
A Resolution Based Automated Theorem Proving
System Using Concurrent Processing Approach

by

SURASH NATARAJAN

Thesis submitted in partial fulfilment of the requirements for the

degree of Master of Science

May 1994

Acknowledgment

I wish to express my most sincere gratitude to my supervisor Dr. Nor Adnan

Yahya for his continued encouragement and invaluable guidance, without which this

dissertation would not have possible. I am also especially grateful to him for having

taken so much of his valuable time and for his keen interest throughout the course of this

project. I also wish to thank Assoc. Prof. Dr. Zaharin Yusof and Assoc. Prof. Dr. R.K.

Subramaniam for their kind-advise and guidance. To my family, colleagues and friends

many thanks for providing great encouragement and moral support during the whole

course of the MSc. programme. Also, I wish to thank the School of Mathematics and

Computer Science and the Institute of Postgraduate Studies for providing much

assistance.

i i

III

Table of Contents

A cknowledgmen t ... ii

Table of Contents .. iii

List of Figures .. vi

Abstrak .. viii

Abstract ... LX

Chapter 1 Introduction .. 1

1.1 Background ... 1

1.2 Introduction To Automated Theorem Proving 3

1.2.1 Basic Concepts Of Automated Theorem Proving 5

1.2.2 Method of Resolution .. 8

1.3 Introduction To Concurrent Processing Concepts 11

1.3.1 Concurrent Programming Methods 12

1.3.2 Concurrent Programming Environment 15

1.4 Current Implementations of Automated Theorem Proving Systems 17

1.5 Scope and Objectives .. 19

1.6 Organization Of The Thesis:, ... 20

1.7 Summary of Chapter .. 21

Chapter 2 Automated Theorem Proving and Concepts for Concurrent

Processing .. 22

2.1 Introduction .. · 22

2.2 Concept of· Theorem Proving ... : 23

2.3 Elements of Automated Theorem Proving .. 26

2.3.1 Representation .. 26

2.3.2 Inference Rule .. 28

2.3.3 Strategy .. 34

2.3.4 Subsumption .. 36

2.3.5 Assignment Completion ... 37

2.4 Concepts for Concurrent Processing .. 38

2.5 Interprocess Communication ... 38

2.5.1 Shared Memory .. .40

2.5.2 Message Queues .. 42

2.5.3 Semaphores --

i v

Chapter 3 The Conversion From A Sequential To A Concurrent Theorem

Proving Algorithm .. , 47

3.1 Introduction .. , 47

3.2 Techniques in Introducing Concurrency " ... , 48

3.3 Scheme of Butler and Karonis ... 50

3.4 A Sequential Theorem Proving Algorithm " ... 51

3.5 Introducing Concurrency in The Sequential Theorem Proving

Algorithm .. 56

3.6 The Concurrent Theorem Proving Algorithm 57

3.6.1 TheHostAlgorithm .. 60

3.6.2 The Generator Algorithm .. 65

3.6.3 Termination in the Concurrent Algorithm 65

3.7 An Analysis of Data Flow in The Concurrent Algorithm , ... " . " .. 67

3.7.1 Data Flow in Interprocess Communication 68

3.7.2 Conceptual Data Flow Between Host and Generators 69

3.8 Summary of Chapter .. 71

Chapter 4 Implementing The Concurrent Theorem Proving Algorithm ... 72

4.1 Introduction ... 72

4.2 A Review of the Concurrent Theorem Proving Algorithm 73

4.3 Decomposing the Concurrent Al~orithm for Implementation 75

4.3.1 Theorem Prover Component. ... 76

4.3.2 Concurrent Processing Component 77

4.4 Implementing the Theorem Proving Component.. 78

4.4.1 Representation .. 78

4.4.2 Inference Rule .. '" . '" 85

4.4.2.1 Unification Process ... 85

4.4.2.2 Inference Process , '" ... , 88

4.4.3 Strategy .. 91

4.4.3.1 Weighting Strategy ... 92

4.4.3.2 Set Of Support Strategy 93

4.4.4 Subsumption .. 94

4.5 Implementing the Concurrent Processing Component , 97

4.5.1 Interprocess Communication Task 97

4.5.2 Synchronization Task .. 102

4.5.2.1 Locking of Shared Resources 103

4.5.2.2 Events in Monitoring Concurrently Executing

Tasks

v

4.6 A Simulated Execution of the Concurrent Theorem Proving

Algorithm .. 106

4.7 Summary of Chapter .. I 15

Chapter 5 Discussion and Future Work ... 117

5.1 The Concurrent Theorem Prover Evaluation , ... 117

5.2 The Effectiveness of the Concurrent Theorem Prover.. I 19

5.3 Future Work .. 120

5.4 Summary of Chapter .. 121

Conclusion .. . 123

Bibliography 125

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 4.1

Figure 4.2

Figure 4.3

vi

List of Figures

Resoh.ition Proof of the "Ali will die" Problem 11

Message Passing - A collection of concurrent processes communicate

by exchanging messages '. ... 13

Shared Memory - Concurrent Processes and shared memory figure as

autonomous parts of the program structure 14

Semaphore - Value stored in kernel 14

A Concurrent Simulated Resolution Proof of the "Ali will die" problem

... 16

Simple Statements Expressed in the Predicate Calculus Notation ... 25

Interprocess Communication between two processes 39

Shared Memory Architectural Relationships 40

Message Queue Memory Architectural Relationships 43

Semaphore Architectural Relationship 45

Process Configuration for the Scheme of Butler and Karonis 50

Sequential Theorem Proving Algorithm (Algorithm I) 52

