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Abstrak 

Satu Sistem Pembuktian Teorem Automatik Berdasarkan 

Resolusi Menggunakan Pendekatan Pemprosesan Seiring 

VIII 

Semenjak pembangunan sistem pembuktian teorem automatik berdasarkan 

resolusi yang pertama di pertengahan 1960an, terdapat penyelidikan yang berterusan di 

dalam bidang ini untuk mempertingkatkan proses penyelesaian masalah di dalam sistem­

sistem pembuktian teorem. Penyelidikan pada masa kini di dalam bidang ini adalah 

tertumpu kepada penggunaan kaedah-kaedah pengideksan pangkalan data dan 

pemprosesan selari untuk mempertingkatkan kecekapan sistem-sistem tersebut. Apa yang 

dimaksudkan tentang kecekapan sistem adalah tertumpu kepada kelajuan pedaksanaan 

sistem di dalam pembuktian teorem oleh suatu sistem pembuktian teorem automatik. 

Penyelidikan yang dilaporkan di 4a1am tesis ini adalah tertumpu kepada 

penggunaan kaedah pemprosesan seiring di dalam pembangunan suatu sistem 

pembuktian teorem automatik berdasarkan resolusi, yang merupakan suatu aplikasi di 

dalam bidang kecerdasan buatan. Tujuan kami melakukan penyelidikan ini adalah untuk 

mengkaji keberkesana~ pemprosesan seiring di dalam mempertingkatkan proses 

penyelesaian masalah di dalam suatu sistem pembuktian teorem berdasarkan resolusi. 

Semasa penyelidikan kami di sini, kami telah mengkaji komponen mana di dalam suatu 

sistem pembuktian teorem boleh dihuraikan untuk memperkenalkan pemprosesan seiring 

dan bagaimana caranya ia mesti dilakukan. Tujuan kami di dalam pembinaan sistem ini 

bukanlah tertumpu kepada penghasilan suatu sistem pembuktian teorem yang berkelajuan 

tinggi, tetapi adalah untuk membina suatu sistem yang boleh dikatakan sebagai prototaip 

yang akan mengamkan idea untuk memperkenalkan pemprosesan seiring di dalam 

pembangunan sistem pembuktian teorem automatik berdasarkan resolusi. Di dalam 
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Abstract 

Ever since the first resolution based automated theorem proving system was 

developed on a computer in the mid 1960s, there has been constant research in this area 

on enhancing the problem solving process of the theorem provers. The recent trend in 

this area is towards exploiting database indexing and parallel processing in increasing the 

efficiency of these systems, in particular the execution speed of the theorem prover in 

proving a theorem. 

The research reported in this thesis is devoted to the use of concurrent processing 

for developing a resolution based automated theorem proving system, an application in 

the area of artificial intelligence. Our purpose in doing this is to study the usefulness of 

concurrent processing in enhancing the pro?lem solving process in a resolution based 

automated theorem proving system. During our research here we investigated which 

component of the theorem prover pn be decomposed into introducing concurrent 

processing and how this should be done. Our main aim in building this theorem prover 

was not mainly in prod~cing a high performance theorem prover but to build a system 

that can be considered to be a prototype that would illustrate the idea of introducing 

concurrent processing in resolution based theorem provers. YVe believe that concurrent 

processing is the intermediate step in moving from sequential processing towards parallel 

processing. Concurrent processing provides the simplicity of sequential system design 

with efficient processing capabilities of parallel system. In our discussion here we 

present a novel design of the system and how we propose to implement it. 



CHAPTER 1 

INTRODUCTION 

In this chapter, our aim is to give a background introduction and followed by the 

definition of our problem of research. This will be followed by an overview of this 

thesis. 

1.1 Background 

The field of Automated Theorem Proving (A TP) began approximately in the 

late 1950s and despite its pure mathematical origin, developments in the area have been 

utilized in many important applications in computer science. Most of the work during 

these three and a half decades has been devoted to the automation of first-order predicate 

calculus (mainly by the resolution method and its refinements). The importance of ATP 

within the discipline of computer science, especially with some of the concerns of 

Artificial Intelligence (AI) is well known. [Nilsson 80] for example, mentions a 

range of connections between AI and A TP to support the claim that" , .. theorem proving 

is an ex'tremely important topic in the study of AI methods". 

