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FABRIKASI DAN PRESTASI PENCIRIAN SEL SURIA PET/ITO/NANOROD 

ZNO/P3HT:PCBM DAN PET/ITO/P3HT:PCBM  

 

 
 

ABSTRAK 

 

 

Kerja ini memberi tumpuan kepada fabrikasi dan prestasi pencirian sel suria 

hibrid (NANOROD ZnO/P3HT:PCBM) dan sel suria organik (P3HT:PCBM). Bagi 

sel suria hibrid, bahan seperti  regioregular 3 - hexylthiophene - 2 , 5 – diyl (P3HT) 

(bahan penderma), zink oksida (bahan penerima) dan fullerene [6,6] phenyl C61 acid 

butyric methyl ester (PCBM)  (bahan penerima) telah digunakan. Sintesis dengan 

menggunakan kaedah penyinaran gelombang mikro adalah untuk mendapatkan 

nanorod ZnO. Parameter seperti masa dan kuasa penyinaran akan menyebabkan 

pertumbuhan yang berbeza dari segi kepanjangan dan diameter, tetapi untuk substrat 

yang mempunyai/tidak mempunyai lapisan PCBM akan menghasilkan perbezaan 

kecekapan. Gabungan lapisan antara nanorod ZnO/P3HT:PCBM mempunyai 

kecekapan yang paling tinggi iaitu 0.39% (kuasa penyinaran 550W, masa sebanyak 

30 min dan penambahan PCBM) berbanding dengan gabungan lapisan ZnO/P3HT 

dengan kecekapan yang hanya 0.17% (kuasa penyinaran 550W, masa sebanyak 30 

min dan tiada penambahan PCBM). Selepas itu, untuk sel suria organik bahan seperti 

P3HT (bahan penderma), PCBM (bahan penerima) dan Poly(3,4-

ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT:PSS) (lapisan penimbal) 

telah digunakan. Kaedah sintesis pengoksidaan pempolimeran digunakan untuk 

mendapatkan bahan P3HT. parameter seperti suhu, nisbah PCBM dan 

mempunyai/tidak mempunyai lapisan PEDOT:PSS akan menghasilkan perbezaan 

kecekapan. Gabungan lapisan PEDOT:PSS/P3HT:PCM mempunyai kecekapan 
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paling tinggi iaitu 2.44% (nisbah PCBM 1:4, suhu 140
o
C dan penambahan lapisan 

PEDOT:PSS) berbanding dengan gabungan lapisan P3HT:PCBM yang hanya 

mempunyai kecekapan 1.05% (nisbah PCBM 1:4, suhu 140
o
C dan tiada penambahan 

lapisan PEDOT:PSS). Kesimpulan yang boleh dibuat dari kerja ini adalah, sel suria 

organik mempunyai kecekapan yang lebih tinggi berbanding dengan sel suria hibrid.   
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FABRICATION AND PERFORMANCE CHARACTERIZATION 

OF PET/ITO/ZNO NANOROD/P3HT:PCBM AND 

PET/ITO/P3HT:PCBM SOLAR CELL  

 

 

 
 

ABSTRACT 

 

 

This work focus on the fabrication and performance characterization of 

hybrid (ZnO nanorod/P3HT:PCBM) and organic solar cell (P3HT:PCBM). For 

hybrid solar cell, material such as regioregular 3 - hexylthiophene - 2 , 5 – diyl 

(P3HT) (donor material), zinc oxide (ZnO) (acceptor material) and fullerene [ 6,6 ] 

phenyl C61 acid butyric methyl ester (PCBM) (acceptor material) was used. 

Synthesis by microwave irradiation method was to get ZnO nanorod. Parameters 

such as time and irradiation power cause different length and diameter of ZnO 

nanorod growth, but for substrate with/without PCBM layer yield different 

efficiency. The combination layer of ZnO nanorod/P3HT:PCBM have highest 

efficiency of 0.39% (power irradiation 550W, time for 30 mins and with addition of 

PCBM) compared to the combination layer of ZnO/P3HT with efficiency of only 

0.17% (power irradiation 550W, time for 30 mins and without addition of PCBM). 

