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KEPELBAGAIAN DAN PENCIRIAN SINTASE
POLIHIDROKSIALKANOAT (PhaC) DALAM METAGENOM AIRLAU T

DAN PAYA BAKAU

ABSTRAK

Komuniti mikrob bagi dua tanah paya bakau Pulaamin(Batu Maung dan
Balik Pulau) yang dipengaruhi oleh aktiviti antrgeaik telah dikaji dengan
menggunakan pendekatan penjujukan metagenomikdighbtanpa-kultur. Dua set
data metagenomik (~250 GB) dihasilkan melalui platf “Next-generation
Sequencing (NGS)” lllumina HiSeq dan disimpan dalgpelayan awam
“Metagenomic-Rapid Annotations using Subsystemshiielogy (MG-RAST)".
Analisis taksonomi mikrob menunjukkan bahawa kedua-tanah paya bakau Pulau
Pinang didominasi oleh Bakteria (97 %)Proteobakteria (43 %) dan
Deltaproteobakteria (15 %) pada peringkat domain,. filum dan kelasingamasing.
Pada peringkat genus, kebanyakan bakteria anaedgiekhatikan terdiri daripada
Deltaproteobakteria. Sebahagian besar daripada jujukan adalah migkispmikrob
(70 %) dan filum (32 %) yang belum dikenalpastiuatzelum dikultur. Kajian
kepelbagaian sintase PHA (PhaC) menunjukkan bahabi kurang 21-23%
daripada jumlah genera mikrob yang dikesan (Baktand Arkea) dalam tanah paya
bakau Pulau Pinang mengandungi PhaCs dengan madatifp“lipase-box-like”
“(GIA/IS)-X-C-X-G-(G/A/S)” berdasarkan keputusan BEAX terhadap pangkalan
data Jujukan Rujukan (RefSeq) dalam Pusat Kebangsadguk Maklumat
Bioteknologi (NCBI). Jangkaan PhaC separa ini sedaseluruhannya (>80 %)
dimiliki oleh filum Proteobakteria (Alphabakteria, Betabakteria, Deltabakteria dan

Gammabakteria). Lebih kurang 27-37 % daripada PhaC berpotersikgaan genus

XXi



mikrob baru sekiranya purata 70 % kadar takat iieastid amino (AAIl) digunakan.
Pada masa yang sama, pendekatan pemeriksaan ydmegdderasaskan PCR
genotip telah digunakan untuk menyiasat PhaC Keeksd Il dari metagenom air
laut cetek dan laut dalam (24 m hingga 5373 m) ydipgrolehi dari Palung Nankai
dan Jurang Jepun. Sebanyak 20 kumpulan genetik (B&para PhaC telah
ditentukan. Kesemua KG PhaC mempunyai organismag yemdekat, iaitu
Proteobakteria dan didominasi olehAlphaproteobakteria. Lima KG PhaC
mempunyai AAl <70% dan berkemungkinan tinggi dikiibleh genus mikrob baru
dari Alphaproteobakteria. Tambahan itu, analisis filogenetik dengan menggan
semua PhaCs yang diperolehi daripada sumber-suméi@genomik menunjukkan
tiga kelompok baru atau kluster PhaC yang belurketi@lpasti sebagai tambahan
kepada empat kelompok PhaC (Kelas | hingga IV) yaedia ada. Pengesahan
fungsi PhaC juga dikaji dan tiga jujukan lengkapl KaNA telah berjaya diperolehi
daripada metagenom air laut Jepun melalui kaedahdime walking”. Hanya PhaC
I-GG18 berfungsi aktif dan mampu menghasilkan PHAlaoh transforman
Cupriavidus necator PHB 4 (mutan PHB-negatif). PhaC I-GG18 mempunyai idienti
jujukan protein yang tinggi (97 %) kepada PhaC dgmus penghasil PHA baru
Marinobacter. PhaC | GG18 ini mempunyai substrat khusus tefhatanomer PHA
berantai pendek (SCL-PHA) seperti 3-hydroxybuty®gA dan 4-hydroxybutyryl-
CoA. Aktiviti sintase PhaC I-GG18 dalam transform@&nnecator PHB 4 adalah 10
kali ganda lebih rendah daripa@anecator H16 jenis liar pada 24 jam pengeraman

di dalam medium terhad nitrogen.
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DIVERSITY AND CHARACTERIZATION OF
POLYHYDROXYALKANOATE SYNTHASE (PhaC) IN SEAWATER AN D

MANGROVE METAGENOMES

ABSTRACT

The microbial communities of two local Penang margrsoils (Batu Maung
and Balik Pulau) which are under anthropogeniaigtices were investigated using
culture-independent shotgun metagenome sequengipgpach. Two metagenome
data sets (~250 GB) were generated from the IllamitiSeq next-generation
sequencing (NGS) platform and then deposited inalyEtomic-Rapid Annotations
using Subsystems Technology (MG-RAST) public serMicrobial taxonomic
analysis showed that both Penang mangrove soile wWeminated by Bacteria
(97 %), Proteobacteria (43 %) andDeltaproteobacteria (15 %) at the domain,
phylum and class levels, respectively. At the gdausl, predominance of anaerobic
bacteria was observed and mostly belongeDddaproteobacteria. A large portion
of the reads belonged to unknown or yet unculturectobial species (70 %) and
microbial phyla (32 %). Investigation on the PHA#ase (PhaC) diversity shown
that about 21-23 % of the total detected microflalcteria and archaea) genera in
the Penang mangrove soils contained PhaCs withtiyeitapase-box-like motif
“(GIA/IS)-X-C-X-G-(G/A/S)” based on the BLASTx resslagainst National Center
for Biotechnology Information Reference SequencEBNRefSeq) database. These
partial putative PhaCs predominantly (>80 %) betahgto the phylum
Proteobacteria (Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, and