The first significant computer program for theorem proving was the Logic Theory 

Machine [Newell, Shaw & Simon 57], which used working backwards (backward 

chaining) as its basic heuristic algorithm. Since then, automated theorem proving has 



world problems. In [Quaife 91] it has been defined that one of the long-range goals of 

automated theorem proving research is to develop programs intelligent enough to prove 

theorems that human mathematicians cannot prove. 

The method of resolution is the most widely used method for automated theorem 

proving, with systems like AURA (AUtomated Reasoning Assistant) [Smith 88], ITP & 

LMA (Interactive Theorem Prover & Logic Machine Architecture) [Lusk & Overbeek. 

84a] [Lusk & Overbeek 84b] and OTTER (Organized Technique for Theorem-proving 

and Effective Research) [McCune 90] all were developed using this method. Although 

resolution based A TP systems have shown considerable improvements in power over the 

years, their performance is still low. Researchers, therefore have began seeking ways to 

improve the performance of the ATP systems. The two factors that are likely to lead to 

significant performance improvements, that so far have been identified are database 

indexing and parallel processing [Butler, Lusk, McCune & Overbeek 86]. Apart from 

these two approaches, the more recent approach is the so called "Prolog-technology" 

theorem-provers[Schuman & Letz 90], whIch uses the compilation techniques from 

WAM-based Prolog implementations to achieve extremely high inference rates, at a cost 

of possibly redundant computations. Although certain small problems can be done very 

quickly with the Prolog-technology approach, many large problems still remain out of 

reach of even the best' Prolog-technology systems such as SETHEO (SEquantial 

THEOrem prover) [Letz, Schuman, Bayerl & Bibel 92]. 

The effect of database indexing in improving the performance of theorem provers 

is demonstrated by OTTER, which is a sequential first-order logic theorem prover. 

OTTER's database indexing method has made this program the fastest and the most 

powerful among all existing resolution based systems. Whereas in the concern of 

parallelism, [Butler & Karonis 88] developed a scheme based primarily on domain 

decomposition, for parallelizing- A TP systems. 
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The work addressed by this thesis centers around developing a resolution based 

A TP system using concurrent processing approach based on the scheme developed by 

[Butler & Karonis 88]. Our aim in constructing a concurrent first-order logic theorem­

prover was not mainly in producing an extremely high-performance predicate logic 

theorem-prover. Rather, it was to create a system that can be considered to be a prototype 

that would generalize to systems for the predicate .calculus in using concurrent 

processing. The aim of using concurrent processing here was to investigate its usefulness 

in enhancing the problem solving process in automated theorem proving. 

Our aim in this chapter is to introduce the background and define the problems of 

our research and finally to give an overview of this thesis. We do this byfirst giving a 

general introduction as to the background of the problem. This is followed by a brief 

introduction to the areas of automated theorem proving and concurrent processing 

concepts that will be used throughout this thesis. Following this is a general look at 

current implementations of resolution based sequential ATP systems and the problems 

faced by them. The discussion is then continued by defining the scope and objectives of 

this thesis and followed by a section on the organization of this thesis. Finally we will 

give a summary of this chapter. 

1.2 Introduction To Automated Theorem Proving 

Automated theorem proving involves the programming Qf computers to perform 

logical (mathematical) deduction. This should not be confused with numerical calculation 

in which operations that need to be performed can be exactly specified ahead of time. 

Rather, theorem provers search for proofs of the truth or falsity of statements given 

axioms describing the basic assumptions. 
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the designation "automated reasoning" has been used since 1980 and prior to this, much 

of the research and many of the applications under this area were discussed in terms of 

automated theorem proving. The difference between the two fields rests mainly with the 

way in which the corresponding software is used and with their scope. In automated 

reasoning, the emphasis is on an active collaboration between the user and the program 

and on many uses that we would not normally consider to involve "proving theorems". 

Automated theorem proving is now a part of automated reasoning. 

In this section we will give an introduction to the general characteristics of 

automated theorem proving and A TP systems, followed by a brief look at the method of 

resolution, which will be the method used in this thesis. As we are using logic as a 

formal method of reasoning and as such it has its own syntax and logical rules. It is 

appropriate here that we give the general logical functions or the sentential connectives 

that will be used throughout this thesis. The logical functions mentioned are AND, OR, 

NOT, IMPLIES and EQUIV ALENT, whose symbol are : 