Basic Data Flow Between Host and Generators 58

A Simulated Execution of the Host and Generator Algorithm 61

The Host Algorithm 62

The Generator Algorithm 66

Conceptual Data Flow Between Host and Generators 70

Partitioning and Hierarchical Organization of Tasks 77

A Conceptual Storage Model For A Set of Clauses 79

An Example Storage Representation '" 84

Figure 4.5

Figure 4.6

\. i i

Data Transfer Syntax Using Shared Memory 101

Role of Lock in Interprocess Communication 105

Abstrak

Satu Sistem Pembuktian Teorem Automatik Berdasarkan

Resolusi Menggunakan Pendekatan Pemprosesan Seiring

VIII

Semenjak pembangunan sistem pembuktian teorem automatik berdasarkan

resolusi yang pertama di pertengahan 1960an, terdapat penyelidikan yang berterusan di

dalam bidang ini untuk mempertingkatkan proses penyelesaian masalah di dalam sistem­

sistem pembuktian teorem. Penyelidikan pada masa kini di dalam bidang ini adalah

tertumpu kepada penggunaan kaedah-kaedah pengideksan pangkalan data dan

pemprosesan selari untuk mempertingkatkan kecekapan sistem-sistem tersebut. Apa yang

dimaksudkan tentang kecekapan sistem adalah tertumpu kepada kelajuan pedaksanaan

sistem di dalam pembuktian teorem oleh suatu sistem pembuktian teorem automatik.

Penyelidikan yang dilaporkan di 4a1am tesis ini adalah tertumpu kepada

penggunaan kaedah pemprosesan seiring di dalam pembangunan suatu sistem

pembuktian teorem automatik berdasarkan resolusi, yang merupakan suatu aplikasi di

dalam bidang kecerdasan buatan. Tujuan kami melakukan penyelidikan ini adalah untuk

mengkaji keberkesana~ pemprosesan seiring di dalam mempertingkatkan proses

penyelesaian masalah di dalam suatu sistem pembuktian teorem berdasarkan resolusi.

Semasa penyelidikan kami di sini, kami telah mengkaji komponen mana di dalam suatu

sistem pembuktian teorem boleh dihuraikan untuk memperkenalkan pemprosesan seiring

dan bagaimana caranya ia mesti dilakukan. Tujuan kami di dalam pembinaan sistem ini

bukanlah tertumpu kepada penghasilan suatu sistem pembuktian teorem yang berkelajuan

tinggi, tetapi adalah untuk membina suatu sistem yang boleh dikatakan sebagai prototaip

yang akan mengamkan idea untuk memperkenalkan pemprosesan seiring di dalam

pembangunan sistem pembuktian teorem automatik berdasarkan resolusi. Di dalam

ix

Abstract

Ever since the first resolution based automated theorem proving system was

developed on a computer in the mid 1960s, there has been constant research in this area

on enhancing the problem solving process of the theorem provers. The recent trend in

this area is towards exploiting database indexing and parallel processing in increasing the

efficiency of these systems, in particular the execution speed of the theorem prover in

proving a theorem.

The research reported in this thesis is devoted to the use of concurrent processing

for developing a resolution based automated theorem proving system, an application in

the area of artificial intelligence. Our purpose in doing this is to study the usefulness of

concurrent processing in enhancing the pro?lem solving process in a resolution based

automated theorem proving system. During our research here we investigated which

component of the theorem prover pn be decomposed into introducing concurrent

processing and how this should be done. Our main aim in building this theorem prover

was not mainly in prod~cing a high performance theorem prover but to build a system

that can be considered to be a prototype that would illustrate the idea of introducing

concurrent processing in resolution based theorem provers. YVe believe that concurrent

processing is the intermediate step in moving from sequential processing towards parallel

processing. Concurrent processing provides the simplicity of sequential system design

with efficient processing capabilities of parallel system. In our discussion here we

present a novel design of the system and how we propose to implement it.

CHAPTER 1

INTRODUCTION

In this chapter, our aim is to give a background introduction and followed by the

definition of our problem of research. This will be followed by an overview of this

thesis.

1.1 Background

The field of Automated Theorem Proving (A TP) began approximately in the

late 1950s and despite its pure mathematical origin, developments in the area have been

utilized in many important applications in computer science. Most of the work during

these three and a half decades has been devoted to the automation of first-order predicate

calculus (mainly by the resolution method and its refinements). The importance of ATP

within the discipline of computer science, especially with some of the concerns of

Artificial Intelligence (AI) is well known. [Nilsson 80] for example, mentions a

range of connections between AI and A TP to support the claim that" , .. theorem proving

is an ex'tremely important topic in the study of AI methods".

