
A GRID META-SCHEDULER USING COMMUNITY SCHEDULER
FRAMEWORK (CSF) WITH DIFFERENT PLUG-IN POLICIES

PERFORMANCE EVALUATION

TAN ZHEN LING

Thesis submitted in partial fulfillment of the requirements
for the degree of

Master of Science

JUNE 2008

DECLARATION

This dissertation is the result of my own work except where specifically indicated in

the text. I am aware that the degree awarded will be forfeited in the event of

plagiarism.

Signature: .. Pi-... : ... Date: 2nd July 2008

Name: (Tan Zhen Ling)

11

ACKNOWLEDGEMENTS

I would like to take this opportunity to convey my sincere gratitude to my

supervisor, Dr. Chan Huah Yong. He has given this thesis his utmost attention and

provided many constructive and invaluable suggestions to my research work.

1'd like to convey my heartfelt appreciation to School of Computer Science for

providing a conducive and environment during the course of my research.

To my course mates in Grid Computing Lab, especially Imran, Ahmed, Adel and

Ali, I'd like to express my thanks for them for their advice and friendship. Last but

not least, I'd like to thank my family and friends for their encouragement and

support.

111

TABLE OF CONTENTS
Page

DECLARATION ii
ACKNOWLEDGEMENTS.. ... III

TABLE OF CONTENTS ... '" IV

LIST OF TABLES... vi
LIST OF FIGURES... ... Vll

ABSTRAK .. IX

ABSTRACT .. '" Xl

CHAPTER 1 - INTRODUCTION
1.1 Overview of Grid ... 1
1.2 Scheduler in Grid ... 2
1.3 Problem Statement ... 3
1.4 Scope and Objective .. 4
1.5 Contribution ... 5
1.6 Dissertation Outline ... 6

CHAPTER 2 - LITERATURE REVIEW
2.1 Overview .. 8
2.2 Grid Computing ... 8
2.2 Grid Resource Management System (GRMS) .. 10

2.2.1 Grid Meta-Scheduler VS. Grid Local Scheduler. .. 10
2.2.2 Grid meta-scheduler ... 12

2.2.2(a) Deployment Considerations .. 15
2.2.2(b) Scheduler Dependencies ... 16

2.2.3 Local Resource Manager ... 17
2.3 Community Scheduler Framework (CSF) ... 20

2.3.1 Queuing Service ... 22
2.3.2 Job Service ... 23
2.3.3 Reservation Service ... 24
2.3.4 RMAdapter .. 25

2.4 Globus Toolkit ... 25
2.4.1 GridFTP ... 26
2.4.2 RSL .. 27
2.4.3 GRAM ... 29
2.4.4 Grid Information Service (GIS) ... 30

2.5 Plug-in ... 31
2.6 Grid Scheduling Policy .. 32

2.6.1 Resource Selection Policy in Grid Scheduling .. 32
2.6.1(a) Resource Selection Based on Randomization 33
2.6.l(b) Resource Selection Based on Round-robin Manner 33
2.6.1(c) Resource Selection Based on CPU Utilization 34

IV

2.7 Discussion .. 35

CHAPTER 3 - METHODOLOGY
3.1 Overview .. 37
3.2 Flow of Grid Scheduling ... 38
3.3 CSF Scheduling Plug-in .. 40
3.5 Job Queue and Resource Selection Policy ... 42

3.5.1 First-come-first-serve (FCFS) Queue .. 42
3.5.2 Resource Selection based on Round-robin manner 44
3.5.3 Resource Selection based on the Highest CPU Idle Percentage 45
3.5.4 Random Selection .. 47

3.6 Evaluation Method ... 49
3.6.1 CPU Utilization .. 49
3.6.2 Completion Time ... 50

CHAPTER 4 - IMPLEMENTATION
4.1 Overview .. 51
4.2 CSF Scheduling Plug-in API ... 51
4.3 Inter~~ce Method of CSF Scheduling Plug-in ... 52

" .

