UNIVERSITI SAINS MALAYSIA

First Semester Examination
2015/2016 Academic Session

December 2015 / January 2016

EEE 512 - Advanced Digital Signal and Image Processing

Duration : 3 hours

Please check that this examination paper consists of EIGHT (8) pages printed before you begin the examination.

Instructions: This question paper consists of SIX (6) questions. Answer FIVE (5) questions. All questions carry the same marks.

1. (a) Study the image $f(x, y)$ shown in Figure 1(a)

Figure 1(a)

Without detailed mathematical calculation, explain the effect of filtering Figure 1(a) using (i) first derivatives, $\left[\left(\frac{\partial f}{\partial x}\right),\left(\frac{\partial f}{\partial y}\right)\right]$, and (ii) second derivatives, $\left[\left(\frac{\partial^{2} f}{\partial x^{2}}\right),\left(\frac{\partial^{2} f}{\partial y^{2}}\right)\right]$.
(40 marks)
(b) An $M \times N$ size image f contains only zero pixel value at all locations except at the center as shown in Figure 1(b)(i), while Figure 1(b)(ii) shows the 2×2 mask h
$f=\left[\begin{array}{lllllllllllll}0 & 0 & 0 & . & . & . & . & & & & 0 & 0 & 0 \\ 0 & & & & & & & & & & & & \\ 0 & & & & & & & & & & & & 0 \\ 0 & & & & . & . & . & . & & & & & 0 \\ . & & & . & . & . & . & . & . & & & & \\ . & & & . & . & 0 & 0 & 0 & . & . & & & . \\ . & & & . & . & 0 & 1 & 0 & . & . & & & . \\ & & & . & . & 0 & 0 & 0 & . & . & & & \\ & & & & . & . & . & . & . & . & & & \\ & & & & & . & . & . & & & & & \\ 0 & & & & & & . & & & & & & \\ 0 & & & & & & & & & & & & 0 \\ 0 & 0 & 0 & . & . & . & & & & & 0 & 0 & 0\end{array}\right]$

$$
h=\frac{1}{4}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]
$$

(ii)
(i)

Figure 1(b)
(i) Calculate the result of convolution, $(f \otimes h)$.
(15 marks)
(ii) Calculate the result of convolution, $((f \otimes h) \otimes h)$.
(15 marks)
(iii) From (i) and (ii), explain the result of repeatedly convolving f with h.
(30 marks)
2. (a) Construct a 4×4 Fourier matrix. Show that this matrix is a unitary matrix.
(40 marks)
(b) Consider a 4×4 image as shown in Figure 2(b)

$$
f=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Figure 2(b)
(i) Perform Discrete Fourier Transform (DFT) of f.
(15 marks)
(ii) Reconstruct f using the first TWO basis images.
(15 marks)
(iii) Repeat (ii) using the expansion of vector outer product.

Given:

The $N \times N$ unitary matrix for Fourier transformation is defined as:

$$
U_{x y}=\frac{1}{\sqrt{N}} e^{-j \frac{2 \pi x y}{N}}
$$

3. (a) Write an expression for a wavelet $\psi_{2,3}(x)$ in terms of the Haar scaling function. Hence plot $\psi_{2,3}(x)$.
(40 marks)
(b) Consider a 1×4 image as shown below :

$$
f(x)=[4,-2,1,2]
$$

(i) Perform discrete wavelet series expansion of $f(x)$ using Haar functions and for $j_{0}=1$.
(ii) Use the result from (i) to calculate $f(1)$
(20 marks)

Given:

The wavelet series expansion is defined as:

$$
f(x)=\frac{1}{\sqrt{M}} \sum_{k} W_{\varphi}\left(j_{0}, k\right) \varphi_{j_{0}, k}(x)+\frac{1}{\sqrt{M}} \sum_{j=j_{0}}^{\infty} \sum_{k} W_{\psi}(j, k) \psi_{j, k}(x)
$$

and,

$$
\begin{aligned}
W_{\varphi}\left(j_{0}, k\right) & =\frac{1}{\sqrt{M}} \sum_{x} f(x) \varphi_{j_{0}, k}(x) \\
W_{\psi}(j, k) & =\frac{1}{\sqrt{M}} \sum_{x} f(x) \psi_{j, k}(x)
\end{aligned}
$$

The wavelet functions are defined as :

$$
\begin{aligned}
& \psi_{j, k}(x)=2^{\frac{j}{2}} \psi\left(2^{j} x-k\right) \\
& \psi(x)=\sum_{n} h_{\psi}(n) \sqrt{2} \varphi(2 x-n) \\
& \psi(x)=\left\{\begin{aligned}
& 1 ; 0 \leq x<0.5 \\
&-1 ; \\
& 0.5 \leq x<1.0 \\
& 0 ; \\
& \text { elsewhere }
\end{aligned}\right.
\end{aligned}
$$