After that, for organic solar cell material such as P3HT (donor material), PCBM 

(acceptor material) and Poly(3,4-ethylenedioxythiophene) poly (styrenesulfonate) 

(PEDOT:PSS) (buffer layer) was used. Oxidative polymerization synthesis method 

was used to get P3HT material. Parameters such as temperature, ratio of PCBM 

and with/without PEDOT:PSS layer yield different efficiency. The combination 

layer of PEDOT:PSS/P3HT:PCM have highest efficiency of 2.44% (ratio of PCBM 

1:4, temperature 140
o
C and with addition layer of PEDOT:PSS) compared to the 
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combination layer of P3HT:PCBM with efficiency of only 1.05% (ratio of PCBM 

1:4, temperature 140
o
C and without addition layer of PEDOT:PSS). From these 

work, it can be concluded that organic solar cell have higher efficiency compared to 

hybrid solar cell. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1  Background of study 

Energy consumption is a necessity for human need and the demand is 

increasing in the recent decades. However, the energy sources (coal, oil and natural 

gas) are limited which resulted in the search for alternative energy resources such as 

wind power, wave power, geothermal power and solar power as renewable energy 

sources. The most promising energy available today is solar power which can be 

directly converted to electricity.  

 

Nowdays, the highest efficiencies of solar cell using silicon base is 25.6%, by 

Panasonic (Martin et al., 2014). However, this type of solar cell is limited by its high 

power conversion cost (Wohrle & Missner, 1991). To solve this problem, solar cell 

using organic polymer or small organic molecules has been introduced (Tang, 1986). 

The organic polymer material offers several advantages; material is environmental 

friendly which can be fabricated by spin-coating, ink-jet printing and roll-to-roll 

process to reduce the production cost (Saricifti, 2004). These organic polymers are 

flexible and their physical properties can be tuned (Saricifti, 2004). The 

photosynthesis in plant uses molecular system to harvest light and convert it into 

useful chemical energy. This phenomenon inspired the use of organic molecules as 

light absorbing materials, making the organic solar cell potentially cheap with 

sustainable technology processing.  
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This area continues to grow every year. Fig. 1 shows the increasing growth in 

the number of academic publications on Organic Solar Cell (OSC) over the past 25 

years. Several companies worldwide began to commercialize the OSC device in the 

past decade, which demonstrated a successful mass production of OSC device in the 

range of 7-10 %, and it was estimated that OSC will make a significant market 

breakthrough (Martin et al., 2014) when the efficiencies reaches 15 %. The success 

of commercialized organic light-emitting diodes (OLED) showed that the OSC 

technology will also follow the similar path, with the ongoing research every year.  

 

 

Fig. 1: The academic publications on OSC from 1989 through 2011. (Accessed: ISI 

Web of Science). 

 

Nowdays, the research work in this field focused on the conducting polymer 

materials used in solar cell devices. Conducting polymers are conjugated polymers 

with five-membered heterocyclic compounds. These polymers are common materials 

in OSC device which exhibited excellent electrical conductivity. The applications 
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include charging storage devices (batteries, capacitors), sensors, membranes, 

corrosion protective coatings and photovoltaic device.  

 

1.2  Problem statement 

The characteristic of inorganic materials and silicon as substrates in 

fabrication of highly efficient solar sell are impressive but the processing cost is high. 

On the other hand, the usage of organic polymers and flexible substrates involved 

inexpensive process. These materials have their own characteristics such as high 

electrical conductivity of polythiophene, high electron affinity of PCBM and good 

hole transporting layer (HTL) material of PEDOT:PSS. Improvements have been 

done to enhance the efficiency of the organic solar cell. In order to improve the 

charge transportation, PEDOT:PSS were used as buffer layer before the active layer 

coating. For improvement on the interpenetrating network between p type and n type 

materials, bulk heterojunction structures were used instead of the hybrid 

heterojunction or pn junction.  

 

1.3  Objectives 

 The main objective of this work is to produce organic solar cell devices which 

are better than the hybrid solar cell devices. The objectives include: 

 To synthesize and characterize P3HT (organic material) using the oxidative 

polymerization method. 

 To synthesize and characterize ZnO nanorod (inorganic material) using 

microwave irradiation method.  
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 To fabricate and characterize the device of hybrid solar cell (PET/ITO/ZnO 

nanorod/P3HT) at different growth time, different microwave power and 

with/without PCBM. 

 To fabricate and characterize the device of organic solar cell 

(PET/ITO/P3HT:PCBM/Al) with different PCBM ratio, different thermal 

annealing temperature and with/without PEDOT:PSS.  