CHAPTER 5 - TESTING, RESULTS AND DISCUSSION
5.1 Overview .. 53
5.2 T~st-Bed Setup ... 53
5.3 Testing Scenario ... 56

5.3.1 CPU Availability .. 56
5.3.2 Scheduling Time .. 61

5.4 <~ualitative Discussion ... 63
5.5 ~valuation Discussion , .. 64

CHAPTER 6 - CONCLUSION AND FUTURE WORK
6.1 Overview .. 65
6.2 Summary of Work Done .. 65
6.3 Summary of Contribution .. 66
6.4 Objective Achieved .. 67
6.5 .~;~F:iitture Work ... 68

v

LIST OF TABLES

Page

Table 2.1 Current Implemented Grid Meta-scheduler 13

Table 2.2 Licensing and support 15

Table 2.3 Supported local resource manager 16

Table 2.4 Existent scheduling plug-in in CSF 23

Table 2.5 Advantages and disadvantages of different resource 35
selection policies

Table 4.1 CSF interface class for scheduler plug-in 52

Table 5.1 Additional software required on CSF server and each node 55

vi

Vll

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

CPU infonnation of cluster grid007

CPU utilization with different jobs scheduling policies

Round-robin job scheduling

Best CPU selection job scheduling

Number of jobs completed on each of the cluster by using
Round-robin, the best CPU selection and Random selection
policies

Comparison for jobs submission time with different
scheduling plug-in policies

V111

57

57

58

59

60

62

PENILAIAN PRESTASI PENJADUALAN META GRID YANG MENGGUNA
COMMUNITY SCHEDULER FRAMEWORK (CSF) DENGAN PELBAGAI

POLISI PLUG-IN

ABSTRAK

Community Scheduler Framework (CSF) adalah salah satu penjadualan meta

grid semasa yang membolehkan penggunaan Globus. Penjadualan meta

menjadualkan tugas bagi pihak penggunanya. Tujuan utama CSF adalah untuk

menyediakan API yang mudah bagi penggunanya menentukan polisi masing-masing

yang digunakan dalam servis giliran. Ia berkemampuan dengan menawarkan

mekanisma penjadualan yang mudah dan membolehkan penambahan penjadulan

plug-ins.

Adalah didapati bahawa CSF semasa mengandungi hanya satu penjadualan

polisi plug-in yang berfungsi dengan cara round-robin semasa melakukan

penjadualan tugas. Tesis ini menfokuskan dalam penilaian prestasi penjadualan

polisi-polisi plug-in yang dapat bersatu dengan CSF. Oleh sedemikian, tesis ini

mencadangkan dua jenis penjadualan polisi (pemilihan sumber yang berdasarkan

purata peratus CPU tidak berguna yang tertinggi dan pemilihan sumber secara rawak)

yang dapat bersatu dengan CSF untuk menjalankan penjadualan tugas.

Keputusan yang didapati daripada eksperimen membuktikan bahawa

penambahan polisi penjadualan membolehkan CSF untuk menjalankan penjadualan

genting dengan pemilihan sumber yang berdasarkan purata peratus CPU tidak

berguna yang tertinggi, iaitu dimana peratus ketidakgunaan CPU adalah 70% lebih

1X

besar yang terdapat daripada kutipan sumber. Masa keseluruhan yang digunakan

untuk melengkapkan penjadualan untuk tugas berjumlah 40 yang bersaiz sarna

dengan menggunakan penjadualan cara round-robin adalah sebanyak 750 saat.

Sebanyak 490 saat diperlukan dengan menggunakan pemilihan sumber yang

berdasarkan purata peratus CPU tidak berguna yang tertinggi. Pemilihan sumber

secara rawak pula memerlukan masa sebanyak 390 saat untuk melengkapkan

penjadualan tugas-tugas tersebut. Masa yang diambil dengan menggunakan

pemilihan sumber yang berdasarkan purata peratus CPU tidak berguna yang tertinggi

adalah tinggi berbanding dengan pemilihan sumber secara rawak kerana aplikasi

tambahan telah dipasang untuk mendapatkan infonnasi yang terperinci daripada

kelompok yang tertentu supaya tugas yang setemsnya boleh dijadualkan. Untuk

pemilihan sumber secara rawak, penjadual meta membahagikan sumber-sumber

kepada tugas-tugas tanpa keperluan aplikasi tambahan.

x

A GRID META-SCHEDULER USING COMMUNITY SCHEDULER
FRAMEWORK (CSF) WITH DIFFERENT PLUG-IN POLICIES

PERFORMANCE EVALUATION

ABSTRACT

Community Scheduler Framework (CSF) is one of the current implemented grid

meta-scheduler, which is Globus enable. The meta-scheduler schedules jobs on

behalf of its users. The main objective of CSF is to provide simple API for writing

user-defined policies for the queuing service. It has the ability to offer simple

scheduling mechanisms and is extensible via scheduling plug-ins.

