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PENILAIAN PRESTASI PENJADUALAN META GRID YANG MENGGUNA 
COMMUNITY SCHEDULER FRAMEWORK (CSF) DENGAN PELBAGAI 

POLISI PLUG-IN 

ABSTRAK 

Community Scheduler Framework (CSF) adalah salah satu penjadualan meta 

grid semasa yang membolehkan penggunaan Globus. Penjadualan meta 

menjadualkan tugas bagi pihak penggunanya. Tujuan utama CSF adalah untuk 

menyediakan API yang mudah bagi penggunanya menentukan polisi masing-masing 

yang digunakan dalam servis giliran. Ia berkemampuan dengan menawarkan 

mekanisma penjadualan yang mudah dan membolehkan penambahan penjadulan 

plug-ins. 

Adalah didapati bahawa CSF semasa mengandungi hanya satu penjadualan 

polisi plug-in yang berfungsi dengan cara round-robin semasa melakukan 

penjadualan tugas. Tesis ini menfokuskan dalam penilaian prestasi penjadualan 

polisi-polisi plug-in yang dapat bersatu dengan CSF. Oleh sedemikian, tesis ini 

mencadangkan dua jenis penjadualan polisi (pemilihan sumber yang berdasarkan 

purata peratus CPU tidak berguna yang tertinggi dan pemilihan sumber secara rawak) 

yang dapat bersatu dengan CSF untuk menjalankan penjadualan tugas. 

Keputusan yang didapati daripada eksperimen membuktikan bahawa 

penambahan polisi penjadualan membolehkan CSF untuk menjalankan penjadualan 

genting dengan pemilihan sumber yang berdasarkan purata peratus CPU tidak 

berguna yang tertinggi, iaitu dimana peratus ketidakgunaan CPU adalah 70% lebih 
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besar yang terdapat daripada kutipan sumber. Masa keseluruhan yang digunakan 

untuk melengkapkan penjadualan untuk tugas berjumlah 40 yang bersaiz sarna 

dengan menggunakan penjadualan cara round-robin adalah sebanyak 750 saat. 

Sebanyak 490 saat diperlukan dengan menggunakan pemilihan sumber yang 

berdasarkan purata peratus CPU tidak berguna yang tertinggi. Pemilihan sumber 

secara rawak pula memerlukan masa sebanyak 390 saat untuk melengkapkan 

penjadualan tugas-tugas tersebut. Masa yang diambil dengan menggunakan 

pemilihan sumber yang berdasarkan purata peratus CPU tidak berguna yang tertinggi 

adalah tinggi berbanding dengan pemilihan sumber secara rawak kerana aplikasi 

tambahan telah dipasang untuk mendapatkan infonnasi yang terperinci daripada 

kelompok yang tertentu supaya tugas yang setemsnya boleh dijadualkan. Untuk 

pemilihan sumber secara rawak, penjadual meta membahagikan sumber-sumber 

kepada tugas-tugas tanpa keperluan aplikasi tambahan. 
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A GRID META-SCHEDULER USING COMMUNITY SCHEDULER 
FRAMEWORK (CSF) WITH DIFFERENT PLUG-IN POLICIES 

PERFORMANCE EVALUATION 

ABSTRACT 

Community Scheduler Framework (CSF) is one of the current implemented grid 

meta-scheduler, which is Globus enable. The meta-scheduler schedules jobs on 

behalf of its users. The main objective of CSF is to provide simple API for writing 

user-defined policies for the queuing service. It has the ability to offer simple 

scheduling mechanisms and is extensible via scheduling plug-ins. 

It is found that the current implemented CSF consists of only one scheduling 

plug-in policy where the submitted jobs are scheduled in round-robin manner. This 

thesis focuses on the perfonnance evaluation of different scheduling plug-in policies 

that could be incorporated with CSF. This thesis proposed two scheduling plug-in 

policies (the highest average percentage of idle CPU selection and randomization 

resource selection) that incorporate with CSF for job scheduling. 