Gammaproteobacteria). About 27-37 % of the PhaCs potentially belongedéw
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microbial genus if a 70 % average amino acid iderfAl) cutoff was applied. At
the same time, a different PCR-based genotypiesarg approach was employed in
this study to investigate Class | and Il PhaCs figimallow and deep-sea seawater
metagenomes (24 m to 5373 m) which were collectatd Nankai Trough and Japan
Trench. A total of 20 partial PhaC genetic grou$&§) were determined. All the
GGs had closest organism matches Rmteobacteria and predominated by
Alphaproteobacteria. Five PhaC GGs had AAI < 70 % and most probablgriged

to new microbial genus fromAlphaproteobacteria. Furthermore, phylogenetic
analysis using all the PhaCs derived from metagénoesources showed three new
or undefined clusters of PhaC in addition to foxistng known clusters of PhaC
(Class | to IV). For functional verification, thremmplete DNA coding sequences
were successfully obtained from Japan seawatergmetenes by genome walking
approach. Only I-GG18 PhaC was functionally actawel able to produce PHA in
transformantCupriavidus necator PHB 4 (PHB-negative mutant). I-GG18 PhaC had
very high protein sequence identity (97 %) to th@®s of new PHA producing
genusMarinobacter. This I-GG18 PhaC had substrate specificity towastiort-
chain-length PHA (SCL-PHA) monomers such as 3-hygoatyryl-CoA and 4-
hydroxybutyryl-CoA. The synthase activity of I-GGEhaC in transformanC.
necator PHB 4 was 10 folds lower than the wild-ty@e necator H16 at 24th hour of

incubation in nitrogen-limiting medium.
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CHAPTER 1
1.0 INTRODUCTION

Plastic products have been widely integrated inio ldestyle due to their
flexible and durable features. However, non-bioddgble nature of conventional
petrochemical- or fossil-based plastics has madsntla serious threat to our
environment and also other living organisms. Sa&ntand public are now
becoming aware about global energy crisis, wasié @mllution issues due to
increasing human population. Therefore, sustainabteeco-friendly materials such
as polyhydroxyalkanoates (PHAs) as well as othebdsed and biodegradable
polymers [polylactic acid (PLA) and polybutylenecsinate (PBS)] are promising
alternative plastic materials to protect our plafmei plastic waste accumulation.
Commercial productions and applications of PHAs @argoing in a few countries,
while some countries have also started to ban 8ssgeu of fossil-based plastic
products especially the single-use items.

PHAs are carbon and energy reserve biopolymershndaie produced from
microorganisms (bacteria and archaea) under urdbl®r growth and stress
conditions. There are three major factors thatrdetee the types of PHA polymer
that can be produced in a microorganism: (1) satestspecificity of the PHA
synthase (PhaC), (2) metabolic pathways in the ahiat host, and (3) types of
carbon source provided. Carbon sources and midraie#abolic pathways would
influence the types of PHA monomers or substrateplgeed to the PHA synthase.
The key enzyme in PHA biosynthesis pathway is thed? which has the “absolute
power” to select what types of PHA monomer to beorporated into the PHA
polymer chain depending on its substrate spegifidfarious types of PhaC have

been reported. Together, they have very broad subsspecificity with more than



150 different PHA constituents that can be polyaeti One of the possible reasons
could be their low protein sequence similarity 896 %). Thus, it is impossible to
detect all the four classes of PhaC using a singleersal primer set. The current
evidences for a PHA synthase at the primary strattavel are composed of eight
highly conserved amino acid residues, a putatpask-box-like motif “G-X-C-X-G”

in theao/B domain and a catalytic triad (Steinbiichel and Wate 1995; Madison and
Huisman, 1999; Rehm, 2003).

To date, the diversity of PHA, PHA producer and @rare mostly being
studied through pure isolates using culture-depeinepproaches. A total of four
classes of PhaC and 167 PHA producers have beamtedpfrom the existing
cultivable microbial collections which are believiedconstitute not more than 15 %
of the total microorganisms (Rehm, 2003; Kolktr al, 2013). Microbiologists
generally accept that at least 85 % of the micraoigms have not been cultured due
to unsuitablein vitro conditions in the laboratory (Amaret al, 1995; Loket al,
2015). Therefore, there is a huge knowledge gaphaC diversity from the under-
discovered microbial world. Culture-independentm@atagenomic approaches are the
only tools that can directly access this untappad huge microbial genomic
information.

Previous high-throughput shotgun metagenome semqgemstudies have
shown highly complex microbial diversity (> 700 sf@s) in mangrove soils
(Andreoteet al. 2012; Thompsoret al. 2013). Sequencing output has become the
only limitation to uncover the complete or totalcnabial diversity in the mangrove
soil biome. This is especially important for theedgion of rare or low abundance
unculturable microbial species. Microbial commuasti of two local Penang

mangrove soils from Batu Maung and Balik Pulau @& under the influence of



anthropogenic activities were investigated in gtisdy by using the state-of-the-art
next-generation sequencing (NGS) platform. Thenilha HiSeq platform can
generate a much higher sequencing output (> 50@8s)Yotompared to the two
previous studies which had used the Roche 454 Fpktform. In addition to
descriptive analysis on the taxonomic informatiamcfobial diversity and relative
abundance), these shotgun metagenome data setalsanprovide functional
information. Mangrove soil biome contains high mlwal diversity and is
continuously exposed to various abiotic stressel ag saline and anoxic conditions.
No study on PhaC from mangrove soil metagenomebkas reported. Therefore,
there will be a high chance to discover large nuslmé novel PhaCs from new
microbial genera in the mangrove soil metagenomgcpéarly from the anaerobic
microorganisms.