It is found that the current implemented CSF consists of only one scheduling

plug-in policy where the submitted jobs are scheduled in round-robin manner. This

thesis focuses on the perfonnance evaluation of different scheduling plug-in policies

that could be incorporated with CSF. This thesis proposed two scheduling plug-in

policies (the highest average percentage of idle CPU selection and randomization

resource selection) that incorporate with CSF for job scheduling.

The experimental results prove that by adding the highest average percentage of

idle CPU selection plug-in, CSF is able to do the critical scheduling to the best

resource with the highest percentage of CPU idles, which the percentage of CPU

idles is greater than 70% in the resource pool. The completion time for the allocation

of 40 jobs by using round-robin scheduling is about 750 seconds. Where as, for the

best CPU selection is 490 seconds. It took about 390 seconds for random resource

selection to complete the execution of 40 jobs. The time taken in CPU selection is

xi

higher than random resource selection because a small application is installed on

each of the master host in order to get the detail information of the particular cluster

~; t in which the next job will be submitted to. For the random resource selection, the
~
F . meta-scheduler randomly assigned resources to jobs where no extra step is needed.

xii

CHAPTER 1- INTRODUCITON

1.1 Overview of Grid

In distributed systems, machines have the ability to communicate with each

other where data and resources are shared among all. Grid can be defined as a

geographically distributed computation platform. Grid computing made up of a set of

heterogeneous machines that contains different types of hardware, where users can

access via a single interface. Dynamic grid allows scalability and can be expand at

anytime. Grid is autonomous as it can potentially access the resources of different

organizations located in different geographical locations.

Grid computing is an advancement of distributed computing. Unlike distributed

computing, grid computing focuses on large-scale resource sharing, offers

applications innovation, and sometimes focuses on improvement of system

performance to reach optimization. Grid enforces different computers to work

together as one. With this, it is possible that one's can reach out and use the

computational or storage resources on machines other than their own. By doing so,

users can share their own resources with others, and hence, the utilization of unused

resources will be increased.

Grid computing is an overlapping of both distributed and parallel computing.

Grid computing is said to be distributed because of its heterogeneous nature. While

1

distributing, grid can work in parallel where few resources working together on one

task. The key concept of grid computing (Talia (2002)) is to provide resource access

and operational services across widely distributed virtual organizations.

Virtual organizations are highly dependent on grid. They may share some

common requirements but may vary in size and structure, which made up of the

combination of servers, mainframe computers, client hosts and so on. The members

of any virtual organization negotiate on resource sharing based on the rules and

conditions defined, in order to share the resources from the automatically constructed

resource pool (Joseph and Craig (2004)).

1.2 Scheduler in Grid

In the early grid, the administrators need to manually configure and submit the

jobs. The administrators required to have the knowledge and direct control of all the

jobs on the grid as they will execute jobs manually based on their scheduling policy.

When the size ofthe grid environment increasing, the number of job increase as well.

Due to this, more resources is needed. Effective scheduling is impOliant in

optimizing resource usage.

Nowadays, jobs scheduling in a cluster is done by using the scheduler or local

scheduler. A scheduler is responsible to carry out the scheduling tasks. A user does

not need to manually coordinate the access to the resources as the scheduler has the

2

function of automatically select and schedule resource allocation for jobs.

Tasks scheduling (Subramani et. al. (2002)) become more complex while it is in

a meta-computing environment since many clusters with different local scheduling

policies are involved. Grid schedulers as in (Bart et. al. (May 2003)) use

measurement information about the current utilization of machines to determine

which ones are not busy before submitting a job and are usually react to the

immediate grid load.

Grid meta-scheduler is always dynamic, heterogeneous and diverse, and has to

deal with local issues. It is responsible on monitors the progress of scheduled jobs

managing the overall work-flow. The scheduler will automatically re-allocate the

jobs if the jobs are lost due to system or network outages. However, if a job appears

to be in an infinite loop and reaches a maximum timeout, then such jobs should be

dropped and should not be re-scheduled.