The first significant computer program for theorem proving was the Logic Theory

Machine [Newell, Shaw & Simon 57], which used working backwards (backward

chaining) as its basic heuristic algorithm. Since then, automated theorem proving has

world problems. In [Quaife 91] it has been defined that one of the long-range goals of

automated theorem proving research is to develop programs intelligent enough to prove

theorems that human mathematicians cannot prove.

The method of resolution is the most widely used method for automated theorem

proving, with systems like AURA (AUtomated Reasoning Assistant) [Smith 88], ITP &

LMA (Interactive Theorem Prover & Logic Machine Architecture) [Lusk & Overbeek.

84a] [Lusk & Overbeek 84b] and OTTER (Organized Technique for Theorem-proving

and Effective Research) [McCune 90] all were developed using this method. Although

resolution based A TP systems have shown considerable improvements in power over the

years, their performance is still low. Researchers, therefore have began seeking ways to

improve the performance of the ATP systems. The two factors that are likely to lead to

significant performance improvements, that so far have been identified are database

indexing and parallel processing [Butler, Lusk, McCune & Overbeek 86]. Apart from

these two approaches, the more recent approach is the so called "Prolog-technology"

theorem-provers[Schuman & Letz 90], whIch uses the compilation techniques from

WAM-based Prolog implementations to achieve extremely high inference rates, at a cost

of possibly redundant computations. Although certain small problems can be done very

quickly with the Prolog-technology approach, many large problems still remain out of

reach of even the best' Prolog-technology systems such as SETHEO (SEquantial

THEOrem prover) [Letz, Schuman, Bayerl & Bibel 92].

The effect of database indexing in improving the performance of theorem provers

is demonstrated by OTTER, which is a sequential first-order logic theorem prover.

OTTER's database indexing method has made this program the fastest and the most

powerful among all existing resolution based systems. Whereas in the concern of

parallelism, [Butler & Karonis 88] developed a scheme based primarily on domain

decomposition, for parallelizing- A TP systems.

2

The work addressed by this thesis centers around developing a resolution based

A TP system using concurrent processing approach based on the scheme developed by

[Butler & Karonis 88]. Our aim in constructing a concurrent first-order logic theorem­

prover was not mainly in producing an extremely high-performance predicate logic

theorem-prover. Rather, it was to create a system that can be considered to be a prototype

that would generalize to systems for the predicate .calculus in using concurrent

processing. The aim of using concurrent processing here was to investigate its usefulness

in enhancing the problem solving process in automated theorem proving.

Our aim in this chapter is to introduce the background and define the problems of

our research and finally to give an overview of this thesis. We do this byfirst giving a

general introduction as to the background of the problem. This is followed by a brief

introduction to the areas of automated theorem proving and concurrent processing

concepts that will be used throughout this thesis. Following this is a general look at

current implementations of resolution based sequential ATP systems and the problems

faced by them. The discussion is then continued by defining the scope and objectives of

this thesis and followed by a section on the organization of this thesis. Finally we will

give a summary of this chapter.

1.2 Introduction To Automated Theorem Proving

Automated theorem proving involves the programming Qf computers to perform

logical (mathematical) deduction. This should not be confused with numerical calculation

in which operations that need to be performed can be exactly specified ahead of time.

Rather, theorem provers search for proofs of the truth or falsity of statements given

axioms describing the basic assumptions.

3

the designation "automated reasoning" has been used since 1980 and prior to this, much

of the research and many of the applications under this area were discussed in terms of

automated theorem proving. The difference between the two fields rests mainly with the

way in which the corresponding software is used and with their scope. In automated

reasoning, the emphasis is on an active collaboration between the user and the program

and on many uses that we would not normally consider to involve "proving theorems".

Automated theorem proving is now a part of automated reasoning.

In this section we will give an introduction to the general characteristics of

automated theorem proving and A TP systems, followed by a brief look at the method of

resolution, which will be the method used in this thesis. As we are using logic as a

formal method of reasoning and as such it has its own syntax and logical rules. It is

appropriate here that we give the general logical functions or the sentential connectives

that will be used throughout this thesis. The logical functions mentioned are AND, OR,

NOT, IMPLIES and EQUIV ALENT, whose symbol are :

Logical Function . Symbol

AND 1\

OR v

NOT --,

IMPLIES =>

EQUNALENT ¢::>

The language of logic is very commonly used as a way of representing facts

because it provides a powerful way of deriving new knowledge from old, which is the

basis of mathematical deduction. In this formalism, we can conclude that a new statement

is true by proving that it follows from the statements that are already known. Let us

illustrate some applications of the first-order logic to problem solving by giving an

h r h i fir v

4

prove that the fonnulas are valid or inconsistent. Let us say in our example we have the

following statements:

1. All men are mortal.

2. Ali is a man

Our aim is to show that Ali is mortal. From these two statements we derive the following

two axioms:

Al : C\7'x)(man(x) =:} mortal(x))

A2 : man (Ali)

So our aim here is to show that Ali is mortal from A 1 and A2. That is, to show that

morta1(Ali) is a logical consequence of Al and A2.