In addition, precious seawater samples from shatiowleep-sea (24 m to
5373 m) were collected from Nankai Trough and Jap@&mch by Japan Agency for
Marine-Earth Science and Technology (JAMSTEC). &hesr currently only one
published study on the finding of PhaCs from NamhBaltic Sea metagenomes
(Parnénenret al, 2015), while no report was found on the PhaC frdeep-sea
environments. Deep-sea biome is considered asteamexand stressed environment
with low availability of sunlight, low temperaturand high hydrostatic pressure.
Besides, it is also difficult to access deep-seairenment due to technical
challenges and high cost of conducting deep-sesares. A previous study showed
that deep-sea contains high diversity of unknowm &bundance or rare microbial
species (Sogiet al, 2006). Thus, it will be interesting to discoveawn PhaC from

these Japan deep-sea metagenomes.



Overall, two different sequence-based culture-ietejent approaches were
applied in this study to explore PhaC from mangremiéand seawater metagenomes.
The first approach was high-throughput shotgun gestame sequencing, which
could provide both microbial taxonomic informatiand diversity of PhaC from the
Penang mangrove soils. The second approach washB€#} genotypic screening to
detect Class | and Il PhaC from the Japan seawa&tagenomes. Phylogenetic
analysis of PhaCs was also performed in this shydysing all the PhaC sequences
obtained from various metagenomic resources inromadentify new cluster of
PhaC. In addition, an interesting genome walkingreach was applied on the Japan
seawater metagenomes to determine the completexgcagbquences of PhaCs
without having any prior knowledge on the genomantent of the uncultured
microorganisms. Finally, examination of these fatigth PhaCs through PHA

biosynthesis was carried out to verify their fuanality in vivo (Figure 1.1).

1.1 Objectives
a) To study the microbial diversity and their relatabundance in Batu Maung and
Balik Pulau mangrove soils in Penang Island usiofjuce-independent shotgun

metagenome sequencing approach.

b) To investigate the prevalence of PHA synthaserdity and abundance in the

Penang mangrove soils.

c¢) To identify novel cluster of PHA synthase frohe tPenang mangrove soils, Japan
seawaters (Japan Trench and Nankai Trough) and otleéagenomic resources

through phylogenetic comparison.



d) To examine novel PHA synthases for PHA produciioheterologous host.

Descriptive studies

(a) Mangrove soll
microbial diversity and
abundance
+
(b) PHA synthase gene

diversity and abundance

Phylogenetic comparison

(c) Seawater PHA synthases

+
Mangrove PHA synthases
+
PHA synthases derived from othqr

metagenomic resources

Short partial sequences
(120 to 242 bp)

Genetic engineering

(d) Full-length and novel
PHA synthase gene
isolation

+

Functional characterizatiorn]

Longer partial/complete
sequences with lipase-box-
like motif
(550 to 1900 bp)

Full-length sequences
(1700 to 1800 bp)

N N

Mangrove soil

De novoassembly of subset short

partial PHA synthase sequences$

Seawater
Genome walking on the longer

partial PHA synthase sequences$

Figure 1.1: The flow of ideas, aims and major workflow in tkisidy.




CHAPTER 2
2.0 LITERATURE REVIEW
2.1 Biobased plastics from microorganisms

Biodegradability and sustainability are two majoncerns in the search for
“green” materials to replace petrochemical-basealdafal natural gas) plastics such
as polyethylene terephthalate (PET), polyvinyl dldle (PVC), polyethylene (PE),
polypropylene (PP), polystyrene (PS) and polyan{idd). These petrochemical-
based plastics are very durable and tend to enid tandfill or unfavorably in the
oceans as floating marine plastics such as thet ®aafic Garbage Patch (Kaiser,
2010). Plastics are found in about 90 % of sealbmsisvell as contributed to the
deaths of 1 million seabirds and 100,000 sea mameary year (Saikia and de
Brito, 2012; Wilcoxet al, 2015).

Generally, biobased plastics include plant-deriypdakstics (starch, protein
and cellulose) and microbial-derived plastics. iBlyt biobased plastics are
produced through the blending of biobased matendth petrochemical-based
plastics and they are eventually only partiallydgigraded. Microorganisms are able
to synthesize six types of monomers of biobasedtiplasuch as hydroxyalkanoic
acids for polyhydroxyalkanoates (PHAs), D- & L-lactcids for polylactic acid
(PLA), succinic acid for polybutylene succinate @B bioethylene for
biopolyethylene (PE), 1,3-propanediol for polytrilngene terephthalate (PTT) and
cis-3,5-cyclohexadiene-1,2-diols for poly(para-pfiene) (PPP). However, only the
first three polymers are fully biodegradable (FguR.1). Among them,
hydroxyalkanoic acids have a large number of stinattvariations. These microbial
biobased plastics have very similar propertiesh® petrochemical-based plastics

(Steinbuchel and Fuchtenbusch, 1998; Chen, 2009).



Biobasec

Bioplastics Bioplastics

e.g. biobased PE, e.g. PHA, PLA,

PET, PA, PTT, PPP PBS, starch,

cellulose
Non- o
biodegradable Biodegradable

Conventional plastics Bioplastics
e.g. PET, PVC, PE, e.g. PBAT, PCL

PP, PS, PA

B el e e e

Petrochemica-basec

Figure 2.1:. Classification of bioplastics and conventional rpethemical-based
plastics according to their raw materials and bigpddability.