1.3 Problem Statement

Community Scheduler Framework (CSF) is one of the current implemented grid

meta-scheduler, which is Globus enable. CSF can submit a job, make an advance

reservation for resources, query the status of a particular job, retrieve information

regarding the current schedule, and remove a job which the meta-scheduler has

submitted. The meta-scheduler schedules jobs on behalf of its users.

3

But, it is found that the current implemented CSF consists of only one

scheduling plug-in policy that incorporate with CSF where the submitted jobs are

scheduled in round-robin manner. Due to the limited number of scheduling plug-in

policy provided by CSF, it needs more scheduling policies in order to improve the

robustness of CSF as a grid meta-scheduler.

1.4 Scope and Objective

The scope of this dissertation is to analyze and evaluate the performance of grid

meta-scheduler using Community Scheduler Framework (CSF) with different

scheduling plug-in policies.

The main objective is to enable CSF to perform critical jobs scheduling. In order

to increase the utilization of idle resources in the resource pool, a scheduling plug-in

policy based on the best resource selection will be proposed. On the other hand, a

random selection policy will appear to be the second scheduling plug-in policy in

resource selection for jobs allocation.

4

1.5 Contribution

After in-depth review of CSF related work, it shows that CSF is only provides

round-robin scheduling policy in allocating jobs to resources.

In this dissertation, we propose two different scheduling plug-in policies that

incorporate with CSF by using the default round-robin scheduling plug-in policy as

the benchmark. The first proposed scheduling plug-in policy incorporate with CSF is

a resource selection scheduling plug-in policy base on the best CPU selection. The

second proposed CSF scheduling plug-in policy is randomized resource selection.

Secondly, we evaluate and analyze the perfonnance of CSF with the scheduling

plug-in policy of round-robin manner, the best CPU selection policy and

randomization selection policy base on the resource utilization and the completion

time. Additionally, the scalability of CSF in job scheduling and the easiness of

adding new plug-in will be taken into account.

5

1.6 Dissertation Outline

The outline of this dissertation is as follow:-

Chapter 1

This chapter presents the overall introduction of the study. This chapter covers

also the problem statement, scope and objective of, and the research contribution.

Chapter 2

Literature review section. In this chapter, researches need to be done on topics

that are related to grid meta-scheduler. Review some of the field that related or

relevant to this topic. We will also review on what a meta-scheduler is and its

functionality. Some of the current implementation will be discussed in this section as

well so that we are able to know the current trend of the meta-scheduler.

Chapter 3

Design methodology of the CSF scheduling plug-in will be discussed in this

chapter. This chapter will also presents the idea of how the grid meta-scheduler be

implemented in grid environment.

Chapter 4

This particular chapter will discuss on the implementation of CSF scheduling

plug-in policies.

6

Chapter 5

This chapter discuss on the results and the outcomes of job scheduling in

comparison of different scheduling plug-in policies to the grid meta-scheduler. What

is important in order to get the expected results and justification of the results will be

discussed.

Chapter 6

Finally, chapter 6 conclude this research work by providing the summary and the

future work.

7

CHAPTER 2 - LITERATURE REVIEW

2.1 Overview

In this section, we conducted the literature review with respect to our field of

study. The section proceeds with the brief overview and concepts of grid computing

along with the key explanation of currently implemented Grid meta-scheduler.

2.2 Grid Computing

Grid computing is an important field in the computer industry and is becoming

more popular as time goes on. The dramatically increase of the complexity of the

computational tasks require higher performance environment to solve the

computational problems.

Looking at the problem above, resources required to accomplish such tasks have

increased, in order to get a higher performance problem solving environment.

Resources required refer to the computing power, data storage, computational

machines, such as mainframe computers, server and client hosts, and etc. Problem

can be solved by increasing the number of resources that are needed. But, it will be

very costly for an organization to support large number of resources.

8

Computational grid (Debral (2006», which is a large-scale dynamical network of

geographically distributed peer resources clusters, can be one of the solutions to

solve this problem. It made up of different computing hosts, such as high

performance computing clusters, desktop and etc. Grid computing (Lu Bingfeng et.

a!. (2005» will operate by integrating the available resources that to form a virtual

organization comprised to multiple resources associated with heterogeneous clusters.