We have :

Al A A2: ('v'x)(man(x) =:} mortal(x)) A man(Ali)

If Al A A2 is true in an interpretation J, then both A 1 and A2 are true in I. Since (man(x)

=:} mortal(x)) is true for all x, when x is replaced by "Ali", (man(Ali) =:} mortal(Ali)) is

true in 1. That is, ...,man(Ali) v mortal(Ali) is true in I. However ...,man(Ali) is false in I

since man (Ali) is true in I. Hence, mortal(Ali) must be true in I. We have therefore shown

that mortal(Ali) is true in I whenever (A 1 A A2) is true in I. By definition, mortal(Ali) is

a logical consequence of A 1 and A2.

In our example here, we have shown that the conclusion follows from the given

facts. This method, that conclusions follow from axioms is called a proof A procedure

for finding proofs is called a proof procedure. In our following discussions we will

discuss how we can mechanize this proof procedure so that it can be implemented in a

computer and in doing so will enable us to use computers in finding proofs.

1.2.1 Basic Concepts Of Automated Theorem Proving

5

basically refers to the study and development of programs that reason logically. Logical

reasoning refers to processes that infer new formulas from existing formulas such that the

new formulas are always true in any interpretation where the old formulas are true.

One of the most common example of logical reasoning is modus ponens. In

modus ponens, for example if we have two formulas p => q and p, we can infer the

formula q. In basic English, what this formulas mean is that if p implies q being true and

ifp is true then q is also true. There are ways in which this can be proven to be valid, that

is any assignment of truth values that makes the two hypotheses true must also assign q

to be true, but here we will not touch on this. Besides modus ponens, other examples of

logical reasoning are chain rule and resolution. We will not be discussing about chain

rule, whereas resolution will be discussed in the next section. These three examples of

logical reasoning may be summarized as follows:

Modus Ponens Chain Rule

p=>q

p

q

p=>q

q=>r

p => r

Resolution

p v-,q

q vr

p vr

At this point we can see that to understand automated theorem proving, we must

be familiar with logic to some extent. Here we will give a brief introduction to the

elements of first-order logic that are most important to the field of automated theorem

proving. A first-order logic language consists of a number of different kinds of symbol

that are combined to make well-formed formulas(wff). These are variables, constant,

function and predicate symbols, the Boolean connectives (AND, OR, NOT, etc.), the

quantifiers 'v'(FORALL) and 3(EXISTS), parentheses and commas. Each function and

predicate symbol has an arity or arguments associated with that symbol. The parentheses

6

functions over the domains of interest and predicate symbols are meant to represent

true/false relationship.

The purpose of us explaining the basic structure of first-order logic language here

is because the familiarity of it is extremely important not only in ATP but also in AI for

several reasons. First, logic offers the only formal approach to reasoning that has a sound

theoretical foundation. This is especially important in our attempts to mechanize or

automate the theorem proving process in that inferences should be correct and logically

sound. Second, the structure of it is flexible enough to permit the accurate representation

of natural language reasonably well. This is mainly important in AI systems since most

knowledge must originate with and be consumed by humans. To be effective,

transformations between natural language and any representation scheme must be natural

and easy. Finally it is widely accepted in the AI field as one of the most useful

representation method.

Up to now we have only looked at one of the basic purpose of automated theorem

proving that is the development of programs that reason logically. Next we are going to

look at a basic paradigm for the automation of theorem proving. This paradigm is

commonly know as the Argonne paradigm for the automation of theorem proving [Wos

88] and has been the basis for the development of various ATP systems such as ITP &

LMA [Lusk & Overbeek 84a] [Lusk & Overbeek 84b], AURA [Smith 88] and OTTER

[McCune 90]. This paradigm has 6 components that is:

1. The paradigm relies on the use of a specific language to represent the

information, for example facts and relationships to inform the theorem proving

program about a given assignment. Each piece of information that is required is

represented by using one or more statements (clauses) in a language called the

clause language.

7

always yield conclusions that follow inevitably from the statements to which the

rule is applied.

3. The programs reasoning can be controlled by the use of strategy. One type of

strategy directs the reasoning by focusing the program's attention on paths

conjectured to be greater interest, and another type of strategy restricts the

reasoning by prohibiting the program from pursuing paths of certain types.

4. When conclusion is drawn, the program may apply some number of

transformation to the conclusion to rewrite it into a canonical form or normal

form.

5. The program may then test the result by comparing it to other retained pieces of

information to decide whether the new conclusion is redundant and should

therefore be immediately discarded.

6. To "know" when a given assignment has been completed, the program may

search the available information to see if two items (clauses) contradict each

other. To set the stage for employing this test for assignment completion, the

information that is given to the reasoning program typically includes a statement

or statements (clauses) that correspond to assuming the assignment cannot be

completed or that correspond to assuming the desired result is false.