Polyethylene (PE); Polyethylene terephthalate (PETolyamide (PA);

Polytrimethylene terephthalate (PTT); Poly(pararptene) (PPP);

Polyhydroxyalkanoate (PHA); Polylactic acid (PLAplybutylene succinate (PBS);
polyvinyl chloride (PVC); polypropylene (PP); polysene (PS); poly(butylene
adipate-co-terephthalate) (PBAT); polycaprolacteL).

(Source: modified from Fact Sheet European Biofss2015)

2.1.1 Polyhydroxyalkanoate (PHA)

Polyhydroxyalkanoates (PHAS) are naturally produegdnany bacteria and
archaea under unbalanced growth conditions but extiess supply of carbon. The
unbalanced growth conditions are such as limitatiaf nitrogen, phosphorus,
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sulphur, magnesium or oxygen. PHAs are stored dsomaand energy reserves
intracellularly (cytoplasm) in the form of waterswmluble inclusions or granules
(Anderson and Dawes, 1990). Maurice Lemoigne wasfitst to discover poly(3-
hydroxybutyrate) (PHB) irBacillus megateriumn 1926 (Lemoigne, 1926; Doi,
1990). PHB is the most common type of PHA produlbgdnicroorganisms. PHA
other than PHB was first discovered in 1974 as b(pdydroxybutyrateco-3-
hydroxyvalerate) [P(3HRo0-3HV)] copolymer (Wallen and Rohwedder, 1974;
Sudestet al, 2000). Since then, more than 150 different PHAamers have been
identified (Steinblchel and Valentin, 1995; Madisand Huisman, 1999). The

general chemical structure of PHAs is shown in Fedi2.

R O

0 J.‘H (CHy)y——C

dn

Number of repeating units, X Alkyl group, R Polyntygpe

1 Hydrogen Poly(3-hydroxypropionate)
Methyl Poly(3-hydroxybutyrate)
Ethyl Poly(3-hydroxyvalerate)
Propyl Poly(3-hydroxyhexanoate)
Pentyl Poly(3-hydroxyoctanoate)
Nonyl Poly(3-hydroxydodecanoate)

2 Hydrogen Poly(4-hydroxybutyrate)
Methyl Poly(4-hydroxyvalerate)

3 Hydrogen Poly(5-hydroxyvalerate)
Methyl Poly(5-hydroxyhexanoate)

n refers to number of repeating unit (100 — 30000)
Figure 2.2: The general chemical structure of different PHAs.

Source: Lee (1996a)



2.1.2 Properties of PHA

The major advantages of PHA compared to petroctarhesed plastics are
biodegradability (via microbial enzymatic reactipnsiocompatibility (natural and
non-toxic) and sustainability (synthesized fromewable resources) (Zinet al,
2001; Jendrossek and Handrick, 2002; Sudesh and,2@08). PHA is completely
biodegraded into carbon dioxide and water undeokaercondition, while under
anaerobic condition it is biodegraded into methaared carbon dioxide by
microorganisms (Lee, 1996b; Abou-Zedd al, 2001). The physical and thermal
properties of PHAs are dependent on the monomey, tyygonomer composition and
molecular weight of the polymer.

In general, PHA can be categorized into three mgjoups based on the
carbon chain length of the monomers. Short chamgtle PHAs (SCL-PHAS)
consists of monomers with 3 to 5 carbon atoms, umedihain length PHAs (MCL-
PHAS) consists of monomers with 6 to 14 carbon atand long chain length PHAs
(LCL-PHAS) consists of monomers with more than adbon atoms (Lee, 1996b; Lu
et al, 2009). SCL-PHAs have thermoplastic propertiesf (and brittle material)
such as high crystallinity, high tensile modulusl éaow elongation at break. MCL-
PHAs have elastomeric properties (rubber-like ni@jesuch as low crystallinity,
low melting temperature and high elongation at bréudeshet al, 2000; Yu,
2007). PHAs with high mol % of SCL monomers and lowal % of MCL monomers
have properties similar to polypropylene (PP). dntcast, PHAs with low mol % of
SCL monomers and high mol % of MCL monomers hawperties similar to low-
density polyethylene (LDPE) (Abe and Doi, 2002, &lwt al, 2007; Yu, 2007).

The molecular weights of microbial PHAs are in thage of 2 x 10to 3 x

10° Da (Lee, 1996a)Escherichia colitransformant (a non-native PHA producer that



is lacking in PHA depolymerase activity) harboriRHA synthase gene from
Cupriavidus necatorcould produce ultra-high molecular weight P(3HBhgimg
from 3 x 16 to 1 x 10 Da (Kusakaet al, 1998). The elongation at break and tensile

strength are higher or better than low moleculaghteP(3HB).

2.1.3 Applications of PHA

PHA have been commercialized by many companieesl®82 in several
countries such as UK (ICl), USA (Metabolix, MHG, B&and Newlight
Technologies), Japan (Kaneka), Canada (Biomat&emnany (Biomer), Italy (Bio-
On), Brazil (PHB Industrial Brasil), Malaysia (SMR) and China (Tianjin GreenBio
Materials and TianAn Biopolymer) (website:
http://bioplasticsinfo.com/polyhydroxy-alkonatesfgomanies-concerned/). PHA can
be used as coating and packaging materials, disgo#®ms, bio-implants, drug
carriers, precursors for fine chemicals and biofuwelductions (Amara, 2008; Chen
2009; Gaoet al, 2011). Packaging and disposable items are thd owmamon
applications of PHA and these include bottles, cuggors, utensils, mulch films,
diapers and feminine hygiene products. PHA can laésased as oil-blotting film in
cosmetics and skin care industry (Sudeshal, 2007). In biomedical fieldthe
biocompatibility and biodegradability features oHA&R make it suitable for
osteosynthetic materials, bone plates, surgicakest cardiovascular patches, wound
dressings and tissue engineering scaffolds (Stelhdiand Fluchtenbusch, 1998;
Zinnet al, 2001; Chen and Wu, 2005; Jaihal, 2010).