The experimental results prove that by adding the highest average percentage of 

idle CPU selection plug-in, CSF is able to do the critical scheduling to the best 

resource with the highest percentage of CPU idles, which the percentage of CPU 

idles is greater than 70% in the resource pool. The completion time for the allocation 

of 40 jobs by using round-robin scheduling is about 750 seconds. Where as, for the 

best CPU selection is 490 seconds. It took about 390 seconds for random resource 

selection to complete the execution of 40 jobs. The time taken in CPU selection is 
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higher than random resource selection because a small application is installed on 

each of the master host in order to get the detail information of the particular cluster 

~; t in which the next job will be submitted to. For the random resource selection, the 
~ 
F . meta-scheduler randomly assigned resources to jobs where no extra step is needed. 
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CHAPTER 1- INTRODUCITON 

1.1 Overview of Grid 

In distributed systems, machines have the ability to communicate with each 

other where data and resources are shared among all. Grid can be defined as a 

geographically distributed computation platform. Grid computing made up of a set of 

heterogeneous machines that contains different types of hardware, where users can 

access via a single interface. Dynamic grid allows scalability and can be expand at 

anytime. Grid is autonomous as it can potentially access the resources of different 

organizations located in different geographical locations. 

Grid computing is an advancement of distributed computing. Unlike distributed 

computing, grid computing focuses on large-scale resource sharing, offers 

applications innovation, and sometimes focuses on improvement of system 

performance to reach optimization. Grid enforces different computers to work 

together as one. With this, it is possible that one's can reach out and use the 

computational or storage resources on machines other than their own. By doing so, 

users can share their own resources with others, and hence, the utilization of unused 

resources will be increased. 

Grid computing is an overlapping of both distributed and parallel computing. 

Grid computing is said to be distributed because of its heterogeneous nature. While 
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distributing, grid can work in parallel where few resources working together on one 

task. The key concept of grid computing (Talia (2002)) is to provide resource access 

and operational services across widely distributed virtual organizations. 

Virtual organizations are highly dependent on grid. They may share some 

common requirements but may vary in size and structure, which made up of the 

combination of servers, mainframe computers, client hosts and so on. The members 

of any virtual organization negotiate on resource sharing based on the rules and 

conditions defined, in order to share the resources from the automatically constructed 

resource pool (Joseph and Craig (2004)). 

1.2 Scheduler in Grid 

In the early grid, the administrators need to manually configure and submit the 

jobs. The administrators required to have the knowledge and direct control of all the 

jobs on the grid as they will execute jobs manually based on their scheduling policy. 

When the size ofthe grid environment increasing, the number of job increase as well. 

Due to this, more resources is needed. Effective scheduling is impOliant in 

optimizing resource usage. 

Nowadays, jobs scheduling in a cluster is done by using the scheduler or local 

scheduler. A scheduler is responsible to carry out the scheduling tasks. A user does 

not need to manually coordinate the access to the resources as the scheduler has the 
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function of automatically select and schedule resource allocation for jobs. 

Tasks scheduling (Subramani et. al. (2002)) become more complex while it is in 

a meta-computing environment since many clusters with different local scheduling 

policies are involved. Grid schedulers as in (Bart et. al. (May 2003)) use 

measurement information about the current utilization of machines to determine 

which ones are not busy before submitting a job and are usually react to the 

immediate grid load. 

Grid meta-scheduler is always dynamic, heterogeneous and diverse, and has to 

deal with local issues. It is responsible on monitors the progress of scheduled jobs 

managing the overall work-flow. The scheduler will automatically re-allocate the 

jobs if the jobs are lost due to system or network outages. However, if a job appears 

to be in an infinite loop and reaches a maximum timeout, then such jobs should be 

dropped and should not be re-scheduled. 

1.3 Problem Statement 

Community Scheduler Framework (CSF) is one of the current implemented grid 

meta-scheduler, which is Globus enable. CSF can submit a job, make an advance 

reservation for resources, query the status of a particular job, retrieve information 

regarding the current schedule, and remove a job which the meta-scheduler has 

submitted. The meta-scheduler schedules jobs on behalf of its users. 
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But, it is found that the current implemented CSF consists of only one 

scheduling plug-in policy that incorporate with CSF where the submitted jobs are 

scheduled in round-robin manner. Due to the limited number of scheduling plug-in 

policy provided by CSF, it needs more scheduling policies in order to improve the 

robustness of CSF as a grid meta-scheduler. 