 Comparison of efficiencies (electrical properties) between hybrid and organic 

solar cell using solar simulator. 

 

1.4  Originality of the research work 

Common traditional solar cell devices used silicon or glass as substrates but 

they are expensive, not flexible and difficult to handle. This research work focused 

on the preparation of solar cell devices using flexible substrates (PET), which are 

lightweight, conformable to non-planar structure with longer lifetime and involved 

cheap processing.  

 

1.5  Thesis Outline 

Chapter 1 consisted of the background study, followed by the problem 

statement encountered is this research field. Few solutions to overcome the problem 

were listed in the research objectives which highlighted the preparation of new 

materials and the study of its efficiency.  

 

Chapter 2 explained the history of solar cell, differentiating between the 

hybrid and organic solar cells, Some of the important aspects such as the working 



5 

 

principle of these solar cells and the type of architecture for both materials 

(PEDOT:PSS, P3HT, PCBM and ZnO) were highlighted.  

 

Chapter 3 discussed about the general principles of the characterization 

instruments which were used and the experimental details for each characterization 

work.  

 

Chapter 4 focused on the results obtained and the discussion which include 

data interpretation and the physical and chemical properties of the materials, ZnO 

nanorod/P3HT. The work focused on the different growth time, different microwave 

power and with/without PCBM solution. 

 

Chapter 5 discussed different material of P3HT:PCBM with different ratio of 

PCBM, different thermal annealing temperature and with/without PEDOT:PSS layer. 

 

Chapter 6 concluded the overall discussion of the study, meeting all the 

mentioned work in the objectives listed earlier in Chapter 1. Some recommended 

work fur future study were also suggested.  
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

2.1  The history of solar cells – from inorganic to organic 

The photovoltaic effect is the basic physical process through which a solar 

cell converts sunlight into electricity. In 1839, Edmund Becquerel, discovered the 

photovoltaic effect while experimenting with an electrolytic cell made up of two 

metal electrodes (Becquerel et al., 1939). Charles Fritts created the first working 

selenium cell in 1883, where he coated the semiconductor material selenium with a 

very thin layer of gold (Borisenko et al., 2008). The resulting cells showed only 1 % 

of the conversion of electrical efficiency, which might be due to the host cost of 

selenium, preventing such cells for energy supply. The development of the solar cell 

technology continued where in 1941, Russell Ohl created the silicon p-n junction 

cells with efficiencies above 5 %, followed by the discovery of the first practical 

solar cell at Bell laboratory in 1954, where Chapin, Fuller and Pearson created a cell 

based on a silicon p-n junction with 6 % power conversion efficiency. Today's best 

silicon solar cells have over 40 % efficient, with the industrial average of over 17 % 

(Chapin et al., 1954). 

 

The existing photovoltaic nowadays still followed the first generation Si-base 

cell, although much improvement has been made in terms of efficiency and stability 

of the devices. The usage of tandem cell structure has been introduced to capture as 

many incident photons as possible, which led to the increased efficiency up to 40.8 % 

https://en.wikipedia.org/wiki/Electrical_efficiency
https://en.wikipedia.org/wiki/Russell_Ohl
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(Geisz et al., 2008). Solar cells using a very complex structure based on crystalline Si 

and/or other inorganic semiconductor with higher efficiencies of 41.7 was developed 

at the Fraunhofer Institute in Freiburg (Fraunhofer ISE., 2009). The solar cell 

industry is still dominated by the first generation solar cell based on Si wafer, which 

covers about 90 % of the world market (Tao et al., 2008). However, the efficiency of 

these commercialized Si based solar cells is between 14-19 %, which is much lower 

than the one previously reported (Schultz et al., 2007). Increased cost of production 

is needed to improve the efficiencies of the solar cells.  

 

Solar cell efficiency can be achieved using the conventional inorganic 

photovoltaic, but such technology to be used as household energy source involves 

very high cost, approximately five times higher than the electricity obtained from 

fossil fuels (Tao et al., 2008). This technology is very expensive because it requires 

high cost of materials and fabrication processes. However, the cost of manufacturing 

solar cells can be reduced by decreasing the amount of Si (thinner Si wafer), or by 

replacing with other suitable materials such as cadmium telluride (CdTe) or copper 

indium gallium selenide (CIGS) (Tao et al., 2008). These types of solar cells belong 

to the second generation of photovoltaic, where fabrication and production costs are 

lower than the first generation devices but with efficiencies in the range of 9-12 % 

(Hegedus et al., 2006), or around 30 % with tandem cell architecture device (Dimroth 

et al., 2006). 