PHA could also be used as biodegradable carrierdéofm-term dosage of
drugs, medicines, hormones, insecticides, herlacatw fertilizers under controlled

release formulations (Pouton and Akhtar, 1996; Kiasand Srivastava, 2005; Jain
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al., 2010). Besides, PHAs have uniform chirality anelecellent starting chemicals
(precursors) for the synthesis of other opticalyivee compounds such as drugs
vitamins and pheromones (Le¢ al, 1999; Reddyet al, 2003; Jairet al, 2010).
The most recent discovery of PHA application isdsofuel precursor which is first
reported in 2009. PHA could be esterified with nagibl to generateR-3-
hydroxyalkanoate methyl ester (3HAME) via acid-bgtad hydrolysis, which could

be further used to generate combustion heat (Zaaaf 2009).

2.2 PHA producers

The first known PHA produceis Bacillus megateriun{Lemoigne, 1926).
However, the study on PHA was relatively slow urikie first crude oil crisis
occurred in mid-1970s, which has triggered the reffdo look for alternative
resources for petrochemical-based plastics. Dutlrey1980s until 2010s, a large
number of findings on new PHA producers were regghrfor instance from the
genus Aeromonas Azotobacter Burkholderig Chromobacterium Cupriavidus
Delftia, Nocardia PseudomonasRhizobium Rhodococcousand Streptomyces
(Valappil et al, 2007; Chen, 2009).

Cupriavidus necator(previously known adNautersia eutrophaRalstonia
eutropha Alcaligenes eutrophusr Hydrogenomonas eutrophugspecially strain
H16 (Schlegel and Lafferty, 1965) is the most esiegly studied PHA producer and
is a well-known model organism for PHA study (Reike and Steinbtichel, 2008). It
can accumulate PHA up to 90 wt% of the dry cell ghtiusing simple carbon
sources and plant oil (Chen, 2009; Let al, 2008). Whole bacterial genome
sequencing o€. necatorH16 has been completed and it contains two chromes

and one megaplasmid (Pohimahal, 2006). Genome-wide transcriptome analyses
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of C. necatorH16 has also been performed using microarray tectigenes that are
differentially transcribed during PHB biosyntheddy comparing it with PHB-
negative mutant strains (PHB 4 akghaCJ) (Peplinskiet al, 2010). Besides, the
first industrial scale production of PHA (Biopol®HBV copolymer) was achieved
usingC necatorin 1982 by Imperial Chemical Industries (ICl) (lng® et al, 2003;
Verlindenet al, 2007).

Pseudomonads (belonging to rRNA homology-group rg also widely
studied due to their unique ability to produce MEHASs. The 3-hydroxyacyl-CoA
substrates (C6 to C14) for the production of MCLARHare derived from fatty acid
S-oxidation andde novofatty acid biosynthesis pathways (Huismetnal, 1989;
Anderson and Dawes, 1990; Witholt and Kessler, 1%9deshet al, 2000).
Photosynthetic bacteria such Biodospirillum rubrum(Brandl et al, 1989) and
Cyanobacteria (Synechocystisp., Aulosira fertilissima and Spirulina subsalsg
(Panda and Mallick, 2007; Shrivastat al, 2010; Samantaray and Mallick, 2014)
are also interesting PHA producers because theyalle to utilize sunlight and
carbon dioxide to synthesize PHAs (photoautotrgpmidhout addition of extra
carbon sources.

Besides, PHA producers have also been isolated é&xneme environments
such as hot springs, salt lakes and polar-regidastremophiles such as
Halobacteriaceag Thermus thermophilesthermophilic Streptomycessp. and
psychrophilicPseudomonasp. possess the ability to synthesize PHAs (Felemn
Castilloet al, 1986; Pantazalet al, 2003; Phithakrotchanakoat al, 2009; Ayub
et al, 2009; Legaet al, 2010).

To date, there are about 167 microbial PHA prodygenera (150 bacteria

and 17 archaea) (Redey al, 2003; Zinnet al, 2001; Kolleret al, 2010; Kolleret
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al., 2013) (Table 2.1 and 2.2). Majority of them bejaa the phylunProteobacteria
(Alpha, Beta, Delta and Gammaproteobacterig, followed by Cyanobacteria
Euryarchaeota Actinobacteria Firmicutes Thaumarchaeota Chloroflexi and
Deinococcus-ThermusThe presence of PHA in eukaryote has been reparte
human (blood and tissue) and fungu¢eobasidium, Penicillium, Physarjyinm the
form of (R)-3-hydroxybutyrate oligomers (low molecular weidgPtHA) and polyB-
malic acid (similar chemical composition as natitblA), respectively (Steinbiichel

and Hein, 2001; Zinet al, 2001; Kolleret al, 2010).