1.4 Scope and Objective 

The scope of this dissertation is to analyze and evaluate the performance of grid 

meta-scheduler using Community Scheduler Framework (CSF) with different 

scheduling plug-in policies. 

The main objective is to enable CSF to perform critical jobs scheduling. In order 

to increase the utilization of idle resources in the resource pool, a scheduling plug-in 

policy based on the best resource selection will be proposed. On the other hand, a 

random selection policy will appear to be the second scheduling plug-in policy in 

resource selection for jobs allocation. 
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1.5 Contribution 

After in-depth review of CSF related work, it shows that CSF is only provides 

round-robin scheduling policy in allocating jobs to resources. 

In this dissertation, we propose two different scheduling plug-in policies that 

incorporate with CSF by using the default round-robin scheduling plug-in policy as 

the benchmark. The first proposed scheduling plug-in policy incorporate with CSF is 

a resource selection scheduling plug-in policy base on the best CPU selection. The 

second proposed CSF scheduling plug-in policy is randomized resource selection. 

Secondly, we evaluate and analyze the perfonnance of CSF with the scheduling 

plug-in policy of round-robin manner, the best CPU selection policy and 

randomization selection policy base on the resource utilization and the completion 

time. Additionally, the scalability of CSF in job scheduling and the easiness of 

adding new plug-in will be taken into account. 
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1.6 Dissertation Outline 

The outline of this dissertation is as follow:-

Chapter 1 

This chapter presents the overall introduction of the study. This chapter covers 

also the problem statement, scope and objective of, and the research contribution. 

Chapter 2 

Literature review section. In this chapter, researches need to be done on topics 

that are related to grid meta-scheduler. Review some of the field that related or 

relevant to this topic. We will also review on what a meta-scheduler is and its 

functionality. Some of the current implementation will be discussed in this section as 

well so that we are able to know the current trend of the meta-scheduler. 

Chapter 3 

Design methodology of the CSF scheduling plug-in will be discussed in this 

chapter. This chapter will also presents the idea of how the grid meta-scheduler be 

implemented in grid environment. 

Chapter 4 

This particular chapter will discuss on the implementation of CSF scheduling 

plug-in policies. 
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Chapter 5 

This chapter discuss on the results and the outcomes of job scheduling in 

comparison of different scheduling plug-in policies to the grid meta-scheduler. What 

is important in order to get the expected results and justification of the results will be 

discussed. 

Chapter 6 

Finally, chapter 6 conclude this research work by providing the summary and the 

future work. 
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CHAPTER 2 - LITERATURE REVIEW 

2.1 Overview 

In this section, we conducted the literature review with respect to our field of 

study. The section proceeds with the brief overview and concepts of grid computing 

along with the key explanation of currently implemented Grid meta-scheduler. 

2.2 Grid Computing 

Grid computing is an important field in the computer industry and is becoming 

more popular as time goes on. The dramatically increase of the complexity of the 

computational tasks require higher performance environment to solve the 

computational problems. 

Looking at the problem above, resources required to accomplish such tasks have 

increased, in order to get a higher performance problem solving environment. 

Resources required refer to the computing power, data storage, computational 

machines, such as mainframe computers, server and client hosts, and etc. Problem 

can be solved by increasing the number of resources that are needed. But, it will be 

very costly for an organization to support large number of resources. 
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Computational grid (Debral (2006», which is a large-scale dynamical network of 

geographically distributed peer resources clusters, can be one of the solutions to 

solve this problem. It made up of different computing hosts, such as high 

performance computing clusters, desktop and etc. Grid computing (Lu Bingfeng et. 

a!. (2005» will operate by integrating the available resources that to form a virtual 

organization comprised to multiple resources associated with heterogeneous clusters. 

Below are four main characteristics of a Grid (Buyya (2002»: 

a) Multiple Administrative Domains and Autonomy 

Grid resources are geographically distributed across multiple administrative 

domains and owned by different organizations. 

b) Heterogeneity 

A Grid involves a multiplicity of resources that are heterogeneous in nature and 

will encompass a vast range of technologies. 

c) Scalability 

A Grid might grow from a few integrated resources to millions and may lead to 

the degradation of the systems performance. Thus, applications designed must be 

latency and bandwidth tolerant. 

d) Dynamicity or Adaptability 

In a Grid, the probability of resource failing is high. Resource managers or 

applications must tailor their behavior dynamically and use the available 

resources and services efficiently and effectively. 
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2.2 Grid Resource Management System (GRMS) 

The Grid Resource Management System (GRMS) (Andrea et. al. (2005» 

responsible to find and allocate feasible resources, for example, CPU cycles, storage, 

bandwidth, and etc in order to satisfy the user request. The GRMS then monitors the 

correct task processing, and notifies the user when the results are available. The 

GRMS must be able to utilize the residual resources of each organization being part 

of the grid. 