Logical Function . Symbol 

AND 1\ 

OR v 

NOT --, 

IMPLIES => 

EQUNALENT ¢::> 

The language of logic is very commonly used as a way of representing facts 

because it provides a powerful way of deriving new knowledge from old, which is the 

basis of mathematical deduction. In this formalism, we can conclude that a new statement 

is true by proving that it follows from the statements that are already known. Let us 

illustrate some applications of the first-order logic to problem solving by giving an 

h r h i fir v 
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prove that the fonnulas are valid or inconsistent. Let us say in our example we have the 

following statements: 

1. All men are mortal. 

2. Ali is a man 

Our aim is to show that Ali is mortal. From these two statements we derive the following 

two axioms: 

Al : C\7'x)(man(x) =:} mortal(x)) 

A2 : man (Ali) 

So our aim here is to show that Ali is mortal from A 1 and A2. That is, to show that 

morta1(Ali) is a logical consequence of Al and A2. 

We have : 

Al A A2: ('v'x)(man(x) =:} mortal(x)) A man(Ali) 

If Al A A2 is true in an interpretation J, then both A 1 and A2 are true in I. Since (man(x) 

=:} mortal(x)) is true for all x, when x is replaced by "Ali", (man(Ali) =:} mortal(Ali)) is 

true in 1. That is, ...,man(Ali) v mortal(Ali) is true in I. However ...,man(Ali) is false in I 

since man (Ali) is true in I. Hence, mortal(Ali) must be true in I. We have therefore shown 

that mortal(Ali) is true in I whenever (A 1 A A2) is true in I. By definition, mortal(Ali) is 

a logical consequence of A 1 and A2. 

In our example here, we have shown that the conclusion follows from the given 

facts. This method, that conclusions follow from axioms is called a proof A procedure 

for finding proofs is called a proof procedure. In our following discussions we will 

discuss how we can mechanize this proof procedure so that it can be implemented in a 

computer and in doing so will enable us to use computers in finding proofs. 

1.2.1 Basic Concepts Of Automated Theorem Proving 

5 



basically refers to the study and development of programs that reason logically. Logical 

reasoning refers to processes that infer new formulas from existing formulas such that the 

new formulas are always true in any interpretation where the old formulas are true. 

One of the most common example of logical reasoning is modus ponens. In 

modus ponens, for example if we have two formulas p => q and p, we can infer the 

formula q. In basic English, what this formulas mean is that if p implies q being true and 

ifp is true then q is also true. There are ways in which this can be proven to be valid, that 

is any assignment of truth values that makes the two hypotheses true must also assign q 

to be true, but here we will not touch on this. Besides modus ponens, other examples of 

logical reasoning are chain rule and resolution. We will not be discussing about chain 

rule, whereas resolution will be discussed in the next section. These three examples of 

logical reasoning may be summarized as follows: 

Modus Ponens Chain Rule 

p=>q 

p 

q 

p=>q 

q=>r 

p => r 

Resolution 

p v-,q 

q vr 

p vr 

At this point we can see that to understand automated theorem proving, we must 

be familiar with logic to some extent. Here we will give a brief introduction to the 

elements of first-order logic that are most important to the field of automated theorem 

proving. A first-order logic language consists of a number of different kinds of symbol 

that are combined to make well-formed formulas(wff). These are variables, constant, 

function and predicate symbols, the Boolean connectives (AND, OR, NOT, etc.), the 

quantifiers 'v'(FORALL) and 3(EXISTS), parentheses and commas. Each function and 

predicate symbol has an arity or arguments associated with that symbol. The parentheses 
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functions over the domains of interest and predicate symbols are meant to represent 

true/false relationship. 

The purpose of us explaining the basic structure of first-order logic language here 

is because the familiarity of it is extremely important not only in ATP but also in AI for 

several reasons. First, logic offers the only formal approach to reasoning that has a sound 

theoretical foundation. This is especially important in our attempts to mechanize or 

automate the theorem proving process in that inferences should be correct and logically 

sound. Second, the structure of it is flexible enough to permit the accurate representation 

of natural language reasonably well. This is mainly important in AI systems since most 

knowledge must originate with and be consumed by humans. To be effective, 

transformations between natural language and any representation scheme must be natural 

and easy. Finally it is widely accepted in the AI field as one of the most useful 

representation method. 