Table 2.1: Summary of PHA-producing genera from the domaint&ae

Actinobacteria (7)

Actinomycetes Corynebacterium Micrococcus
Microlunatus Nocardia Rhodococcus
Streptomyces

Chloroflexi (1)

Chloroflexus

Cyanobacteria (27)

Anabaena Aphanocapsa Aphanothece
Aulosira Calothrix Chlorogloea
Chroococcus Cyanobacterium Cyanothece
Fischerella Gloeocapsaa Gloeothece
Gomphosphaeria Microcoleus (Microvoleus) Microcystis
Nodularia Nostoc Oscillatoria
Pleurocapsa Pseudoanabaen Rivularia
Scytonema Spirulina Synechococcus (Anacystis)
Synechocystis Tolypothrix Westiellopsis
Deinococcus-Thermus (1)

Thermus
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Firmicutes (5)

Bacillus Caryophanon Clostridium
Staphylococcus Syntrophomonas

Alphaproteobacteria (32)

Asticcaulus Azospirillum Beijerinckia

Bradyrhizobium
Chelatococcus
Labrenzia

Methylarcula

Brevundimonas
Defluviicoccus
Magnetospirillum

Methylobacterium

Caulobacter
Hyphomicrobium
Mesorhizobium

Methylocystis

(Protomonas)
Methylosinus Mycoplana Nitrobacter
Novosphingobium Oligotropha Paracoccus
Pedomicrobium Rhizobium Rhodobacter
Rhodopseudomonas, Rhodospirillum Ruegeria
Sinorhizobium (Ensifer)  Sphingomonas Sphingopyxis
Stella Xanthobacter
Betaproteobacteria (31)
Accumulibacter Acidovorax Alcaligenes

(Azohydromonas)

Aquaspirillum Aromatoleum Brachymonas

Burkholderia
Comamonas
Delftia
Hydrogenophaga,
Lampropedia
Pelomonas,
Schlegelella
(Caenibacterium)
Thauera
Zoogloea

Caldimonas
Cupriavidus (Ralstonia)
Derxia

Ideonella

Leptothrix

Roseateles

Sphaerotilus

Thiobacillus

Chromobacterium
Dechloromonas
Herbaspirillum
Janthinobacterium
Methylibium
Rubrivivax

Spirillum

Variovorax

Deltaproteobacteria (2)

Desulfobacterium

Desulfococcus
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Gammayproteobacteria (44)
Acidithiobacillus
(Ferrobacillus)
Aeromonas
Allochromatium
Azotobacter (Axobacter)
Chromohalobacter
Ectothiorhodospira
Haemophilus
Halorhodospira
Lamprocystis

Marinospirillum

Neptunomonas
Photobacterium
Saccharophagus
Thiocystis (Thiosphaera)
Vibrio (Beneckea)

Acinetobacter

Alcanivorax (Fundibacter)

Amphritea
Beggiatoa
Cobetia

Erwinia

Hahella
Klebsiella (recombinant)
Legionella
Methylomonas
(Methanomonas)
Nitrococcus
Plasticicumulans
Thiocapse
Thiodictyon
Zobellella

Actinobacillus

Alkalilimuicola
Azomonas
Chromatium

Competibacter

Escherichia (recombinant)

Halomonas
Kushneria
Marinobacter

Moraxella

Oceanospirillum
Pseudomonas
Thiococcus

Thiopedia

(Source: Kolleret al, 2013)

Table 2.2: Summary of PHA-producing genera from the domairhaea

Euryarchaeota (15)

Haloarcula Halobacterium Halobiforma
Halococcus Haloferax Halogeometricum
Halopiger Haloquadratum Halorhabdus
Halorubrum Haloterrigena Natrialba
Natrinema Natronobacterium Natronococcus
Thaumarchaeota (2)

Cenarchaenum Nitrosopumilus

(Source: Kolleret al, 2013)
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PHA producers are commonly identified via simpled aapid phenotypic
screening using viable colony staining method. plgbc dyes such as Sudan Black
B (Schlegekt al, 1970), Nile Blue A (Ostle and Holt 1982) and Nited (Gorenflo
et al, 1999; Spiekermanet al. 1999) can bind to the PHA granules. However, these
dyes could also bind to lipids and fatty mater{@ardon, 1946; Spiekermaret al.
1999). The presence of PHA granules inside thes oeluld also be observed using

phase contrast microscope (Dawes and Senior, BkiEstet al, 2000).

2.3 PHA biosynthesis pathways and PHA synthase (PGa

The central PHA biosynthesis pathway consists oféghbasic enzymatic
steps which will convert acetyl coenzyme A (ac&lglA) intermediate to PHB. In
the first step, condensation of two molecules aty@eCoA to acetoacetyl-CoA is
catalyzed bys-ketothiolase (PhaA). This is followed by the retilure of acetoacetyl-
CoA to R-3-hydroxybutyryl-CoA by NADPH-dependent acetoat&@gA reductase
(PhaB). Finally, the polymerization of tHe3-hydroxybutyryl-CoAs into PHB is
catalyzed by PHA synthase (PhaC) (Anderson and Baw@90). The genes for
these three important enzymes were successfullgedloduring the late 1980s
(Schuberet al, 1988; Slateet al, 1988; Peoples and Sinskey, 1989).

In microorganisms, substrates or monomers for tH& Bynthase could be
supplied from various metabolic pathways such #y fcid f-oxidation, fatty acid
de novo biosynthesis and citrate acid cycle (Madison andisian, 1999;
Steinbuchel, 2001; Taguckt al, 2002) (Figure 2.3 and Table 2.3). Monomers of
MCL-PHA such as 3-hydroxyhexanoate (3HHx) and 3rbygheptanoate (S3HHp)
can be channeled from the fatty agixidation pathway to PHA synthase via the

catalysis reaction oR-specific enoyl-CoA hydratase (PhaJd), which conesrbyl-
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CoA intermediates toR)-3-hydroxyacyl-CoA. In the same pathway, epimerase
3-ketoacyl-CoA reductase (FabG) can conves-3thydroxyacyl-CoA and 3-
ketoacyl-CoA intermediates tdR)-3-hydroxyacyl-CoA, respectively (Eggirét al,
1992; Madison and Huisman, 1999; Tagustal, 1999).