2.2.1 Grid Meta-Scheduler vs. Grid Local Scheduler 

Resource balancing in grid environment is impoliant. The goal of resource 

balancing is to improve the performance of the system by optimizing the throughput 

or minimizing the costs. Therefore, grid middleware is introduced to schedule 

resources across the heterogeneous distributed infrastructure. A grid scheduler has 

the ability to exploit idle resources to maximize the resources availability. 

A Grid computing environment provides the virtual computing resource that can 

be used to execute applications. In a Grid system (Mausolf (2005», the resource 

managers coordinate and control local resources while the meta-scheduler operate at 

the grid level supervise the resource managers. It manages jobs by doing resource 

allocation and resource re-allocation if necessary by gathering and analyzing 

information from local resource managers in order to assign user jobs to the most 

10 



suitable resources at any given time. 

The grid meta-scheduler (Andrea et. al. (2005» is in charge of dividing the job 

into a number of tasks and allocating each task to a cluster. At each cluster, a local 

scheduler is responsible for determining job sequencing, local resource allocation 

and data transfer scheduling. 

~ ~ ~ ~ 
Job Job Job Job 

Meta-scheduler 

~ ~ ~ 
Job Job Job 

Figure 2.1: Grid scheduling architecture 

When a suitable site is located, the task request IS passed from the 

meta-scheduler to the selected local scheduler. From Figure 2.1, a grid 

meta-scheduler is operating on top of local schedulers. Job is submitted to the 

meta-scheduler. The job will then submitted the lower level schedulers or a cluster 
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scheduler by the grid meta-scheduler based on define scheduling policy, which used 

by the grid meta-scheduler. 

2.2.2 Grid meta-scheduler 

A meta-scheduler (Yan and Chapman (2006)) consists of functions of scheduling 

and Meta. For scheduling, it has the ability that allows co-allocating resources for 

application requiring collaboration between multiple sites. The Meta has the 

capability to negotiate with local schedulers to satisfy global Grid requests. 

A grid meta-scheduler is the resource management component coordinating 

access to the Grid resources. Meta-scheduling (Adzigogov et. al. (2005)) is a 

technology in the Grid that is responsible for managing jobs and application work 

flow, including submitting, scheduling, executing, monitoring, stopping, and 

retrieving results of computational jobs. Scheduling is one of the ways for 

maximizing the resources availability to end users. At the same time, it can be used 

to exploit idle resources. It is responsible for the balancing the work load between 

sites and data centers. 

The scheduler is responsible for data management and providing services for 

tasks in management level. For instances (Joseph and Craig (2004)), advance 

resource reservation, job and resource policy management and enforcement for best 

turnaround times within the allowable budget constraint, monitoring job executions 
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and status and so on. 

A computational grid with a grid meta-scheduler allows the user to authenticate 

with a single system to be able to submit jobs in a uniform manner. The system 

determines where the jobs should run to complete in the shortest amount of time 

while adhering to business policies and maintaining service-level agreements (SLAs). 

On the other hand, grid meta-scheduler also makes decisions based on job 

requirement or QoS requirement to assign jobs. 

Table 2.1: Current Implemented Grid Meta-scheduler 

Grid Meta-scheduler Description 
CSF & Platform CSF Plus An open source framework for implementing a grid 

meta-scheduler, with the use of the Globus Toolkit 
middleware. CSF was developed by Platform 
Computing in cooperation with the Jilin University, 
China. 

Grid Service Broker Developed in the Grid Computing and Distributed 
Systems Laboratory at the University of Melbourne, 
Australia. 

GridWay Metascheduler A lightweight meta-scheduler developed by a team 
working for Distributed Architecture Group from 
Universidad Complutense in Madrid, Spain 

Moab Grid Scheduler A feature-abundant meta-scheduler developed by 
(Silver) Cluster Resources Inc. 