Up to now we have only looked at one of the basic purpose of automated theorem 

proving that is the development of programs that reason logically. Next we are going to 

look at a basic paradigm for the automation of theorem proving. This paradigm is 

commonly know as the Argonne paradigm for the automation of theorem proving [Wos 

88] and has been the basis for the development of various ATP systems such as ITP & 

LMA [Lusk & Overbeek 84a] [Lusk & Overbeek 84b], AURA [Smith 88] and OTTER 

[McCune 90]. This paradigm has 6 components that is: 

1. The paradigm relies on the use of a specific language to represent the 

information, for example facts and relationships to inform the theorem proving 

program about a given assignment. Each piece of information that is required is 

represented by using one or more statements (clauses) in a language called the 

clause language. 
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always yield conclusions that follow inevitably from the statements to which the 

rule is applied. 

3. The programs reasoning can be controlled by the use of strategy. One type of 

strategy directs the reasoning by focusing the program's attention on paths 

conjectured to be greater interest, and another type of strategy restricts the 

reasoning by prohibiting the program from pursuing paths of certain types. 

4. When conclusion is drawn, the program may apply some number of 

transformation to the conclusion to rewrite it into a canonical form or normal 

form. 

5. The program may then test the result by comparing it to other retained pieces of 

information to decide whether the new conclusion is redundant and should 

therefore be immediately discarded. 

6. To "know" when a given assignment has been completed, the program may 

search the available information to see if two items (clauses) contradict each 

other. To set the stage for employing this test for assignment completion, the 

information that is given to the reasoning program typically includes a statement 

or statements (clauses) that correspond to assuming the assignment cannot be 

completed or that correspond to assuming the desired result is false. 

Basically this six components of this paradigm can be summarized into language, 

inference rule, strategy, a procedure for transforming into a canonical form, procedure for 

identifying and then discarding redundant information and a test for assignment 

completion. This six components together make up a basic A TP system. We will be 

giving a more detailed discussion on these components in chapter 2 of this thesis. 

1.2.2 Method of Resolution 
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that has been a part of AI-problem solving research from the mid-1960s. Resolmion is a 

sound inference rule that when used to produce a contradiction, is also complete. What is 

meant by being complete in this aspect here is for example if we have a set R of inference 

rules, we can say it is complete if af}d only if the formula G can be obtained from the 

formula F with a finite number of applications of members of R whenever F logically 

implies G. In an important practical application, resolution theorem proving, particularly 

the resolution contradiction system, has made the current generation of PROLOG 

interpreters possible [Kowalski 79]. 

The resolution prin~iple, by using a minimum use of substitution can find 

contradiction in a database of clauses. Resolution contradiction proves a theorem by 

negating the statement to be proved and adding this negated goal to the set of axioms that 

are known to be true. It then uses the resolution rule of inference to show that this leads 

to a contradiction. If the theorem prover show that the negated goal is inconsistent with 

the given set of axioms, it follows that the o~ginal goal must be consistent. This proves 

the theorem. 

Resolution contradiction proofs involve the following steps: 

1. Put the premis~s or axiom into clause form. 

2. Add the negation of what is to be proved in clause form to the set of axioms. 

3. Resolve these clauses together, producing new clauses that logically follow 

from them. 

4. Produce a contradiction by generating the empty clause. 

Resolution based proofs by contradiction require that the axioms and the negation 

of the goal be placed in a normal form called clause form. Clause form represents the 

logical data base as a set of disjunctions of literal. A literal is an atomic expression or the 

9 
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be unified to make them equivalent. A new clause is then produced consisting of the 

disjuncts of all the predicates in the two clauses minus the literal and its negative instance. 

Based on what we have explained on the method of resolution, here we present a 

simple example of how resolution can be used to produce a proof. We wish to prove that 

"Ali will die" from statements that "Ali is a human" and "All humans are mammals" and 

"All mammals will die". Changing these three premises to predicates and applying modus 

pones gives: 

1. All human are mammals: V'(x)(human(x) :=} mammal(x)) 

2. Ali is a human: human(ali) 

3. Modus ponens and {ali/x} gives: mammal(ali) 

4. All mammals will die V'(y)(mammal(y) :=} die(y)) 

5. Modus ponens and {ali/y} gives: die (ali) 

(Here the usage of {x/y} is as a substitution operation, where it means that substitute all 

occurrence of y in that particular clause with x.) Equivalent reasoning by resolution 

converts these predicates to clause form : 

Predicate Form 

1. "i/ (x)(human(x) :=} mammal(x)) 

2. human(ali) 

3. V'(y)(mammal(y) :=} die(y)) 

Negate the conclusion that Ali will die: 

4. -,die(ali) 

Clause Form 

-,human(x) v mammal(x) 

human(ali) 

-,mammal(y) v die(y)) 

-,die (ali) 

Compare and clash the clauses having opposite literals, producing new clauses by 

resolution (Figure 1.1). 