Below are four main characteristics of a Grid (Buyya (2002»:

a) Multiple Administrative Domains and Autonomy

Grid resources are geographically distributed across multiple administrative

domains and owned by different organizations.

b) Heterogeneity

A Grid involves a multiplicity of resources that are heterogeneous in nature and

will encompass a vast range of technologies.

c) Scalability

A Grid might grow from a few integrated resources to millions and may lead to

the degradation of the systems performance. Thus, applications designed must be

latency and bandwidth tolerant.

d) Dynamicity or Adaptability

In a Grid, the probability of resource failing is high. Resource managers or

applications must tailor their behavior dynamically and use the available

resources and services efficiently and effectively.

9

2.2 Grid Resource Management System (GRMS)

The Grid Resource Management System (GRMS) (Andrea et. al. (2005»

responsible to find and allocate feasible resources, for example, CPU cycles, storage,

bandwidth, and etc in order to satisfy the user request. The GRMS then monitors the

correct task processing, and notifies the user when the results are available. The

GRMS must be able to utilize the residual resources of each organization being part

of the grid.

2.2.1 Grid Meta-Scheduler vs. Grid Local Scheduler

Resource balancing in grid environment is impoliant. The goal of resource

balancing is to improve the performance of the system by optimizing the throughput

or minimizing the costs. Therefore, grid middleware is introduced to schedule

resources across the heterogeneous distributed infrastructure. A grid scheduler has

the ability to exploit idle resources to maximize the resources availability.

A Grid computing environment provides the virtual computing resource that can

be used to execute applications. In a Grid system (Mausolf (2005», the resource

managers coordinate and control local resources while the meta-scheduler operate at

the grid level supervise the resource managers. It manages jobs by doing resource

allocation and resource re-allocation if necessary by gathering and analyzing

information from local resource managers in order to assign user jobs to the most

10

suitable resources at any given time.

The grid meta-scheduler (Andrea et. al. (2005» is in charge of dividing the job

into a number of tasks and allocating each task to a cluster. At each cluster, a local

scheduler is responsible for determining job sequencing, local resource allocation

and data transfer scheduling.

~ ~ ~ ~
Job Job Job Job

Meta-scheduler

~ ~ ~
Job Job Job

Figure 2.1: Grid scheduling architecture

When a suitable site is located, the task request IS passed from the

meta-scheduler to the selected local scheduler. From Figure 2.1, a grid

meta-scheduler is operating on top of local schedulers. Job is submitted to the

meta-scheduler. The job will then submitted the lower level schedulers or a cluster

11

scheduler by the grid meta-scheduler based on define scheduling policy, which used

by the grid meta-scheduler.

2.2.2 Grid meta-scheduler

A meta-scheduler (Yan and Chapman (2006)) consists of functions of scheduling

and Meta. For scheduling, it has the ability that allows co-allocating resources for

application requiring collaboration between multiple sites. The Meta has the

capability to negotiate with local schedulers to satisfy global Grid requests.

A grid meta-scheduler is the resource management component coordinating

access to the Grid resources. Meta-scheduling (Adzigogov et. al. (2005)) is a

technology in the Grid that is responsible for managing jobs and application work

flow, including submitting, scheduling, executing, monitoring, stopping, and

retrieving results of computational jobs. Scheduling is one of the ways for

maximizing the resources availability to end users. At the same time, it can be used

to exploit idle resources. It is responsible for the balancing the work load between

sites and data centers.

The scheduler is responsible for data management and providing services for

tasks in management level. For instances (Joseph and Craig (2004)), advance

resource reservation, job and resource policy management and enforcement for best

turnaround times within the allowable budget constraint, monitoring job executions

12

and status and so on.

A computational grid with a grid meta-scheduler allows the user to authenticate

with a single system to be able to submit jobs in a uniform manner. The system

determines where the jobs should run to complete in the shortest amount of time

while adhering to business policies and maintaining service-level agreements (SLAs).

On the other hand, grid meta-scheduler also makes decisions based on job

requirement or QoS requirement to assign jobs.

Table 2.1: Current Implemented Grid Meta-scheduler

Grid Meta-scheduler Description
CSF & Platform CSF Plus An open source framework for implementing a grid

meta-scheduler, with the use of the Globus Toolkit
middleware. CSF was developed by Platform
Computing in cooperation with the Jilin University,
China.