EGEE Workload Manager Developed as a part of the Enabling Grids for E-sciencE 
Service (WMS) (EGEE) project funded by the European Commission 
Nimrod/G & Axceleon Developed at the Monach University, is a specialized 
EnFuzion modeling system that uses simple declarative language 

to express parametric experiments. 

MP Synergy A product of United Devices, is designed for virtualized 
management of the entire enterprise infrastructure. 

Condor-G A fault-tolerant job submission system that can access 
various computing resources, and scheduling has to be 
implemented above Condor-G 
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The existing the meta-scheduler that can be found (Refer to Table 2.1), such as 

Community Scheduler Framework (CSF), Grid Service Broker, GridWay 

Metascheduler, Moab Grid Scheduler (Silver), EGEE Workload Manager Service 

(WMS), Nimrod/G, MP Synergy and Condor-G 

From Table 2.1, we would like to remark the following: 

• CSF (Community Scheduler Framework (2007)) supports advance 

reservation booking and offers round-robin and reservation based 

scheduling algorithms. 

• GridWay Metascheduler (GridWay Metascheduler (2008)) provides Globus 

user with a grid scheduling functionality similar to that found in local DRM 

(Distributed Resource Management) systems. 

• Nimrod/G (Nimrod/G (2007)) strives for the equilibrium between resource 

providers and resources consumers via auctioning mechanisms. 

• EGEE Workload Manager Service (WMS) (V' Azquez-P01etti et. al. (2006)) 

provides a higher centralized scheduling strategy at VO-Ievel if compared to 

GridWay Metascheduler (site-level scheduling). 

• Condor-G (Condor-G (2007)) does not support scheduling policies, but, it 

supplies mechanisms, such as ClassAd and DAGMan that may be useful for 

a meta-scheduler standing above. 
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2.2.2(a) Deployment Considerations 

Deployment cost is an important consideration while selecting a scheduler. 

Deployment costs are directly dependent on a number of factors. 

Table 2.2: Licensing and support 

Grid Meta-scheduler Licensing Support 
CSF & Platform CSF Plus Free Free 

Grid Service Broker Free Free 

GridWay Metascheduler Free Free 

Moab Grid Scheduler Commercial Commercial 
(Silver) 

EGEE Workload Manager Free Free 
Service (WMS) 

Nimrod/G & Axceleon Free for Nimrod/G Free for Nimrod/G 
EnFuzion Commercial for EnFuzion Commercial for EnFuzion 

MP Synergy Commercial Commercial 

Condor-G Free Free 

The most direct cost is the cost of licensing and support from the scheduler 

developer. These factors are evaluated in Table 2.2. Most of the schedulers are free 

and open source, except for MP Synergy and Moab, which are commercial products. 

Since the meta-scheduling products are still evolving, it is likely that changes to the 

scheduler will be required, which might lead to more costs, especially if the code is 

not open-source. 
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2.2.2(b) Scheduler Dependencies 

The ability to integrate the scheduler with existing local resource managers such 

as PBS, LSF, and SGE are given in Table 2.3. 

Table 2.3: Supported local resource manager 

Grid Meta-scheduler Local Resource Managers Supported 
CSF & Platform CSF Plus GRAM(WS&Pre-WS), LSF, OpenPBS, 

Condor, SGE 

Grid Service Broker GRAM(WS&Pre-WS), Condor, PBS, SGE 

GridWay Metascheduler GRAM(WS&Pre-WS), SGE (,GE-GT 
adapter' is needed in order to interact between 
GridWayand SGE), LSF, PBS 

Moab Grid Scheduler (Silver) GRAM(WS&Pre-WS), Torque, PBS, LSF, 
LoadLeveler 

EGEE Workload Manager Service GRAM(Pre-WS), Condor 
(WMS) 
Nimrod/G & Axceleon EnFuzion Globus Toolkit, Legion, Condor, Grid Engine, 

LSF, PBS 

MP Synergy GRAM(Pre-WS), LSF, OpenPBS, PBS Pro, 
SGE, LoadLeveler, Condor 

Condor-G GRAM(WS&Pre-WS) 

There are few factors that are taking into consideration in this evaluation. Firstly, 

scheduler supports for job submission/management to the local resource managers 

currently deployed on Grid Computing Lab resources. Currently supported local 

resource manager in Grid Computing Lab is SGE. Then, second factor is whether the 

scheduler restricts the usage of the resource by (possibly local) users by submitting 

jobs directly to the local resource managers. 
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From Table 2.2 and Table 2.3, we can conclude that, CSF, Grid Service Broker 

and GridWay Metascheduler are more suitable than others to deploy in Grid 

Computing Lab due to the reason of the supported local resource manager and 

licensing free. MP Synergy is not taking into the consideration as it is a commercial 

product. 