 

In the past 30 years, the third generation solar cell has been increasingly 

improved. This type of devices, which include dye synthesized solar cell (DSSC), 

organic small molecules, polymeric solar cells and nanocrystal solar cells have been 
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widely developed. The third generation solar cells differ from the first and second 

generations in terms of the traditional p-n junction to separate the photogenerated 

charge carriers. Solar cells today are used in all sorts of devices, from calculators to 

rooftop solar panels. Improved designs and advanced materials have made it possible 

to build solar cells that reach over 40 % efficiency. Research and development 

continues in this area to bring down the cost and to raise the percentage of efficiency 

so that solar power will be more competitive with fossil fuels.  

 

OSC have been developed for more than three decades but only in the last 

decade the research was extensively explored (Chamberlain et al., 1983).  

Introduction of new materials and sophisticated device structures created a rapid 

increased in power conversion efficiencies which has attracted scientific and 

economic interest. It was reported that the highest efficiency OSC has reached 10.7 

% (Martin et al., 2014) but it still cannot compete with the inorganic photovoltaic 

device. The huge advantages of OSC device compared to the Si-base cells are light 

weight, flexible, variety of fabrication process, low cost material for mass production 

and capable to change the energy band gaps of materials via molecular design, 

synthesis, and processing (Sun et al., 2005). 

 

One of the strategies to increase the efficiency of the OSC device is to use the 

hybrid and bulk heterojunction architecture. The limitations when using hybrid and 

bulk structure include poor charge carrier mobility and narrow overlapping of the 

absorption spectra of the organics with the solar spectrum (Ameri et al., 2009). 

Although organic solar cell has improved, its lifetime performance and degradation 

of OSC device are still at the early stage (Hauch et al., 2008).  
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2.2  Comparison between generations of solar cell 

 1
st 

and 2
nd

 generation solar cells : 

 Base: silicon or glass; Active layer: CdSe, GaN, ZnO and etc. 

 Disadvantage: high cost process leads to expensive materials and not flexible.  

 3
rd

 generation solar cells : 

 Base: mostly use glass; Active layer: organic materials 

 Disadvantage: even though it involves low cost process but still it is not flexible. 

 

2.3  Basic working principles of organic photovoltaic 

Organic materials can transport electric current and absorb light in the 

ultraviolet (UV) visible part of the solar spectrum due to their delocalized π 

conjugation. The charge mobility of organic materials is lower than inorganic 

material. However, this can be balanced with the strong absorption coefficients 

(typically ≥ 10
5
 cm

-1
), which allow high absorption in ≤ 100 nm thick devices. 

Furthermore, the light absorption (primary photoexcitation) in inorganic materials 

generates free charges which are separated at the junction while in organic materials, 

the photoexcitation in the active layer are electron-hole pairs called excitons. The 

excitons are neutral excited states, with typical binding energy from 0.05 to > 1 eV. 

The exciton diffusion length for organic solar cell device is usually in the range of 5 

to 15 nm (Stubinger et al., 2001).  

 

The process of converting light into electricity by means of organic solar cells 

takes place through intermediate charge separated states called geminates pairs, 

which are fundamental intermediates in the photoconversion process. Strong electric 

fields are applied in order to be separated into free charge carriers (Hoppe et al., 
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2004). The process for organic solar cell device is described in the following steps 

below:  

 

Step 1: Absorption of light and generation of excitons 

When the electron donor material is illuminated, electron will occupy the HOMO 

orbital and will be absorbed. The electron will be excitated into the LUMO orbital of 

the donor material and created a strong bound electron-hole pair called exciton. 

 

Step 2: Diffusion of excitons to an active interface 

In order to generate a current, the exciton has to reach the interface of the electron 

donor and acceptor materials during its lifetime. A significant difference between 

organic and inorganic solar cells lies in the structure of the cell. Organic materials are 

amorphous and disordered, which makes the charge transport much more difficult 

compared to the crystalline cells structure. Exciton with high diffusion coefficient 

have a longer lifetime and can travel longer distance before the exciton decayed to 

the ground state, which produced heat, vibration or released photons from the 

absorption. The balance between the exciton diffusion lengths, film thickness and 

exciton lifetime were considered when fabricating an organic solar cell. A promising 

cell design is the bulk heterojunction solar cell architecture.   