Grid Service Broker Developed in the Grid Computing and Distributed
Systems Laboratory at the University of Melbourne,
Australia.

GridWay Metascheduler A lightweight meta-scheduler developed by a team
working for Distributed Architecture Group from
Universidad Complutense in Madrid, Spain

Moab Grid Scheduler A feature-abundant meta-scheduler developed by
(Silver) Cluster Resources Inc.

EGEE Workload Manager Developed as a part of the Enabling Grids for E-sciencE
Service (WMS) (EGEE) project funded by the European Commission
Nimrod/G & Axceleon Developed at the Monach University, is a specialized
EnFuzion modeling system that uses simple declarative language

to express parametric experiments.

MP Synergy A product of United Devices, is designed for virtualized
management of the entire enterprise infrastructure.

Condor-G A fault-tolerant job submission system that can access
various computing resources, and scheduling has to be
implemented above Condor-G

13

The existing the meta-scheduler that can be found (Refer to Table 2.1), such as

Community Scheduler Framework (CSF), Grid Service Broker, GridWay

Metascheduler, Moab Grid Scheduler (Silver), EGEE Workload Manager Service

(WMS), Nimrod/G, MP Synergy and Condor-G

From Table 2.1, we would like to remark the following:

• CSF (Community Scheduler Framework (2007)) supports advance

reservation booking and offers round-robin and reservation based

scheduling algorithms.

• GridWay Metascheduler (GridWay Metascheduler (2008)) provides Globus

user with a grid scheduling functionality similar to that found in local DRM

(Distributed Resource Management) systems.

• Nimrod/G (Nimrod/G (2007)) strives for the equilibrium between resource

providers and resources consumers via auctioning mechanisms.

• EGEE Workload Manager Service (WMS) (V' Azquez-P01etti et. al. (2006))

provides a higher centralized scheduling strategy at VO-Ievel if compared to

GridWay Metascheduler (site-level scheduling).

• Condor-G (Condor-G (2007)) does not support scheduling policies, but, it

supplies mechanisms, such as ClassAd and DAGMan that may be useful for

a meta-scheduler standing above.

14

2.2.2(a) Deployment Considerations

Deployment cost is an important consideration while selecting a scheduler.

Deployment costs are directly dependent on a number of factors.

Table 2.2: Licensing and support

Grid Meta-scheduler Licensing Support
CSF & Platform CSF Plus Free Free

Grid Service Broker Free Free

GridWay Metascheduler Free Free

Moab Grid Scheduler Commercial Commercial
(Silver)

EGEE Workload Manager Free Free
Service (WMS)

Nimrod/G & Axceleon Free for Nimrod/G Free for Nimrod/G
EnFuzion Commercial for EnFuzion Commercial for EnFuzion

MP Synergy Commercial Commercial

Condor-G Free Free

The most direct cost is the cost of licensing and support from the scheduler

developer. These factors are evaluated in Table 2.2. Most of the schedulers are free

and open source, except for MP Synergy and Moab, which are commercial products.

Since the meta-scheduling products are still evolving, it is likely that changes to the

scheduler will be required, which might lead to more costs, especially if the code is

not open-source.

15

, .•.... "'.:
, '

i
,~.

2.2.2(b) Scheduler Dependencies

The ability to integrate the scheduler with existing local resource managers such

as PBS, LSF, and SGE are given in Table 2.3.

Table 2.3: Supported local resource manager

Grid Meta-scheduler Local Resource Managers Supported
CSF & Platform CSF Plus GRAM(WS&Pre-WS), LSF, OpenPBS,

Condor, SGE

Grid Service Broker GRAM(WS&Pre-WS), Condor, PBS, SGE

GridWay Metascheduler GRAM(WS&Pre-WS), SGE (,GE-GT
adapter' is needed in order to interact between
GridWayand SGE), LSF, PBS

Moab Grid Scheduler (Silver) GRAM(WS&Pre-WS), Torque, PBS, LSF,
LoadLeveler

EGEE Workload Manager Service GRAM(Pre-WS), Condor
(WMS)
Nimrod/G & Axceleon EnFuzion Globus Toolkit, Legion, Condor, Grid Engine,

LSF, PBS

MP Synergy GRAM(Pre-WS), LSF, OpenPBS, PBS Pro,
SGE, LoadLeveler, Condor

Condor-G GRAM(WS&Pre-WS)

There are few factors that are taking into consideration in this evaluation. Firstly,

scheduler supports for job submission/management to the local resource managers

currently deployed on Grid Computing Lab resources. Currently supported local

resource manager in Grid Computing Lab is SGE. Then, second factor is whether the

scheduler restricts the usage of the resource by (possibly local) users by submitting

jobs directly to the local resource managers.