The symbol 0 in figure 1.1 indicates that the empty clause is produced and the 

contradiction found. The 0 symbolizes the clashing of a predicate and its negation, that 

.~ _L~ _ ____ L ___ ... ____ ~ __ ... ___ 11 __ ___ ... _ .... -1! ..... : ____ ................ _ ..... _ ............ _ ...... 
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(unifications) used to make predicates equivalent also gives us the value of the variables 

under which a goal is true. 

-,human(x) v mammal(x) -,mammal(y) v die(y) 

human(ali) -,human(y) v die(y) 

die (ali) -, die(ali) 

~ 
o 

Figure 1.1 : Resolution proof of the" Ali will die" problem 

The purpose of us giving this example here is to demo strate the usefulness of the 

method ofresolution in providing the means to mechanically derive conclusions that are 

valid, hence an extremely useful method for theorem proving using computers. . 

1.3 Introduction To Concurrent Processing Concepts 

Up to this point we have mentioned that our aim in this thesis is to introduce 

concurrent processing in developing an ATP system. If we observe here carefully, we 

have been using the term concurrency instead of parallelism. Here we would like to stress 

that concurrency and parallelism refer to two different meanings. In [Tick 91] it has been 

mentioned that parallelism and concurrency are different although parallel and concurrent 

processing are often confused. Parallel processing refers to processing that can be 

executed in parallel, i.e., parallelism is the ability to gain speedup by executing actions 

simultaneously, whereas concurrent processing refers to processing that can express 
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without requiring multiple physical processors for achieving this task. Parallelism does 

not imply concurrency, nor does concurrency imply parallelism. 

Here we also would like to introduce the difference between concurrent 

processing and sequential processing. A sequential program consists of data declarations 

and executable instructions in a programming language. The instructions are executed 

sequentially on a computer which also allocates memory to hold data. A concurrent 

program is a set of ordinary sequential programs which are executed in abstract 

parallelism [Ben-Ari 90]. The parallelism is abstract because we do not require that a 

separate physical "processor" be used to execute each process, unlike in parallel 

processing. What is being mentioned here is that a sequential program specifies 

sequential execution of a list of statements and a concurrent program specifies two or 

more sequential programs that may be executed concurrently. 

In the following two sections, we will be giving a brief discussion about the 

various programming methods in concurrent programming followed by a brief discussion 

." 
on the environment and its characteristics of our concurrent programming environment. 

1.3.1 Concurrent Programming Methods 

A concurrent program can be executed either by allowing processes to s~are one 

or more processors or by running each process on its own processor. The first approach 

is referred to as multiprogramming, it is supported by an operating system kernel 

[Dijkstra 68] that multiplexes the processes on the processor. The second approach is 

referred to as multiprocessing if the processors share a common memory or as 

distributed processing if the processors are connected by a communications network. 

Hybrid approaches also exist, for example, processors in a distributed system are often 

multiprogrammed [Jones & Schwarz 80]. 
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In order to cooperate, concurrently executing processes must communicate and 

synchronize. Communication allows execution of one process to int1uence execution of 

another. Interprocess communication is based on the use of shared memory or on 

message passing [Andrews & Schneider 83]. Whereas synchronization is often necessary 

when processes communicate because processes are executed with unpredictable speeds. 

In message passing, we create many concurrent processes and each process 

communicates by exchanging messages. In message passing method, no data objects are 

shared among processes. Each process has its own local set of private data objects. In 

order to communicate, processes must send data objects from one local process to 

another (Figure 1.2). 

Figure 1.2 : Message Passing - A collection of concurrent processes communicate by 

exchanging messages (Processes are round, data objects are square, messages oval). 

Shared memory operations allow two or more processes to share a segment of 

physical memory but data areas of the processes that communicate are entirely separate. 

In this method, processes communicate and coordinate by leaving data in the shared 

memory (Figure 1.3). 
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Figure 1.3 : Shared Memory - Concurrent Processes and shared memory figure as 

autonomous parts of the program structure. Processes communicate by reading and 

writing in shared memory. 

In process synchronization, semaphores are used as a synchronization primitive. 

One of the main uses of semaphores is to synchronize the access to shared memory 

segments. Semaphores are basically integer valued variable, that is a resource counter. 

The value of the variable at any point in time 'rs the number of resource units available. If 

we have one resource, say a shared memory segment, then the valid semaphore values 

are zero and one (Figure 1.4). 