 

Step 3: Dissociation of the excitons with generation of charge 

Since the exciton binding energies are relatively high (0.05 > 1 eV), the build in 

electric fields of the orders of 106-107 V/m are not high enough to separate the 

exciton directly, but the separation of the exciton into charge carriers can be achieved 

at the interface of the electron donor/acceptor material by the sharp drop of potential 
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(Hoppe et al., 2004). Fig. 2.1 shows the process of the exciton at the interface of the 

electron donor (D) and electron acceptor (A) materials. The ground state of the two 

materials is the lowest energy state. It is assumed that the exciton is produced in the 

donor component, labeled as D* (excited state in the donor). When the exciton 

reaches the interface, with the state and energy correspond to the exciton energy 

(D*), the exciton will transfer its electron to the acceptor material and the hole 

remains on the polymer chains from the donor material. This creates the charge 

transfer state (D
+
A) in which the electron (negative charge) and a hole (positive 

charge) will move away from each other, resulting in a charge separated state. To 

produce an electric current, a full charge separation of the electron and hole has to 

occur. One of the main reasons for low cell efficiency is the recombination of 

electron and hole (KCR) in the charge transfer state (CT state), resulting in an 

efficiency loss. To maximize the efficiency, the rates of charge transfer (KCT) and 

charge separation (KCS) have to be increased. Furthermore the rate of charge 

recombination (KCR) has to be reduced (Hoppe et al., 2004). 

 

 

 

Fig. 2.1: Dissociation of the excitons with generation of charge (Hoppe et al., 2004). 
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Step 4:  Charge transport and charge collection 

It usually takes a strong electric field to separate an exciton into free charge carriers 

because of the high exciton binding energy. After the separation of the electron and 

hole, electric field created will push the separated free charge carriers towards the 

electrode. The electron will be drifting towards the cathode and the hole will drift to 

the anode. The charge carrier mobility in organic semiconductor is lower than 

inorganic semiconductor. This has a large effect on the efficiency and design of the 

organic solar cells. If the organic material in the solar cell is more ordered, the 

mobility of the charge carriers will increased, resulting in faster electron and hole 

separation because they can move very fast, to be away from each other. The charge 

carriers are collected at the electrodes (Fig 2.2) and if the electrical circuit is 

connected to the electrodes an electrical current will flow through (Hoppe et al., 

2004). 

 

 

Fig. 2.2: Working principle of organic solar cell (Hoppe et al., 2004). 
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2.4  Bulk heterojunction and hybrid (ordered) heterojunction solar cell 

architectures. 

The difference between organic and hybrid heterojunction device lies in the 

exciton dissociation process, where this process occurs at different location in the 

active layer. In this section, the most investigated device structure will be described, 

which are bulk heterojunction and hybrid (ordered) architectures. 

 

2.4.1  Bulk heterojunction  

In the bilayer heterojunction, donor and acceptor are completely separated 

into p-type and n-type layers but in the bulk heterojunction architecture both p-type 

and n-type layers are mixed together to form an interpenetrating network, as shown 

in Fig. 2.3. As a result, the active surface area of the interface increased and the 

excitons can dissociate whenever they are created within the bulk (Yu et al., 1995). 

Two-dimensional interface of the bilayer approach is exchanged by a three-

dimensional interpenetrating network. 

 

 

Fig. 2.3:  Bulk heterojunction schematic. 

 

In 1995, the bulk heterojunction solar cell architecture was first reported, with 

efficiency below 1 %. Later, the researcher interest focused on the bulk 
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heterojunction architecture type, whereby the number of publications in this field 

increased. The highest efficiency reported for the bulk heterojunction type was 10.7 

% (Martin et al., 2014). The huge interest on the bulk heterojunction solar cells arose 

from a reasonably high efficiency, cheap and easy fabrication technology. In fact, it 

can be prepared by solution processing technique, such as spin coating, screen 

printing, inkjet printing and spray coating (Ishikawa et al., 2004). However, even if 

the preparation of bulk heterojunction is rather simple, mechanism and the operation 

principles are complex and not completely clarified yet.  