16

From Table 2.2 and Table 2.3, we can conclude that, CSF, Grid Service Broker

and GridWay Metascheduler are more suitable than others to deploy in Grid

Computing Lab due to the reason of the supported local resource manager and

licensing free. MP Synergy is not taking into the consideration as it is a commercial

product.

2.2.3 Local Resource Manager

Distributed Management Systems (DRMs), also known as workload

management systems, provide resource management for jobs that are submitted to

run on any given resource. There is some current implemented resource manager that

can be integrated with the CSF working on the Globus environment.

a) Portable Batch System (PBS)

PBS (Bayucan et. a1. (1996», (Henderson and Tweten (1995» is a package

which was designed and written by the Numerical Aerodynamic Simulation Complex,

NASA, from 1994. PBS is a successor to NQS, and is able to address many of the

deficiencies ofNQS. It was designed to provide additional controls over the initiating,

or scheduling, of execution of batch jobs.

17

PBS extends the UNIX operating system by the addition of user-level services.

PBS had detailed design and implementation documentation for developers. It was

designed to be easy to add functionality and improved over NQS in a number of

ways, including the provision for parallel jobs. PBS also included features that allow

the scheduling policy to be modified according to a site's needs. A batch scheduling

language has been designed for use with PBS, but the documentation recommends

that it not be used, as there are implementation problems.

b) Load Sharing Facility (LSF)

LSF (Platfonn Computing (2008» by PlatfoTIn Computing, is a very popular

commercial batch queuing system. LSF relies on the existence of shared files to

implement queues, locks and logs. On the other hand, LSF has some measure of fault

tolerance inbuilt. If a shared file system is not available, the degree of fault tolerance

is reduced. If the master host that makes scheduling decisions fails, another host in

the cluster is automatically voted to be the master. Hosts are elected to be the master

in the order they appear in a static file which must be visible to all machines in the

cluster. While the cluster becomes partitioned by network failure, the partition that

has access to the LSF log files continues working, while the remaining partitions sit

idle.

18

c) Condor

Condor (Joseph and Craig (2004» is well suited for parameter studies and high

throughput computing, where jobs generally do not need to communicate with each

other. It can be classify as a specialized workload management system for

computation-intensive jobs. Condor provides a job queuing mechanism, scheduling

policy, priority scheme, resource monitoring, and resource management. Upon

receiving serial or parallel jobs from the user, the Condor system places them into a

queue, chooses when and where to run the jobs based upon a policy, carefully

monitors their progress, and ultimately infonns the user upon completion.

d) Sun Grid Engine (SGE)

SGE (Sun Microsystems (2008)) is the foundation of the Sun Grid utility

computing system. It is typically used on a computer fann or computer cluster and is

responsible for accepting, scheduling, dispatching, and managing the remote

execution of large numbers of standalone, parallel or interactive user jobs. It also

manages and schedules the allocation of distributed resources such as processors,

memory, disk space, and software licenses.

19

2.3 Community Scheduler Framework (CSF)

The Community Scheduler Framework (CSF) (Community Scheduler

Framework (2008)) is a set of Grid Services develops by Platform Computing in

cooperation with Jilin University, China, which is implemented using the Globus

Toolkit. Globus is a software for grid. It is an open source tool that use to build

applications that exploit grid infrastructure. CSF is a set of modules that can be

assembled to create a meta-scheduling system that accepts job requests and executes

them using available grid compute services.

The main objective of CSF is to provide simple API for writing user-defined

policies for the queuing service. Besides, the implementation of CSF allows

reservations on resources. CSF has the ability to offers simple scheduling

mechanisms and is extensible via scheduling plug-ins.