Basically this six components of this paradigm can be summarized into language,

inference rule, strategy, a procedure for transforming into a canonical form, procedure for

identifying and then discarding redundant information and a test for assignment

completion. This six components together make up a basic A TP system. We will be

giving a more detailed discussion on these components in chapter 2 of this thesis.

1.2.2 Method of Resolution

8

that has been a part of AI-problem solving research from the mid-1960s. Resolmion is a

sound inference rule that when used to produce a contradiction, is also complete. What is

meant by being complete in this aspect here is for example if we have a set R of inference

rules, we can say it is complete if af}d only if the formula G can be obtained from the

formula F with a finite number of applications of members of R whenever F logically

implies G. In an important practical application, resolution theorem proving, particularly

the resolution contradiction system, has made the current generation of PROLOG

interpreters possible [Kowalski 79].

The resolution prin~iple, by using a minimum use of substitution can find

contradiction in a database of clauses. Resolution contradiction proves a theorem by

negating the statement to be proved and adding this negated goal to the set of axioms that

are known to be true. It then uses the resolution rule of inference to show that this leads

to a contradiction. If the theorem prover show that the negated goal is inconsistent with

the given set of axioms, it follows that the o~ginal goal must be consistent. This proves

the theorem.

Resolution contradiction proofs involve the following steps:

1. Put the premis~s or axiom into clause form.

2. Add the negation of what is to be proved in clause form to the set of axioms.

3. Resolve these clauses together, producing new clauses that logically follow

from them.

4. Produce a contradiction by generating the empty clause.

Resolution based proofs by contradiction require that the axioms and the negation

of the goal be placed in a normal form called clause form. Clause form represents the

logical data base as a set of disjunctions of literal. A literal is an atomic expression or the

9

10

be unified to make them equivalent. A new clause is then produced consisting of the

disjuncts of all the predicates in the two clauses minus the literal and its negative instance.

Based on what we have explained on the method of resolution, here we present a

simple example of how resolution can be used to produce a proof. We wish to prove that

"Ali will die" from statements that "Ali is a human" and "All humans are mammals" and

"All mammals will die". Changing these three premises to predicates and applying modus

pones gives:

1. All human are mammals: V'(x)(human(x) :=} mammal(x))

2. Ali is a human: human(ali)

3. Modus ponens and {ali/x} gives: mammal(ali)

4. All mammals will die V'(y)(mammal(y) :=} die(y))

5. Modus ponens and {ali/y} gives: die (ali)

(Here the usage of {x/y} is as a substitution operation, where it means that substitute all

occurrence of y in that particular clause with x.) Equivalent reasoning by resolution

converts these predicates to clause form :

Predicate Form

1. "i/ (x)(human(x) :=} mammal(x))

2. human(ali)

3. V'(y)(mammal(y) :=} die(y))

Negate the conclusion that Ali will die:

4. -,die(ali)

Clause Form

-,human(x) v mammal(x)

human(ali)

-,mammal(y) v die(y))

-,die (ali)

Compare and clash the clauses having opposite literals, producing new clauses by

resolution (Figure 1.1).

The symbol 0 in figure 1.1 indicates that the empty clause is produced and the

contradiction found. The 0 symbolizes the clashing of a predicate and its negation, that

.~ _L~ _ ____ L ___ ... ____ ~ __ ... ___ 11 __ ___ ... _ -1! : ____ _ _ _

11

(unifications) used to make predicates equivalent also gives us the value of the variables

under which a goal is true.

-,human(x) v mammal(x) -,mammal(y) v die(y)

human(ali) -,human(y) v die(y)

die (ali) -, die(ali)

~
o

Figure 1.1 : Resolution proof of the" Ali will die" problem

The purpose of us giving this example here is to demo strate the usefulness of the

method ofresolution in providing the means to mechanically derive conclusions that are

valid, hence an extremely useful method for theorem proving using computers. .

1.3 Introduction To Concurrent Processing Concepts

Up to this point we have mentioned that our aim in this thesis is to introduce

concurrent processing in developing an ATP system. If we observe here carefully, we

have been using the term concurrency instead of parallelism. Here we would like to stress

that concurrency and parallelism refer to two different meanings. In [Tick 91] it has been

mentioned that parallelism and concurrency are different although parallel and concurrent

processing are often confused. Parallel processing refers to processing that can be

executed in parallel, i.e., parallelism is the ability to gain speedup by executing actions

simultaneously, whereas concurrent processing refers to processing that can express

12

without requiring multiple physical processors for achieving this task. Parallelism does

not imply concurrency, nor does concurrency imply parallelism.

Here we also would like to introduce the difference between concurrent

processing and sequential processing. A sequential program consists of data declarations

and executable instructions in a programming language. The instructions are executed

sequentially on a computer which also allocates memory to hold data. A concurrent

program is a set of ordinary sequential programs which are executed in abstract

parallelism [Ben-Ari 90]. The parallelism is abstract because we do not require that a

separate physical "processor" be used to execute each process, unlike in parallel

processing. What is being mentioned here is that a sequential program specifies

sequential execution of a list of statements and a concurrent program specifies two or

more sequential programs that may be executed concurrently.