 

2.4.2  Ordered heterojunction (Hybrid) 

Most of the bulk heterojunction solar cells were made by mixed 

semiconductor materials, such as polymer-polymer, polymer-fullerene derivative or 

polymer-nanocrystal to make blends. Although this type of architecture device is 

easy to fabricate by using simple process to manufacture the solar cell, there were 

problems encountered within the disordered nanostructure. In some cases, two 

semiconductor phases were separated with huge length scale, making the excitons 

not able to make it to an interface to be split by the electron transfer before it 

decayed. In other cases, one of the phase contained dead ends or islands that 

prevented the charge carriers from reaching the electrodes. 

 

Ordered bulk heterostructure solar cells, shown in Fig. 2.4, are harder to 

fabricate compared to the disordered blends. The dimensions of both phases can be 

controlled to make sure that every spot in the film is within an exciton diffusion 

length of the interface, between the two semiconductor layers. Using hybrid 

heterojunction structure gave the electrons and holes the ordered pathways to the 
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electrodes, after excitons are splitted by the electron transfer. This type of structure 

allows the carrier to escape from devices as quickly as possible, which then 

minimized the recombination and showed the possibility to align the conjugated 

polymer chains and increased the mobility of the charge carrier (Kevin et al., 2005). 

Nevertheless, hybrid structure is easier to model and understand. However, this type 

of device structure has problem regarding the diameter and length of the 

nanostructure. If the length and diameter are not optimized correctly, the solution 

will not infiltrate well between the nanostructures and the efficiency will 

immediately decrease. 

 

 

Fig. 2.4 Schematic diagram of ordered heterojunction. 

 

 The first hybrid heterojunction containing CdS or CdSe nanoparticle and 

infiltrated with MEH-PPV was reported by Greenham group (Grennham et al., 

1996). One of the most studied material systems among the nanocrystal-polymer 

blends is zinc oxide (ZnO), in combination with MDMO-PPV or P3HT. Beek (2004) 

presented the first polymer solar cells containing ZnO nanoparticles with power 

conversion efficiencies of 1.67 % (Beek et al. 2004).  
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2.5  Poly(3-hexylthiophene) (P3HT) 

Polythiophene types are the most common conducting polymers used in 

organic solar cell applications with intrinsic conductivity arose from the extended 

and delocalized π conjugation (Chandrasekhar, 1999). Conducting polymers usually 

contain simple heteroatoms, such as N and S (in addition to the usual C and H). The 

conductivity was achieved by chemical or electrochemical oxidations or reactions, or 

by introduction of dopants, such as the anionic or cationic species. The polymer 

backbones need to be oxidized or reduced to introduce the charge carriers for 

conductivity. Conjugated polymers were charged as a consequence of a photoinduced 

electron transfer reaction. Poly(3-hexylthiophene), P3HT, as shown in Fig. 2.5, is an 

electron donor material, because of its excellent charge transport properties. 

Moreover, it absorbed in a wide range of visible region, between 400 and 650 nm 

(Vanlaeke et al., 2006), with the absorption edge around 650 nm, close to the sun’s 

maximum photon flux (650-700 nm). There are five different methods to synthesize 

P3HT which are polymerization of thiophene monomers with FeCl3 (Pomerantz et 

al., 1991), Yamamoto polymerization (Yamamoto et al., 1992), McCullough method 

(McCullough et al., 1993), Rieke-Zinc (Zn*)-Mediated polymerization (Chen et al., 

1995) and Rieke-Nickel-Catalyzed Polymerization (Pomerantz et al., 1999). 

 

 

Fig. 2.5: Structure of poly(3-hexylthiophene), P3HT (Pomerantz et al., 1991). 
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2.6  Electron-acceptor materials 

2.6.1  Methanofullerene Phenyl-C61-Butryic-Acid-Methyl-Ester (PCBM) 

During these past few years, fullerene organic acceptor was widely used due 

to its high efficiency solar cell. Fullerene was first discovered in 1985 by Kroto, Curl 

and Smelly (Kroto et al., 1985) who received the Nobel Prize in Chemistry in 1996. 