CSF supports the emerging WS-Agreement specification and the Globus

Toolkit's GRAM service. It also uses the WS Core monitoring mechanisms and the

Globus Index Service. CSF provides an extensible framework (Shread (2003» for

implementing meta-schedulers that can negotiate with heterogeneous workload

execution software such as Platform LSF to acquire the right resources to fulfil

computing requirements.

Basic functionalities provided by CSF are submitting jobs to Grid without

specifying Cluster, monitoring and control jobs, provide Queuing Service, schedule

?O

jobs and resource by custom-built policies and a CSF Portlet which is a web browser

based User Interface.

Advanced functionalities provided by the current version of CSF are Multiple

Domains Resources Information Sharing, automatic user credentials delegation,

automatic data-staging, extensible scheduling policies, and supporting grid parallel

jobs (MPICH-G2).

Figure 2.2: Current implemented CSF architecture
(Picture from (Community Scheduler Framework (2007)))

Figure 2.2 shows the architecture of the current implemented CSF version. CSF

enables communication between heterogeneous schedulers on local level. Different

local schedulers at different clusters, which contains of different types of machines

21

running on it can now communicate with each others by using CSF. The list of

supported schedulers includes Platform Load Sharing Facility (LSF), Open Portable

Batch System (Open PBS), Grid Engine (SGE / NIGE) and Condor.

CSF contains of the components below (Platform Computing (2006)):

• Job service - Creates, monitors and controls compute jobs

• Reservation service - Guarantees resources are available for running a job

• Global Information Service - Allows for the propagation of information

between resource managers and the meta-scheduler

• Queuing service - Provides a service where administrators can customize

and define scheduling policies at the VO level, and/or at the different

resource manager levels

• Resource Manager Adapter Service (RM Adapter) - Provides Grid

service interface which bridges the Grid service protocol and resource

managers

2.3.1 Queuing Service

The Queuing Service provides scheduling capabilities, where the grid

meta-scheduler maps jobs to resource managers based on defined policies at the VO

level. If there are multiple scheduling policies in the Queuing Service, the different

schedulers will be called in order based on the job list and on the job decisions,

22

allowing the effects of one scheduling plug-in to be combined with the effects of

another.

Table 2.4: Existent scheduling plug-in in CSF

Scheduling Plug-in Description
FCFS Round-Robin Default scheduling plug-in

Throttle Restricts the maximal number of jobs can be
dispatched in a scheduling cycle

Array Job Plug-in Design for life science applications (such as
AutoDock, BLAST)

MPICH-G2 Plug-in By using VJM, the plug-in guarantee the
synchronized resource allocation can be successful

The CSF Queuing service provides FCFS queue and round-robin, job throttle,

array job plug-in and MPICH-G2 plug-in (Refer to Table 2.4). In such a case, there is

only one scheduling plug-in policy that is incorporated with CSF currently, which is

the round-robin scheduling.

2.3.2 Job Service

A Job Service provides an interface for placing jobs on a resource manager and

interacting with the job once it has been dispatched to the resource manager. The Job

Service provides basic matchmaking capabilities between the requirements of the job

and the underlying resuurce manager for running the job. The Job Service uses

information such as policies, which are defined at the meta-scheduler level, and

23

resource infonnation about available resource managers, queues, host, and job

statuses as provided by the Global Infonnation Service.

In the current version of the CSF, the Job Service accepts client requests in the

fonn of the Globus Resource Specification Language (RSL). A given Job Service

instance can actually manage multiple user jobs. A Job Service Dispatcher

component responsible for matching user job submission requests to run Job Service

instances. The Job Service Dispatcher creates a Job Service instance on behalf of the

user if there is no applicable Job Service available for the user.

2.3.3 Reservation Service

The Reservation service allows end-users or a Job Service to reserve resources

under the control of a resource manager to guarantee their availability to run a job.

This service allows reservations for any type of resource. Once a reservation is made,

a Job Service sends a job to a resource manager that is associated to a provided

reservation. It also allows request of a new reservation with a particular resource

requirement, starting at a specific time for a given duration, remove a reservation and

retrieve the details of a particular reservation.

The Reservation Service makes use of infonnation about the existing resource

managers and policies that are defined at the meta-scheduler level and will make use

of a logging service to log reservations.

24