Kernel 

I 0 or 1 Semaphore L... ____ ...J 

Process A Process B 
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1.3.2 Concurrent Programming Environment 

In this section we will discuss briefly about our concurrent programming 

environment. The reason for this is, our design which will be discussed in chapter 3 and 

chapter 4 is influenced by this environment and we feel it is appropriate that we give 

some basic introduction to it at this point. A more detailed discussion will be given in 

chapter 2. 

Our concurrent programming environment is based on the Unix InterProcess 

Communication (IPC). IPC involves sharing data between process and when necessary, 

coordinating access to the shared data. There are basically three main types of IPC :-

1. Message Passing - The message passing facility allows a process to send and 

receive messages. A message being in essence an arbitrary sequence of bytes or 

characters. 

2. Semaphores - Semaphores prpvide a low-level means for process 

synchronization. It is not suited to the transmission of large amounts of 

information. 

3. Shared Memory - Shared memory allows two or more processes to share the 

data contained.in specific memory segments. 

These three mechanisms dominate the Unix IPC package with message passing allowing 

processes to send formatted data streams to arbitrary processes, shared memory allowing 

processes to share parts of their virtual address space and semaphores allowing processes 

to synchronize execution. 

With these IPC mechanisms we do have the necessary facilities to introduce 

concurrent processing into automated theorem proving. As we have mentioned earlier, 

the two components in concurrent processing is interprocess communication and· 
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which provides facilities for process synchronization. In introducing concurrent 

processing into any problem solving process, the tasks involved are mainly in breaking 

up the problem solving process into various concurrently executing tasks which 

collectively aim to solve the problem in focus. These concurrently executing processes 

need some form of interprocess communication to help establish links that allow these 

various processes to communicate in their problem solving process and some form of 

synchronizing mechanism to coordinate their tasks. This is where the IPC mechanisms 

play their roles. Earlier in figure 1.1 we have shown the resolution proof of the "Ali will 

die" problem, which is done sequentially. Now let us show how this same problem can 

be solved concurrently. In this problem we have four clauses and our aim is to find a 

contradiction. Let us divide this clause space into two groups and these two groups of 

clauses will be resolved concurrently and both the results will then be combined to obtain 

a contradiction. Figure 1.5 shows how this is done. 

Process 1: 

..., human(x) v mammal(x) 

human(ali) 

{ali/x} mammal(ali) 

Process 2: 

mammal (ali) 

..., mammal(ali) 

o 

..., mammal(y) v die(y) 

..., die(ali) 

{ali/y} ..., mammal(ali) 

..., mammal(ali) 

Fi re 1.5 : A Concurrent Simulated Resolution Proof of the "Ali will die" Problem 
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So based on this example we can see the two components of concurrent 

processing in actions. That is, firstly for interprocess communication involves the 

passing of clauses between process I and process 3 and also process 2 and process 3. 

Whereas for synchronization is basically involved in process 3 where it has to make sure 

that both process I and process 2 have passed whatever necessary clause to it before it 

can proceed with its own execution. This simple example here basically highlights how 

concurrent processing can be introduced into automated theorem proving. 

1.4 Current Implementations of Automated Theorem Proving Systems 

As theorem proving -is the most optimum strategy for applying logic in such areas 

as database/query systems and logic-based languages, a great deal of AI research has 

been devoted to the subject. As a result of this, a number of theorem proving systems 

have emerged from this research. 

Basically the theorem provers that nave been developed in the area of classical 

logic, can be divided into resolution based and nonresolution based. Up till now, we 

have only been discussing about resolution based system. The nonresolution based 

theorem provers are designed to emulate the reasoning of human theorem provers. For 

this reason it is also known as natural deduction theorem prover. Nonresolution ~heorem 

provers generally use a backward-chaining technique involving substitution in an attempt 

to transform the theorem to be proven into a form consistent with the original axioms. 

Among the more successful nonresolution theorem provers that have been developed are 

IMPLY [Bledsoe 77] and BMTP (Boyer-Moore Theorem Prover)[Boyer & Moore 79]. 

As we are more interested in resolution based theorem proving, we would not be 

discussing further in the area of non resolution theorem proving. 