In the following two sections, we will be giving a brief discussion about the

various programming methods in concurrent programming followed by a brief discussion

."
on the environment and its characteristics of our concurrent programming environment.

1.3.1 Concurrent Programming Methods

A concurrent program can be executed either by allowing processes to s~are one

or more processors or by running each process on its own processor. The first approach

is referred to as multiprogramming, it is supported by an operating system kernel

[Dijkstra 68] that multiplexes the processes on the processor. The second approach is

referred to as multiprocessing if the processors share a common memory or as

distributed processing if the processors are connected by a communications network.

Hybrid approaches also exist, for example, processors in a distributed system are often

multiprogrammed [Jones & Schwarz 80].

13

In order to cooperate, concurrently executing processes must communicate and

synchronize. Communication allows execution of one process to int1uence execution of

another. Interprocess communication is based on the use of shared memory or on

message passing [Andrews & Schneider 83]. Whereas synchronization is often necessary

when processes communicate because processes are executed with unpredictable speeds.

In message passing, we create many concurrent processes and each process

communicates by exchanging messages. In message passing method, no data objects are

shared among processes. Each process has its own local set of private data objects. In

order to communicate, processes must send data objects from one local process to

another (Figure 1.2).

Figure 1.2 : Message Passing - A collection of concurrent processes communicate by

exchanging messages (Processes are round, data objects are square, messages oval).

Shared memory operations allow two or more processes to share a segment of

physical memory but data areas of the processes that communicate are entirely separate.

In this method, processes communicate and coordinate by leaving data in the shared

memory (Figure 1.3).

o DD
OOD
D

o 0
D

DOD

14

Figure 1.3 : Shared Memory - Concurrent Processes and shared memory figure as

autonomous parts of the program structure. Processes communicate by reading and

writing in shared memory.

In process synchronization, semaphores are used as a synchronization primitive.

One of the main uses of semaphores is to synchronize the access to shared memory

segments. Semaphores are basically integer valued variable, that is a resource counter.

The value of the variable at any point in time 'rs the number of resource units available. If

we have one resource, say a shared memory segment, then the valid semaphore values

are zero and one (Figure 1.4).

Kernel

I 0 or 1 Semaphore L... ____ ...J

Process A Process B

15

1.3.2 Concurrent Programming Environment

In this section we will discuss briefly about our concurrent programming

environment. The reason for this is, our design which will be discussed in chapter 3 and

chapter 4 is influenced by this environment and we feel it is appropriate that we give

some basic introduction to it at this point. A more detailed discussion will be given in

chapter 2.

Our concurrent programming environment is based on the Unix InterProcess

Communication (IPC). IPC involves sharing data between process and when necessary,

coordinating access to the shared data. There are basically three main types of IPC :-

1. Message Passing - The message passing facility allows a process to send and

receive messages. A message being in essence an arbitrary sequence of bytes or

characters.

2. Semaphores - Semaphores prpvide a low-level means for process

synchronization. It is not suited to the transmission of large amounts of

information.

3. Shared Memory - Shared memory allows two or more processes to share the

data contained.in specific memory segments.

These three mechanisms dominate the Unix IPC package with message passing allowing

processes to send formatted data streams to arbitrary processes, shared memory allowing

processes to share parts of their virtual address space and semaphores allowing processes

to synchronize execution.

With these IPC mechanisms we do have the necessary facilities to introduce

concurrent processing into automated theorem proving. As we have mentioned earlier,

the two components in concurrent processing is interprocess communication and·

16

which provides facilities for process synchronization. In introducing concurrent

processing into any problem solving process, the tasks involved are mainly in breaking

up the problem solving process into various concurrently executing tasks which

collectively aim to solve the problem in focus. These concurrently executing processes

need some form of interprocess communication to help establish links that allow these

various processes to communicate in their problem solving process and some form of

synchronizing mechanism to coordinate their tasks. This is where the IPC mechanisms

play their roles. Earlier in figure 1.1 we have shown the resolution proof of the "Ali will

die" problem, which is done sequentially. Now let us show how this same problem can

be solved concurrently. In this problem we have four clauses and our aim is to find a

contradiction. Let us divide this clause space into two groups and these two groups of

clauses will be resolved concurrently and both the results will then be combined to obtain

a contradiction. Figure 1.5 shows how this is done.

Process 1:

..., human(x) v mammal(x)

human(ali)

{ali/x} mammal(ali)

Process 2:

mammal (ali)

..., mammal(ali)

o

..., mammal(y) v die(y)

..., die(ali)

{ali/y} ..., mammal(ali)

..., mammal(ali)

Fi re 1.5 : A Concurrent Simulated Resolution Proof of the "Ali will die" Problem

17

So based on this example we can see the two components of concurrent

processing in actions. That is, firstly for interprocess communication involves the

passing of clauses between process I and process 3 and also process 2 and process 3.