2.2.3 Local Resource Manager 

Distributed Management Systems (DRMs), also known as workload 

management systems, provide resource management for jobs that are submitted to 

run on any given resource. There is some current implemented resource manager that 

can be integrated with the CSF working on the Globus environment. 

a) Portable Batch System (PBS) 

PBS (Bayucan et. a1. (1996», (Henderson and Tweten (1995» is a package 

which was designed and written by the Numerical Aerodynamic Simulation Complex, 

NASA, from 1994. PBS is a successor to NQS, and is able to address many of the 

deficiencies ofNQS. It was designed to provide additional controls over the initiating, 

or scheduling, of execution of batch jobs. 
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PBS extends the UNIX operating system by the addition of user-level services. 

PBS had detailed design and implementation documentation for developers. It was 

designed to be easy to add functionality and improved over NQS in a number of 

ways, including the provision for parallel jobs. PBS also included features that allow 

the scheduling policy to be modified according to a site's needs. A batch scheduling 

language has been designed for use with PBS, but the documentation recommends 

that it not be used, as there are implementation problems. 

b) Load Sharing Facility (LSF) 

LSF (Platfonn Computing (2008» by PlatfoTIn Computing, is a very popular 

commercial batch queuing system. LSF relies on the existence of shared files to 

implement queues, locks and logs. On the other hand, LSF has some measure of fault 

tolerance inbuilt. If a shared file system is not available, the degree of fault tolerance 

is reduced. If the master host that makes scheduling decisions fails, another host in 

the cluster is automatically voted to be the master. Hosts are elected to be the master 

in the order they appear in a static file which must be visible to all machines in the 

cluster. While the cluster becomes partitioned by network failure, the partition that 

has access to the LSF log files continues working, while the remaining partitions sit 

idle. 
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c) Condor 

Condor (Joseph and Craig (2004» is well suited for parameter studies and high 

throughput computing, where jobs generally do not need to communicate with each 

other. It can be classify as a specialized workload management system for 

computation-intensive jobs. Condor provides a job queuing mechanism, scheduling 

policy, priority scheme, resource monitoring, and resource management. Upon 

receiving serial or parallel jobs from the user, the Condor system places them into a 

queue, chooses when and where to run the jobs based upon a policy, carefully 

monitors their progress, and ultimately infonns the user upon completion. 

d) Sun Grid Engine (SGE) 

SGE (Sun Microsystems (2008)) is the foundation of the Sun Grid utility 

computing system. It is typically used on a computer fann or computer cluster and is 

responsible for accepting, scheduling, dispatching, and managing the remote 

execution of large numbers of standalone, parallel or interactive user jobs. It also 

manages and schedules the allocation of distributed resources such as processors, 

memory, disk space, and software licenses. 
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2.3 Community Scheduler Framework (CSF) 

The Community Scheduler Framework (CSF) (Community Scheduler 

Framework (2008)) is a set of Grid Services develops by Platform Computing in 

cooperation with Jilin University, China, which is implemented using the Globus 

Toolkit. Globus is a software for grid. It is an open source tool that use to build 

applications that exploit grid infrastructure. CSF is a set of modules that can be 

assembled to create a meta-scheduling system that accepts job requests and executes 

them using available grid compute services. 

The main objective of CSF is to provide simple API for writing user-defined 

policies for the queuing service. Besides, the implementation of CSF allows 

reservations on resources. CSF has the ability to offers simple scheduling 

mechanisms and is extensible via scheduling plug-ins. 

CSF supports the emerging WS-Agreement specification and the Globus 

Toolkit's GRAM service. It also uses the WS Core monitoring mechanisms and the 

Globus Index Service. CSF provides an extensible framework (Shread (2003» for 

implementing meta-schedulers that can negotiate with heterogeneous workload 

execution software such as Platform LSF to acquire the right resources to fulfil 

computing requirements. 