As mentioned earlier in the cha ter there has been various resolution based 
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sequential processing. In the area of parallel processing, there were also various systems 

developed, such as ROO (Radical OITER Optimization) [Lusk, McCune & Slaney 91] 

which used the shared memory multiprocessor concept to parallelize the ATP algorithm 

and PARROT-II (PARRallel OTter - II) [Jindal, Overbeek & Kabat 92] which used the 

distributed processors concept to parallelize the A TP algorithm . 

. Here we can see that there has been numerous A TP systems developed over the 

years not only using sequential processing but also using parallel processing. The 

development of these systems have been initiated by the various problems that exists in 

automated theorem proving. In [Wos 88] some of these problems have been identified, 

among them are : 

1. Clause Retention - The ATP program keeps too many deduced clauses (too 

many conclusions) in its database of information. 

2. Inadequate Focus - The ATP program gets lost too easily. 

3. Redundant Information - The ATP program generates the same clauses (or 

proper instances of clauses already retained) over and over again. 

4. Clause Generation - The ATP program draws far too many conclusions, many 

of which are redundant and many of which are irrelevant even though they are 

not redundant. 

5. Size of the Deduction Steps - The inference rules do not take deduction steps 

of appropriate size. 

6. Choice of Transformation for Canonicalization - The A TP program does not 

always use the most effective transformation to rewrite infonnation into a 

canonical fonn. 

7. Metarules - No adequate guidelines exists for selecting the appropriate 

representation, inference rule, strategy, transformation for canonicalization and 
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8. Database Indexing - The A TP program requires too much time to find the 

appropriate information in its database. 

A look at this list, reveals the wide range of interesting research offered by 

automated theorem proving. This is one of the reason why research in this area has 

attracted numerous researches with various system developed using various techniques 

and concepts to solve these numerous problems that exists. 

1.5 Scope and Objectives 

In this chapter we have mentioned that we intend to introduce concurrent 

processing concept in automated theorem proving. Our aim in doing this is to enhance 

one of the main components of an A TP system, that is the clause generation component. 

We intend to decompose this component into multiple processes with the understanding 

that with multiple processes generating clauses, an A TP systems goal in theorem proving 

can be archived faster. 

As we know that the aim of theorem provers is to search for proofs of the truth or 

falsity of statements given axioms describing the basic assumptions. For example in the 

case of resolution based automated theorem provers, using the existing clauses, new 

clauses are resolved and added to the clause space until a clause that contradicts with any 

existing clause in the clause space can be found. So what we have here is a search 

process for the contradicting clause. If we observe our earlier example in figure 1.1 

which is based on the sequential technique, we can see that in resolving new clauses from 

existing clauses until a contradicting clause can be found, the search at any particular time 

is only focusing on one clause at a time to resolve it against all possible clauses to 

generate new clauses. With a closer look at this problem we can see that while focusing 

-"'-. -
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and this is highlighted in our example shown in figure 1.5. So if we compare these two 

techniques, we can see that the sequential method takes one step at a tim~ in finding the 

contradicting clause, whereas the concurrent method takes multiple steps at a time in its 

search for the contradicting clause. So basically we believe that by focusing on multiple 

clauses simultaneously rather than a single clause at any time, the search for the 

contradicting clause can be further enhanced. 

Our main objective in this thesis is to show how we will convert a sequential A TP 

algorithm into a concurrent A TP algorithm and explain how we intend to implement this 

algorithm. We will be doing this by first studying a sequential ATP algorithm and 

identify the appropriate section of the algorithm to be decomposed into concurrent 

processing, hence introducing a concurrent A TP algorithm. This will be followed by an 

explanation of how we intend to implement this algorithm. The scope and objectives of 

this thesis are therefore: 

1. To study an sequential ATP algorithm and identify the components that can be 

.' 
decomposed into concurrent processing with the aim of enhancing the clause 

generating component of the algorithm. 

2. To give a novel design and how we intend to implement this algorithm. 

1.6 Organization Of the Thesis 

Having mentioned the scope and objectives of our thesis, in this section we 

would like to give a brief description about the organization of this thesis. The thesis will 

be organized in the following manner: 

Chapter 1 : This chapter relates to the background and the definition of the 

problem of our research. Here we give a general introduction to our 

problem followed by the scope and objectives of this thesis. 
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to better understand the problem and the problem-solving discussed in 

this thesis. 

Chapter 3 : This chapter discusses about the conversion of a sequential automated 

theorem proving algorithm into a concurrent algorithm. Here we 

attempt to explain the component of the sequential algorithm that we 

chose to convert into a concurrent version and how the conversion is 

done. 