Whereas for synchronization is basically involved in process 3 where it has to make sure

that both process I and process 2 have passed whatever necessary clause to it before it

can proceed with its own execution. This simple example here basically highlights how

concurrent processing can be introduced into automated theorem proving.

1.4 Current Implementations of Automated Theorem Proving Systems

As theorem proving -is the most optimum strategy for applying logic in such areas

as database/query systems and logic-based languages, a great deal of AI research has

been devoted to the subject. As a result of this, a number of theorem proving systems

have emerged from this research.

Basically the theorem provers that nave been developed in the area of classical

logic, can be divided into resolution based and nonresolution based. Up till now, we

have only been discussing about resolution based system. The nonresolution based

theorem provers are designed to emulate the reasoning of human theorem provers. For

this reason it is also known as natural deduction theorem prover. Nonresolution ~heorem

provers generally use a backward-chaining technique involving substitution in an attempt

to transform the theorem to be proven into a form consistent with the original axioms.

Among the more successful nonresolution theorem provers that have been developed are

IMPLY [Bledsoe 77] and BMTP (Boyer-Moore Theorem Prover)[Boyer & Moore 79].

As we are more interested in resolution based theorem proving, we would not be

discussing further in the area of non resolution theorem proving.

As mentioned earlier in the cha ter there has been various resolution based

18

sequential processing. In the area of parallel processing, there were also various systems

developed, such as ROO (Radical OITER Optimization) [Lusk, McCune & Slaney 91]

which used the shared memory multiprocessor concept to parallelize the ATP algorithm

and PARROT-II (PARRallel OTter - II) [Jindal, Overbeek & Kabat 92] which used the

distributed processors concept to parallelize the A TP algorithm .

. Here we can see that there has been numerous A TP systems developed over the

years not only using sequential processing but also using parallel processing. The

development of these systems have been initiated by the various problems that exists in

automated theorem proving. In [Wos 88] some of these problems have been identified,

among them are :

1. Clause Retention - The ATP program keeps too many deduced clauses (too

many conclusions) in its database of information.

2. Inadequate Focus - The ATP program gets lost too easily.

3. Redundant Information - The ATP program generates the same clauses (or

proper instances of clauses already retained) over and over again.

4. Clause Generation - The ATP program draws far too many conclusions, many

of which are redundant and many of which are irrelevant even though they are

not redundant.

5. Size of the Deduction Steps - The inference rules do not take deduction steps

of appropriate size.

6. Choice of Transformation for Canonicalization - The A TP program does not

always use the most effective transformation to rewrite infonnation into a

canonical fonn.

7. Metarules - No adequate guidelines exists for selecting the appropriate

representation, inference rule, strategy, transformation for canonicalization and

19

8. Database Indexing - The A TP program requires too much time to find the

appropriate information in its database.

A look at this list, reveals the wide range of interesting research offered by

automated theorem proving. This is one of the reason why research in this area has

attracted numerous researches with various system developed using various techniques

and concepts to solve these numerous problems that exists.

1.5 Scope and Objectives

In this chapter we have mentioned that we intend to introduce concurrent

processing concept in automated theorem proving. Our aim in doing this is to enhance

one of the main components of an A TP system, that is the clause generation component.

We intend to decompose this component into multiple processes with the understanding

that with multiple processes generating clauses, an A TP systems goal in theorem proving

can be archived faster.

As we know that the aim of theorem provers is to search for proofs of the truth or

falsity of statements given axioms describing the basic assumptions. For example in the

case of resolution based automated theorem provers, using the existing clauses, new

clauses are resolved and added to the clause space until a clause that contradicts with any

existing clause in the clause space can be found. So what we have here is a search

process for the contradicting clause. If we observe our earlier example in figure 1.1

which is based on the sequential technique, we can see that in resolving new clauses from

existing clauses until a contradicting clause can be found, the search at any particular time

is only focusing on one clause at a time to resolve it against all possible clauses to

generate new clauses. With a closer look at this problem we can see that while focusing

-"'-. -

20

and this is highlighted in our example shown in figure 1.5. So if we compare these two

techniques, we can see that the sequential method takes one step at a tim~ in finding the

contradicting clause, whereas the concurrent method takes multiple steps at a time in its

search for the contradicting clause. So basically we believe that by focusing on multiple

clauses simultaneously rather than a single clause at any time, the search for the

contradicting clause can be further enhanced.

Our main objective in this thesis is to show how we will convert a sequential A TP

algorithm into a concurrent A TP algorithm and explain how we intend to implement this

algorithm. We will be doing this by first studying a sequential ATP algorithm and

identify the appropriate section of the algorithm to be decomposed into concurrent

processing, hence introducing a concurrent A TP algorithm. This will be followed by an

explanation of how we intend to implement this algorithm. The scope and objectives of

this thesis are therefore:

1. To study an sequential ATP algorithm and identify the components that can be

.'
decomposed into concurrent processing with the aim of enhancing the clause

generating component of the algorithm.