Fullerenes can be chemically modified to improve the solubility of the solution in 

organic solar cell. Soluble fullerene derivatives are known as some of the best n-type 

semiconductors. PCBM, one of the best processable n-type semiconductor which can 

be blended with p-type conjugated polymer to make the photovoltaic cells and thin 

film organic field effect transistor (OFETs). Methanofullerene Phenyl-C61-Butryic-

Acid-Methyl-Ester (PCBM) substituted in C60 was first synthesized by Wuld group 

(Wuld, 1995). The chemical structure of fullerene is shown in Fig. 2.6. This material 

has high electron affinity, good conductivity and large band gap of ~2.3 eV. PCBM 

is highly soluble in chlorobenzene, toluene, chloroform and other organic solvents, 

making it suitable for solution-based processing methods such as spin coating. 

PCBM has the energy levels of -6.1 eV for the HOMO and -3.8 eV for the LUMO 

(Meijer et al., 2003). 

 

 

Fig. 2.6: Structure of PCBM (Kroto et al., 1985). 
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2.6.2  Zinc Oxide (ZnO) nanorod 

One-dimensional (1D) nanoscale materials such as nanowires, nanotubes and 

nanorods with excellent properties and functionalities, have been used as building 

blocks of nanoscale electronic and optoelectronic devices (Morales et al., 1998). 

Nowadays, zinc oxide (ZnO) is the most nanoscale material which has been used 

with a wide band gap of n-type semiconductor (3.37 eV). It has large exciton binding 

energy of 60 meV at room temperature and also absorbance in the UV range. In 

addition, ZnO has strong piezoelectric and pyroelectric properties with high electron 

affinity, allowing it to match with the LUMO of almost all organic semiconductor 

materials (Su et al., 2005). Due to these properties, ZnO have been used in many 

applications, such as gas sensors, transparent electrodes, pH sensors, biosensors, 

acoustic wave devices, UV-photodiodes and solar cell (Wang, 2004). Over the years, 

extensive investigations have focused on the synthesis of nano and 

microarchitectures using different methods, such as hydrothermal, sol-gel, 

electrochemical deposition, vapor-phase process and microwave.  

 

2.7  Buffer layer 

2.7.1  PEDOT:PSS 

Buffer layers between back contact and active layer have been used because 

they have specific blocking and/or transport properties. P-type buffer layer is the 

interface between indium tin oxide (ITO) and thin layer of poly(ethylene 

dioxythiophene), doped with polystyrene sulfonic acid (PEDOT:PSS). PEDOT:PSS  

layer has been widely used in photovoltaic because it is able to improve the charge 

transportation. PEDOT:PSS (Fig. 2.7) is a good hole transporting layer (HTL) 

material, when spin coated on ITO, it smoothes its surface and enhances the adhesion 
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of the organics onto ITO. PEDOT:PSS is easily degraded under UV illumination. 

Moreover, due to the highly hygroscopic nature of PEDOT:PSS (Huang et al., 2005), 

it gives water to the organic film. Thermal annealing is important to make sure that 

the device is stable before coating the active layer. The conductivity of PEDOT:PSS 

slowly reduces without thermal treatment (Huang et al., 2005).  

 

 

Fig. 2.7: The chemical structure of PEDOT:PSS (Nardes et al., 2007). 

 

 PEDOT:PSS has excellent properties as transparent electrode material in 

organic optoelectronic devices. It has been used as buffer layer and back contact 

(anode) in photovoltaic devices (Nardes et al., 2007). The ratio of PEDOT:PSS 

increases with the increasing conductivity. PEDOT:PSS is commercially sold by 

Heraeus under the trade name Clevios. The formulation of Clevios PH1000 has a 

ratio of 1:2.5 by weight with conductivity of 1000 S cm
−1

.  

 

 

 

 



20 

 

CHAPTER 3 

 

 

MATERIALS AND METHODOLOGY 

 

3.1  Materials 

Table 3.1 represents the materials used for organic and hybrid solar cell 

fabrication. The materials are as listed in Table 3.1 

 

Table 3.1: Materials for organic and hybrid solar cell fabrication 

No Material 

1 3-Hexylthiophene ≥99% (3HT) 