Chapter 4 : This chapter provides a discussion on how we intend to implement 

the algorithm that we have discussed about in chapter 3. Here we will 

provide the basic structures of the proposed implementation of the 

algorithm. 

Chapter 5 : Having discussed about the conversion of a sequential automated 

theorem proving algorithm into a concurrent version and its proposed 

implementation, in this chapter we discuss about the various aspects 

of our work in this thesis and how the proposed algorithm can be 

further enhanced in future work. 

Concluding remarks on the various issues touched in this thesis are given 111 the 

conclusion. 

1.7 Summary of Chapter 

In this chapter our aim was to give an introduction to the background of our 

research. We did this by first introducing our problem of research. This was followed by 

a background look at our field of research which is in the area of automated theorem 

proving and the concepts of concurrent processing, with the aim of better understanding 

the problem. Next we gave the scope and objectives of this thesis as to make our work 

more clearer. Finally we presented the organization of this thesis for better understanding 



Chapter 2 

Automated Theorem Proving and Concepts for 
Concurrent Processing 

In this chapter our aim is to provide a general introduction to the area of automated 

theorem proving and concepts for concurrent processing with the aim to better understand 

the problem and the problem-solving discussed in this thesis. 

2.1 Introduction 

As our research in this thesis centers around introducing concurrent processing 

into ATP systems, we turn to a brief review of the pertinent aspects of automated theorem 

proving and concurrent processing in this chapter. Our discussion here will be divided 

into two main sections. In the first section, we will discuss about the concepts of theorem 

proving and the basic elements of automated theorem proving and this will be··followed 

by the second section, where we will discuss further the concepts of concurrent 

processing based on our earlier discussion in chapter 1. 

The discussion on automated theorem proving will be divided it into two parts. In 

the first part we will give the basic concepts of theorem proving and this will be followed 

by a discussion on the elements of automated theorem proving. Whereas our discussion 

on concurrent processing will also be divided into two parts. The first part will be on the 
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be based on the Unix IPe system because this will be our proposed platform for 

implementation and it influences the conversion and design of our system. 

2.2 Concept of Theorem Proving 

In theorem proving, what we attempt to show is that, a particular well-formed 

formula (wff), B, is a logical consequence of a set S = {Al, ..... ,Ak} of wffs, 

collectively called the axioms of the problem. A rule of inference is a rule by which new 

expressions can be derived from previously established ones. For instance, if Ai and Aj 

are previously established wffs, 

fq(Ai,Aj) => Ak 

indicates that Ak can be derived from Ai and Aj using inference rule fq. 

In order to understand theorem proving more formally, a notation for the first­

order predicate calculus is needed. In our discussion here the universe of discourse will 

contain a set of elementary symbols, a,b,c, ... , which serve as constants, a number of 

variable symbols, written from the "end" of the alphabet, s,t,u,v,w,x,y,z and functions. 

Functions are mappings, a function of n arguments maps from the elements of the set Dn 

(all possible ordered sets of n terms) into the set D.·For example, the function + is a 

binary function, which maps a pair of real number into a single real number. The; letters 

f,g,h will be used for functions. Finally, capital letters (usually P,Q) will indicate 

relations or predicates. A predicate of n arguments maps from Dn into the set (T,F}. That 

is, any n-ary relationship between terms is either true or false. 

Now let us consider the structure of a well-formed formula. A term is either a 

variable, a constant or a function. An n-ary function must have n terms for its arguments. 

Thus the following are terms: 
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R(f(x),a), P(a,y), Q(g(a,b),f(x)) 

A literal is an atomic formula or its negation. When the structure of an atomic formula is 

not relevant, we shall write atomic formulas as capital letters, A,B, etc., with negations 

indicated as -,A, -,B. 

A clause is a disjunction of literals and a set of clauses S is interpreted as a single 

statement that is the conjunction of all of its clauses. Since atomic formulas are predicates 

that map into the set {T,F}, the truth values of a set of atoms determine the truth values 

of the clauses and set of clauses that can be constructed from them. 

These ideas are illustrated in Figure 2.1, which shows some simple statements 

written in this notation. The constants of this example {a,b} should be interpreted as any 

two real numbers, whereas the functions should be interpreted as single-valued functions 

on real numbers. The predicates are the three possible orderings (greater than, less than, 

equal to) that can hold between any pair of real numbers. Obviously a statement of a 

particular ordering for a given pair is either true or false, indicating clauses C1, C2 and 

C3 in S states that they are simultaneously true. 




