin), is computed as 

(2.26) 
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vin) is the net internal activity level of neuron j defined by 

p 

Vj (n) = I. wji (n)Yi (n) . (2.27) 
1=0 

neuron j is the first hidden layer, then 

Yi (n) = Xi (n) (2.28) 

~"'np'I··,", xi(n) is the ith element of the input vector. On the other hand, if neuron j is in 

output layer, 

(2.29) 

:where oin) is the jth element of the output vector. This output is compared to the 

'desired response din), obtaining the error signal ein) for the jth output neuron. Thus 

the forward phase of computation begins at the first hidden layer by presenting it with 

the input vector, and terminates at the output layer by computing the error signal for 

each neuron of this layer. 

On the other hand, the backward pass, starts at the output layer by passing the error 

signals leftward through the network, layer by layer, and recursively computing the c5 

for each neuron. T he synaptic weights are changed according to the delta rule: 

(2.30) 

=lor a neuron in the output layer, ~(n) is given by 

(2.31) 

:liven the delta values (c5's) for the neurons of the output layer, the delta values for all 

he neurons in the penultimate layer is computed using 

0j(n) =cp~(Vj(n))I.Ok(n)WIJ(n) (2.32) 
k 

nd changes to the weights of all connections feeding into it are made. 
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recursive computation is continued on a layer by layer basis, by propagating the 

to all the synaptic weights . 

. 2 Sigmoidal Nonlinearity 

computing the <5 for each neuron, the derivative of the activation cp(.) is required. 

this function has to be continuous. A continuously differentiable nonlinear 

ation function commonly used in multilayer perceptrons is the sigmoidal 

~nonlinearity given by' 
~ 

1 
=------

1 + exp(-vj(n» 
-oo<v/n)<oo (2.33) 

where v/n) is the net internal activity of neuron j. The range of this nonlinearity lies 

inside the interval O:S; Yj :s; 1. Another type of sigmoidal nonlinearity is the hyperbolic 

tangent, which is antisymmetric with respect to the origin and for which the range lies 

inside the interval - 1 :s; Y j :s; + 1. This form of nonlinearity will be discussed further in 

Chapter 4 to pave the way for the discussion on the employment of an alternative 

activation function in the training of MLPs. 

Differentiating both sides ofEq. (2.33) with respect to v/n), we get 

(2.34) 
exp( -vj(n» 

= ------'----
[1 + exp(-vj(n»]2 . 
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