Besides, MCL-PHA monomers could also be suppliethfthe fatty acidle
novo biosynthesis pathway, in which 3-hydroxyacyl-ACBACtransferase (PhaG)
can convert R)-3-hydroxyacyl-ACP intermediates toR)(3-hydroxyacyl-CoA
(Eggink et al, 1992; Madison and Huisman, 1999). Meanwhile, 4A@&omer can
be supplied from the citric acid or tricarboxylicid (TCA) cycle through the
conversion of succinyl-CoA to succinic semialdehyaa then 4-hydroxybutyrate.
This 4-hydroxybutyrate intermediate can be conwkette4-hydroxybutyrate-CoA via
the catalysis reaction of 4-hydroxybutyrate-CoA:CtvAnsferase (OrfZ) (Valentin
and Dennis, 1997; Zhaet al, 2012).

In some cases, supplementation of precursorsumststally related substrates
as exogenous carbon sources to the microorganismisl @roduce PHAs with
unusual copolymers but this is also dependent esdibstrate specificity of the PHA
synthase (Sudesh and Doi, 2005). For instancesojum propionate or sodium
valerate could be added as precursors for the asistlof poly(3-hydroxybutyrate-
co-3-hydroxyvalerate) (Leeet al, 2008); (ii) y-butyrolactone, 1,4-butanediol or
sodium 4-hydroxybutyrate could be added as precsifen the synthesis of poly(3-
hydroxybutyrateco-4-hydroxybutyrate) (Leet al, 2004); (iii) isocaproic acid could
be added as precursors for the synthesis of poly@Bexybutyrateco-3-hydroxy-4-
methylvalerate) (Lauet al, 2010); and (iv) 3-mercaptopropionic acid or 3,3-
thiodipropionic acid could be added as precursars the synthesis of poly(3-

hydroxybutyrateco-3-mercaptopropionate) (Lutke-Everslehal, 2002).
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Figure 2.3: Major PHA biosynthesis and biodegradation pathwaysacteria. Major enzymes are indicated by thalmering in grey

circles and descriptions are shown in Table @/&dified from Chen, 2009)
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Table 2.3:Major enzymes involved in the PHA biosynthesis bhimdlegradation

pathways

No. Abbreviation Enzymes

1 PhaA pS-ketothiolase

2 PhaB NADPH dependent acetoacetyl-CoA reductase
3 PhaC PHA synthase

4 Phaz PHA depolymerase

5 - Dimer hydrolase

6 - (R)-3-hydroxybutyrate dehydrogenase

7 - Acetoacetyl-CoA synthetase

8 FabG 3-ketoacyl-CoA reductase

9 - Epimerase

10 - R)-enoyl-CoA hydratase

11 PhaG 3-hydroxyacyl-ACP-CoA transferase

12 - NADH-dependent acetoacetyl-CoA reductase
13 Orfz 4-hydroxybutyrate-CoA:CoA transferase

14 - Acyl-CoA dehydrogenase

Among the PHA biosynthesis and biodegradation geReg\ synthase has
received the most attention because it is the keyrae in the PHA biosynthesis
process. It has a partial Enzyme Commission nurfb@€r 2.3.1.-], in which PhaC
belongs to Transferases (main class EC 2), Acyisfeaases (subclass EC 2.3) and
other than amino-acyl groups (sub-subclass EC R2.8He unknown serial number
“-" of PhaC is because of the catalytic activitytbé protein is not exactly known or
the protein catalyzes a reaction that is knownnotityet included in the International
Union of Biochemistry and Molecular Biology (IUBMBEC list (UniProt
Consortium, 2010). A recent study demonstrated BtdA synthase oBacillus
megateriumconfer depolymerase activity via alcoholytic clage of PHA chains

(Hyakutakeet al, 2015).
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In general, PhaC catalyzes the polymerization reaadf the hydroxyacyl
(HA) moiety in HA-CoA to PHA, with the concomitantlease of CoA (Sudest
al,. 2000; Stubbe and Tian 2003; Rehm, 2003). Initiallyee classes of PHA
synthase (Class I to Ill) were proposed by RehmStethbtichel (1999) based on the
amino acid sequencéy vivo substrate specificity and subunit composition.sThi
classification is later revised with the additioh@lass IV PHA synthase by Rehm
(2003) (Figure 2.4). Class IV PHA synthase was alisced from theBacillus
megateriumin 1999 (McCool and Cannon, 1999).

Class | and Il PHA synthases contain only one tyfjpgubunit (PhaC). Class |
PHA synthase comprises of a single PhaC subunitiwiias molecular mass around
61 to 73 kDa. Class | PHA synthase is represenye@upriavidus necatoand can
produce short chain length PHA. Class Il PHA systhaomprise of two PhaC
subunits which have molecular masses around 66 kD@. Class Il PHA synthase
is represented bi?seudomonas aeruginosand can produce medium chain length
PHA. Meanwhile, Class Ill and IV PHA synthases eamttwo different types of
subunits. Class Ill PHA synthase comprises of dmePsubunit (~ 40 kDa) and one
PhaE subunit (~ 40 kDa). Class Ill PHA synthaseemesented bjllochromatium
vinosumand can produce short chain length PHA. ClassHM Bynthase comprises
of one PhaC subunit (~ 40 kDa) and one PhaR sulguri? kDa). Class IV PHA

synthase is represented Bymegateriunand can produce short chain length PHA.
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Figure 2.4: Classification of PHA synthases (modified from Redt al, 2003).
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Interestingly, PhaE and PhaR subunits have no aiityilto PhaC subunit.
Multiple sequence alignment of the PHA synthasdgimosequences of the PhaC
subunit show the presence of six conserved bloeisegght highly conserved amino
acid residues. Besides, a lipase-box-like motitX¢S/C]-X-G” is present in all the
PHA synthases, where the serine residue in lipaseplaced with cysteine residue in
PHA synthase. A catalytic triad comprising of Cyi83 His-508 and Asp-480
(positions are based db. necatorPhaC1l) is required for catalytic activity (Rehm
and Steinblchel, 1999; Qi and Rehm, 2001; Rehn)200