The Haar scaling functions are defined as :

$$
\begin{aligned}
& \varphi(x)=\left\{\begin{array}{lcc}
1 & ; & 0 \leq x<1 \\
0 & ; & \text { elsewhere }
\end{array}\right. \\
& \varphi_{j, k}(x)=2^{\frac{j}{2}} \varphi\left(2^{j} x-k\right)
\end{aligned}
$$

The scaling function coefficients for the Haar function are given by:

$$
h_{\varphi}(n)=\left\{\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\} \quad \text { for } n=0,1
$$

The scaling function coefficients for the Haar wavelet are given by:

$$
h_{\psi}(n)=\left\{\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right\} \quad \text { for } n=0,1
$$

4. (a) After sampling an analogue signal, you get a finite length sequence $x[n]=\{0,0,0,4,2,2,2,-5,2\}$. Express this sequence as a summation of unit steps.
(b) You have designed a linear time-invariant (LTI) system as shown in Figure 4(b). In this figure, the impulse responses are:

$$
\begin{aligned}
& h_{1}[n]=0.5 \delta[n] \\
& h_{2}[n]=-0.25 \delta[n-1] \\
& h_{3}[n]=\delta[n-2] \\
& h_{4}[n]=-2(0.5)^{n} u[n]
\end{aligned}
$$

Determine the output $y[n]$, if the input sequence $x[n]=\{-3,0,2,1,1,4\}$.

Figure 4(b)
(c) Find L-1 norm, L-2 norm and L- ∞ norm for sequence $x[n]=\{1,3,0,-4,-1\}$
(20 marks)
(d) An output from a digital system $y[n]$ is defined as :

$$
y[n]=\left(x_{1}[n]+x_{2}[n]\right) \times x_{3}[n]
$$

Given that:
$x_{1}[n]=4 \cos (0.2 \pi n+0.1 \pi)$
$x_{2}[n]=-5 \cos (0.7 \pi n)$
$x_{3}[n]=2 \sin (0.35 \pi n)$
Determine the period for sequence $y[n]$.
(30 marks)
5. You want to implement the following transfer function:
$H(z)=5\left(\frac{1-0.2 z^{-1}+0.5 z^{-2}}{1-0.4 z^{-1}}\right)\left(\frac{1-0.1 z^{-1}}{1+0.4 z^{-1}-0.2 z^{-2}}\right)$
(a) Draw a non-canonic filter structure of $\mathrm{H}(\mathrm{z})$, using a cascade form.
(20 marks)
(b) Draw a canonic filter structure of $\mathrm{H}(\mathrm{z})$, using a cascade form.
(20 marks)
(c) Use parallel form II realization to present the filter in parallel form.
(60 marks)
6. (a) You want to design an analogue low-pass filter. The typical magnitude specification of this type of filter is shown in Figure 6(a). In your design, the minimum attenuation in the stopband is set to 30 dB . On the other hand, the desired peak passband ripple is 0.005 dB . Calculate δ_{s} and δ_{p}.

Figure 6(a)
(30 marks)
(b) The system that you want to design requires a lowpass filter that has a flat magnitude at $\Omega=0$. Therefore, you design an analog Butterworth lowpass filter $H_{a}(s)$. The filter that you design has the following specifications:

- \quad 1-dB cutoff frequency at 1 kHz .
- A minimum attenuation of 25 dB at 5 kHz .

Determine the lowest order of this filter.
(c) Given a transfer function for a first order Butterworth highpass analog filter with a 3 dB cutoff frequency at Ω_{c} is:
$H_{H P}(s)=\frac{s}{s+\Omega_{c}}$
By using the simplified bilinear transformation, find the corresponding IIR digital filter.
(20 marks)
(d) Estimate the order of a linear-phase lowpass FIR filter by using Kaiser's formula:
$N \cong \frac{-20 \log _{10}\left(\sqrt{\delta_{p} \delta_{s}}\right)-13}{14.6\left(\omega_{s}-\omega_{p}\right) / 2 \pi}$
Given the specifications:

- passband edge $F_{p}=1.5 \mathrm{kHz}$
- \quad stopband edge $F_{s}=2.5 \mathrm{kHz}$
- peak passband ripple $\alpha_{p}=0.1 \mathrm{~dB}$
- minimum stopband attenuation $\alpha_{s}=50 \mathrm{~dB}$
- \quad sampling rate $F_{T}=15 \mathrm{kHz}$.