Basic functionalities provided by CSF are submitting jobs to Grid without 

specifying Cluster, monitoring and control jobs, provide Queuing Service, schedule 
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jobs and resource by custom-built policies and a CSF Portlet which is a web browser 

based User Interface. 

Advanced functionalities provided by the current version of CSF are Multiple 

Domains Resources Information Sharing, automatic user credentials delegation, 

automatic data-staging, extensible scheduling policies, and supporting grid parallel 

jobs (MPICH-G2). 

Figure 2.2: Current implemented CSF architecture 
(Picture from (Community Scheduler Framework (2007))) 

Figure 2.2 shows the architecture of the current implemented CSF version. CSF 

enables communication between heterogeneous schedulers on local level. Different 

local schedulers at different clusters, which contains of different types of machines 
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running on it can now communicate with each others by using CSF. The list of 

supported schedulers includes Platform Load Sharing Facility (LSF), Open Portable 

Batch System (Open PBS), Grid Engine (SGE / NIGE) and Condor. 

CSF contains of the components below (Platform Computing (2006)): 

• Job service - Creates, monitors and controls compute jobs 

• Reservation service - Guarantees resources are available for running a job 

• Global Information Service - Allows for the propagation of information 

between resource managers and the meta-scheduler 

• Queuing service - Provides a service where administrators can customize 

and define scheduling policies at the VO level, and/or at the different 

resource manager levels 

• Resource Manager Adapter Service (RM Adapter) - Provides Grid 

service interface which bridges the Grid service protocol and resource 

managers 

2.3.1 Queuing Service 

The Queuing Service provides scheduling capabilities, where the grid 

meta-scheduler maps jobs to resource managers based on defined policies at the VO 

level. If there are multiple scheduling policies in the Queuing Service, the different 

schedulers will be called in order based on the job list and on the job decisions, 
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allowing the effects of one scheduling plug-in to be combined with the effects of 

another. 

Table 2.4: Existent scheduling plug-in in CSF 

Scheduling Plug-in Description 
FCFS Round-Robin Default scheduling plug-in 

Throttle Restricts the maximal number of jobs can be 
dispatched in a scheduling cycle 

Array Job Plug-in Design for life science applications (such as 
AutoDock, BLAST) 

MPICH-G2 Plug-in By using VJM, the plug-in guarantee the 
synchronized resource allocation can be successful 

The CSF Queuing service provides FCFS queue and round-robin, job throttle, 

array job plug-in and MPICH-G2 plug-in (Refer to Table 2.4). In such a case, there is 

only one scheduling plug-in policy that is incorporated with CSF currently, which is 

the round-robin scheduling. 

2.3.2 Job Service 

A Job Service provides an interface for placing jobs on a resource manager and 

interacting with the job once it has been dispatched to the resource manager. The Job 

Service provides basic matchmaking capabilities between the requirements of the job 

and the underlying resuurce manager for running the job. The Job Service uses 

information such as policies, which are defined at the meta-scheduler level, and 
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resource infonnation about available resource managers, queues, host, and job 

statuses as provided by the Global Infonnation Service. 

In the current version of the CSF, the Job Service accepts client requests in the 

fonn of the Globus Resource Specification Language (RSL). A given Job Service 

instance can actually manage multiple user jobs. A Job Service Dispatcher 

component responsible for matching user job submission requests to run Job Service 

instances. The Job Service Dispatcher creates a Job Service instance on behalf of the 

user if there is no applicable Job Service available for the user. 

2.3.3 Reservation Service 

The Reservation service allows end-users or a Job Service to reserve resources 

under the control of a resource manager to guarantee their availability to run a job. 

This service allows reservations for any type of resource. Once a reservation is made, 

a Job Service sends a job to a resource manager that is associated to a provided 

reservation. It also allows request of a new reservation with a particular resource 

requirement, starting at a specific time for a given duration, remove a reservation and 

retrieve the details of a particular reservation. 

The Reservation Service makes use of infonnation about the existing resource 

managers and policies that are defined at the meta-scheduler level and will make use 

of a logging service to log reservations. 
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