The first genotypic detection method of PHA synéhagas developed by
Sheuet al. (2000) using degenerate primer sets (phaCF1l, pha@B phaCF4) to
amplify partial Class | and 1l PHA synthase gernesnf six Gram-negative bacterial
genera Alcaligenes ComamonasHydrogenophagaPseudomonasRalstonia and
Sphaerotilupg Romoet al. (2007) improved these previous primer sets and the
newly designed primers (G-D, G-1R and G-2R) are ablamplify partial Class |
and Il PHA synthase genes from nine Gram-negatactebial generaAeromonas
Acinetobacter Azospirillum Azotobacter Burkholderig Rhizobium Pseudomonas
Ralstoniaand a member dinterobacteriaceaéamily) (Table 2.4 and Figure 2.5).

Primers for Class Il PHA synthase was develope&digimanet al (2000)
and they are able to amplify botphaCl and phaC2 genes (partial) from
Pseudomona®CL-PHA producers. The complete open reading frf@&F) of
phaC1l and phaC2 genes could be amplified from moBiseudomonasstrains
belonging toy subdivision Proteobacteria (rRNA group 1) using primer sets
designed by Zhangt al. (2001). A degenerate primer set developed by Ketrgy.
(2007) is able to amplify partighaCl1gene from MCL-PHA producers such as

genusAcinetobacterAeromonasExiguobacteriunandPseudomonas
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Table 2.4:Primers targeting on various classes of PHA sw&ha

Class

Name and sequence (5’ to 3’)

References

phaCl730F (731-750phaC1?)
CGCCCTGCATCAACAAGTTC
phaCl1218R (1198-1218haC1?)
GTAGTTCCAGACCAGGTCGTT

Parnaneret al.
2015

| and Il

phaCF1 (739-764phaC1?)
ATCAACAA(GGG/A)T(TT/A)CTAC(AA/G)TC(CCIT)T(
CC/G)GACCT

phaCF?2 (814-839phaC1?)
GT(CCC/GG)TTC(GGG/AA)T(GGG/CC)(AAA/GG)T(C
CIG)(TT/A)(CCCIGG)CTGGCGCAACCC

phaCF4 (1210-1235phaC1?)
AGGTAGTTGT(TT/C)GAC(CCCI/GG)(AAA/CC)(AAA/
CC)(GGG/A)TAG(TTT/G)TCCA

Sheuet al,
2000

| and Il

G-D (727-748 phaC1%)
GTGCCGCC(GC)(CT)(AG)(GC)ATCAACAAGT
G-1R (1258-1278phaC1?)
GTTCCAG(AT)ACAG(GC)A(GT)(AG)TCGAA
G-2R (1198-1218phaC1?)
GTAGTTCCA(GC)A(CT)CAGGTCGTT

Romoet al,
2007

1-179L (669-696 phaC1P)
ACAGATCAACAAGTTCTACATCTTCGAC
1-179R (1177-1206phaC2")
GGTGTTGTCGTTGTTCCAGTAGAGGATGTC

Solaimanret
al., 2000

ORF1 forward (228-251, ORF2)
CCA(C/T)GACAGCGGCCTGTTCACCTG
phaZ reverse primer (640-663)
GTCGTCGTC(A/G)CCGGCCAGCACCAG
phaz forward primer (640-663°)
CTGGTGCTGGCCGG(C/T)GACGACGAC
phaD reverse primer (236-266)
TCGACGATCAGGTGCAGGAACAGCC

Zhanget al,
2001
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phal-1 (forward) (283-308,phaC1)
CARACNTAYYTNGCNTGGMGNAARGA
phal-2(reverse) (1123-114&haC1°)
TARTTRTTNACCCARTARTTCCADAT

Kunget al,
2007

phaClI36F (38-57,phaC1®)
GAGCGAAAAACAGTACGCCA
phaCll1056R (1139-1158phaC1®)
CATCGGTGGGTAGTTCTGGT

Parnadneret al.
2015

P1 (313-330phaC?)
ATNGA(CT)TGGGGNTA(CT) CCN

P2 (733-750phaC?)
(AG)AA(AGT)ATCCA(CT)TT(CT)TCCAT

Hai et al,
2004

codehopEF (266-290phaE®)
CGACCGAGTTCCGCGAYATHTGGYT
codehopER (475-497phaE?)
GCGTGCTGGCGGCKYTCNAVYTC
codehopCF (133-161phaC")

ACCGACGTCGTCTACAAGGARAAYAARYT

codehopCR (388-412phaC?)
GGTCGCGGACGACGTCNACRCARTT

Hanet al,
2010

B1F (333-352phaC’)
AACTCCTGGGCTTGAAGACA
B1R (912-931phaC®)
TCGCAATATGATCACGGCTA
B2R (692-711 phaC®)
ACGGTCCACCAACGTTACAT

Shamalaet al.,
2003

phaCIVIOF (9-28, phaC®)
TCCTTACGTGCAAGAGTGGG
phaCIV921R (902-921phaCt)
ATCACGGCTAGCAGCAATGT
phaCllI110F (110-129,phaC’)
CAGAGCCGCAAGTCGGATTA

Parnaneret al.
2015
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