2 Anhydrous Iron (III) Chloride (FeCl3) 

3 Hydrocloric acid (HCl) 

4 Chloroform (CHCl3) 

5 Methanol (CH3OH) 

6 Zinc nitrate hexahydrate ZnO(NO3)2 

7 Zinc acetate dehydrate [Zn(CH3COO)2.2H2O] 

8 Sodium hydroxide (NaOH) 

9 Hexamethylenetetramine (HMT) 

10 [6,6]-Phenyl C61 Butyric Acid Methyl Ester >99% (PCBM) 

11 Poly (3,4-ethylenedioxylthiophene) Polystyrene Sulfonate (PEDOT:PSS) 

 

3.2  Instrument and characterization 

Table 3.2 shows the summary of instruments used for fabrication and 

characterization of the materials.   
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Table 3.2: Characterization instruments 

No Instrument Model Function/Characterization 

1 Spin Coater SCS G3P-8 Coat solution on substrate 

2 Microwave 

Panasonic 

NN-GD5705 

Synthesis ZnO nanorod 

3 

Fourier Transfer Infrared 

(FTIR) 

Perkin Elmer 

Spectrum GX 

Determine functional groups 

in the structure 

4 

Nuclear Magnetic Resonance 

Spectroscopy (NMR) 

Bruker Avance 

300 MHz 

Confirm the chemical 

structure 

5 

Ultraviolet-visible 

spectrophotometer 

(UV-VIS) 

Cary 5000 

Optical properties 

6 

Field Emission Scanning 

Electron Microscope 

(FESEM) 

FEINovaNano

SEM 450 

Morphology, size and 

thickness 

7 

X-Ray Diffraction 

(XRD) 

PANalytical 

X’Pert Pro 

MRD PW3040 

Crystallinity, grain size and 

orientation 

8 Solar simulator NI PXIE-1073 Electrical properties 

 

3.2.1  Nuclear Magnetic Resonance (NMR) Spectroscopy  

 NMR spectroscopy is a technique used to determine the molecular structure of 

a compound for atomic nuclei 
1
H and 

13
C. The NMR (

1
H and 

13
C) spectra were 

obtained using a Bruker 500 MHz Ultrashield
TM 

spectrometer. 20 mg sample is 

dissolved in deuterated solvent in an NMR tube. The interpretations of the NMR 

spectra were recorded by chemical shifts in ppm. 
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Fig. 3.1: 300 MHz and 500 MHz NMR instruments. 

 

3.2.2  Fourier Transfer Infrared (FTIR)  

 FT-IR (Fig. 3.2) is a technique used to determine the functional groups in a 

sample. The absorption band is the characteristic of the chemical bond as can be seen 

in the spectra. Samples are scanned at range of 700 to 4000 cm
-1

. All spectra were 

obtained using Perkin Elmer 2000 FTIR. 

 

 

Fig. 3.2: FT-IR instrument. 
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3.2.3  Ultraviolet-visible (UV-VIS) spectrophotometer 

UV-VIS spectrophotometer (Fig. 3.3) is used to analyze materials in the 

ultraviolet-visible region. Infrared spectroscopy depends on vibration motions, but 

UV-VIS spectroscopy is based on electronic transitions. From UV-VIS spectroscopy, 

wavelength and absorbance of material can be determined. To determine absorbance 

of material Beer’s Law is being used: 

 

 
 (3.1) 

Where A is absorbance, ε is molar extinction coefficient, b is path length and c is 

concentration. Energy band gap of a material can be determined by using equation: 

 
 

(3.2) 

Where E is energy,  is Planack’s constant, c is speed of light and λ is wavelength.  

 

 

Fig. 3.3: UV-Vis spectrophotometer. 

 

 

 

 



24 

 

3.2.4  Field Emission Scanning Electron Microscope (FESEM) 

FESEM (Fig. 3.4) is a microscope that works with electron, liberated by field 

emission source (particle with negative charge) instead of light. FESEM is used to 

analyze the morphology, size and thickness of devices.   

 

 

Fig. 3.4: FESEM microscope. 

 

3.2.5  X-Ray Diffraction (XRD) 

XRD (Fig. 3.5) is used to analyze crystalline materials to give data of 

crystalline phase, degree of crystallinity, amount of amorphous content and 

orientation of crystallites. XRD instrument is using Bragg’s diffraction principle 

which is defined by: 

  (3.3) 

Where  is an integer, λ is wavelength, d is the inter-planar spacing in the crystal 

lattice, θ is the angle between the sample surface and incident beam and ∆ represent 

the path difference. 
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