2. To give a novel design and how we intend to implement this algorithm.

1.6 Organization Of the Thesis

Having mentioned the scope and objectives of our thesis, in this section we

would like to give a brief description about the organization of this thesis. The thesis will

be organized in the following manner:

Chapter 1 : This chapter relates to the background and the definition of the

problem of our research. Here we give a general introduction to our

problem followed by the scope and objectives of this thesis.

21

to better understand the problem and the problem-solving discussed in

this thesis.

Chapter 3 : This chapter discusses about the conversion of a sequential automated

theorem proving algorithm into a concurrent algorithm. Here we

attempt to explain the component of the sequential algorithm that we

chose to convert into a concurrent version and how the conversion is

done.

Chapter 4 : This chapter provides a discussion on how we intend to implement

the algorithm that we have discussed about in chapter 3. Here we will

provide the basic structures of the proposed implementation of the

algorithm.

Chapter 5 : Having discussed about the conversion of a sequential automated

theorem proving algorithm into a concurrent version and its proposed

implementation, in this chapter we discuss about the various aspects

of our work in this thesis and how the proposed algorithm can be

further enhanced in future work.

Concluding remarks on the various issues touched in this thesis are given 111 the

conclusion.

1.7 Summary of Chapter

In this chapter our aim was to give an introduction to the background of our

research. We did this by first introducing our problem of research. This was followed by

a background look at our field of research which is in the area of automated theorem

proving and the concepts of concurrent processing, with the aim of better understanding

the problem. Next we gave the scope and objectives of this thesis as to make our work

more clearer. Finally we presented the organization of this thesis for better understanding

Chapter 2

Automated Theorem Proving and Concepts for
Concurrent Processing

In this chapter our aim is to provide a general introduction to the area of automated

theorem proving and concepts for concurrent processing with the aim to better understand

the problem and the problem-solving discussed in this thesis.

2.1 Introduction

As our research in this thesis centers around introducing concurrent processing

into ATP systems, we turn to a brief review of the pertinent aspects of automated theorem

proving and concurrent processing in this chapter. Our discussion here will be divided

into two main sections. In the first section, we will discuss about the concepts of theorem

proving and the basic elements of automated theorem proving and this will be··followed

by the second section, where we will discuss further the concepts of concurrent

processing based on our earlier discussion in chapter 1.

The discussion on automated theorem proving will be divided it into two parts. In

the first part we will give the basic concepts of theorem proving and this will be followed

by a discussion on the elements of automated theorem proving. Whereas our discussion

on concurrent processing will also be divided into two parts. The first part will be on the

23

be based on the Unix IPe system because this will be our proposed platform for

implementation and it influences the conversion and design of our system.

2.2 Concept of Theorem Proving

In theorem proving, what we attempt to show is that, a particular well-formed

formula (wff), B, is a logical consequence of a set S = {Al, ,Ak} of wffs,

collectively called the axioms of the problem. A rule of inference is a rule by which new

expressions can be derived from previously established ones. For instance, if Ai and Aj

are previously established wffs,

fq(Ai,Aj) => Ak

indicates that Ak can be derived from Ai and Aj using inference rule fq.

In order to understand theorem proving more formally, a notation for the first­

order predicate calculus is needed. In our discussion here the universe of discourse will

contain a set of elementary symbols, a,b,c, ... , which serve as constants, a number of

variable symbols, written from the "end" of the alphabet, s,t,u,v,w,x,y,z and functions.

Functions are mappings, a function of n arguments maps from the elements of the set Dn

(all possible ordered sets of n terms) into the set D.·For example, the function + is a

binary function, which maps a pair of real number into a single real number. The; letters

f,g,h will be used for functions. Finally, capital letters (usually P,Q) will indicate

relations or predicates. A predicate of n arguments maps from Dn into the set (T,F}. That

is, any n-ary relationship between terms is either true or false.

Now let us consider the structure of a well-formed formula. A term is either a

variable, a constant or a function. An n-ary function must have n terms for its arguments.

Thus the following are terms:

24

R(f(x),a), P(a,y), Q(g(a,b),f(x))

A literal is an atomic formula or its negation. When the structure of an atomic formula is

not relevant, we shall write atomic formulas as capital letters, A,B, etc., with negations

indicated as -,A, -,B.

A clause is a disjunction of literals and a set of clauses S is interpreted as a single

statement that is the conjunction of all of its clauses. Since atomic formulas are predicates

that map into the set {T,F}, the truth values of a set of atoms determine the truth values

of the clauses and set of clauses that can be constructed from them.

These ideas are illustrated in Figure 2.1, which shows some simple statements

written in this notation. The constants of this example {a,b} should be interpreted as any

two real numbers, whereas the functions should be interpreted as single-valued functions

on real numbers. The predicates are the three possible orderings (greater than, less than,

equal to) that can hold between any pair of real numbers. Obviously a statement of a

particular ordering for a given pair is either true or false, indicating clauses C1, C2 and

C3 in S states that they are simultaneously true.

