COMPOSITE MICRO-MESOPOROUS MATERIALS AS CATALYSTS FOR THE PRODUCTION OF LIQUID FUELS FROM CATALYTIC CRACKING OF FATTY ACIDS MIXTURE AND USED PALM OIL

by.

OOI YEAN SANG

April 2004

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

ACKNOWLEDGMENT

Firstly, I would like to dedicate particular thanks to my supervisor, Professor Subhash Bhatia for his guidance and great inspiration during this research work was carried out. I really appreciate the opportunity to work under his supervision. I would like to acknowledge gratefully my co-supervisors Associate Professor Dr. Abdul Rahman Mohamed and Dr. Ridzuan Zakaria for their helps and advices through this research work.

The financial support by the Ministry of Science, Technology and Environment, Malaysia (MOSTE) for granting National Science Fellowship (NSF) and long term IRPA grant (Project: 02-02-05-2184 EA005) is gratefully acknowledged. Professor Piyasan Praserthdam from Chulalongkorn University, Thailand is particularly acknowledged for assisting in ²⁷Al NMR analysis. Special thanks to Acidchem International Sdn. Bhd. Penang, Malaysia for providing fatty acids mixture residue and Nilam Café, Nibong Tebal for providing used palm oil.

To all the technicians in the laboratories who gave full cooperation, an additional measure of thanks is due. I am also indebted to School of Physics, School of Biological Sciences and School of Chemical Sciences in USM for XRD, SEM, TEM and FTIR analysis. Not forgotten also, Dr. Farouq Twaiq and colleagues in School of Chemical Engineering, USM for being so helpful and willing to share their knowledge with me.

Last but definitely not least, my deepest and most heart-felt gratitude to my parent, sister, brothers and friends for their support, encouragement, concern and for standing by me through my darkest moments during this PhD study.

ii

TABLE OF CONTENTS

	· Page	
ACKNOWLEDGMENT	ii	
TABLE OF CONTENTS	iii	
LIST OF TABLES	vii	
LIST OF FIGURES	X	
ABBREVIATIONS	xvi	
NOMENCLATURES	xix	
ABSTRAK	XX	
ABSTRACT	xxii	
CHAPTER 1 INTRODUCTION	1	
1.1 ALTERNATIVE RESOURCES	1	
1.2 BIOFUEL FROM PALM OIL	2	
1.3 UTILIZATION OF FATTY ACIDS M PALM OIL	AIXTURE AND USED 3	
1.4 CRACKING CATALYSTS	4	
1.5 COMPOSITE CATALYSTS	5	
1.6 PROBLEM STATEMENT	6	
1.7 OBJECTIVES	8	
1.8 SCOPE OF THE STUDY	9	
1.9" ORGANIZATION OF THE THESIS	11	
CHAPTER 2 LITERATURE REVIEW	13	
2.1 MOLECULAR SIEVE MATERIALS	13	ļ
2.1.1 Microporous Materials	14	ŀ
2.1.1(a) Zeolite	15) 7
2.1.1(b) ZSM-5 2.1.1(c) Zeolite Beta	17)
2.1.2 Mesoporous Materials	20)
2.1.2(a) MCM-41	21	Ĺ
Synthesis and Mechanism of M Physicochemical Properties of Crystallinity	ACM-41 Formation 21 MCM-41 23 23	3
Acidity	24 24	1
Hudrothermal Stabilit	v	1

		j	MCM-41 as Catalyst	25
			2.1.2(b) SBA-15	27
			Synthesis and Mechanism of SBA-15 Formation	27
		-	Physicochemical Properties of SBA-15	28
		· · · -	Crystallinity	28
			Acidity	29
			Hydrothermal Stability	30
		010	Applications of SBA-15	20
		2.1.3	Composite Materials	31
	2.2	CHAR	ACTERIZATION OF CATALYSTS	35
		2.2.1	Physical Properties	35
			2.2.1(a) Surface Area and Pore Size distribution	35
			2.2.1(b) X-ray Diffraction (XRD) Crystallography	37
			2.2.1(c) Microscopy	38
		2.2.2	Chemical Properties	39
			2.2.2(a) Determination of Acidity	39
	2.3	CATA	LYTIC CRACKING OF VEGETABLE OILS	40
	2.4	MODE	ELING	45
		2.4.1	Statistical Study	45
		2.4.2	Kinetic Modeling	46
CHA	PTER 3	3	EXPERIMENTAL METHODS AND ANALYSIS	48
	3.1	MATE	ERIALS AND CHEMICALS	48
		3.1.1	Fatty Acids Mixture and Used Palm Oil	48
		3.1.2	Zeolite HZSM-5 Catalyst	49
		3.1.3	Zeolite H-Beta Catalyst	50
		314	Chemicals and Reagents	50
	32	САТА	VI VST PREPARATION	51
		3 2 1	Mesonorous Materials	51
		J.2.1	2.2.1 (a) MCM 41	51
			3.2.1.(a) MCM-41 3.2.1.(b) Large Pore Mesoporous Material	52
			3.2.1.(c) SBA-15	53
		3.2.2	Composite Catalyst	54
		•	3.2.2.(a) Composite MCM-41/Zeolite	54
			Seeding Method	54
· ,			Two-step Crystallization	57
			MCM-41/Beta	57
			MCM-41/ZSM-5	57
•			3.2.2.(b) Composite SBA-15/ZSM-5	59
			5.2.2.(c) Composite Alumina/Large Pore Mesonorous Material	50
		3.2.3	Catalyst Post-treatment	60

iv

		3.2.3.(a) Impregnation		60 60
		3.2.3.(c) Solid State Ion-exchange		61
3.3	CATA	LYST CHARACTERIZATION		63
	3.3.1	Nitrogen Adsorption		63
	3.3.2	X-ray Diffraction (XRD)		64
	3.3.3	Solid State Nuclear Magnetic Resonance (NN	/IR)	64
	3.3.4	Scanning Electron Microscopy (SEM) Image		64
	3.3.5	Transmission Electron Microscopy (TEM) In	nage	65
	3.3.6	Energy Dispersive X-ray Analysis (EDX)		65
	3.3.7	Inductive Coupled Plasma (ICP)		65
	3.3.8	Acidity Measurement		66
		3.3.8.(a) Thermal Gravimetric Analysis (TG	A)	66
	3.3.9	Fourier Transformed Infra Red (FTIR) Spect	ion (TPD) roscopy	66 67
3.4	HYDI	OTHERMAL STABILITY TEST		67
3.5	CATA	LYST ACTIVITY MEASUREMENT		68
	3.5.1	Fixed-bed Micro-reactor Rig		68
		3.5.1.(a) Pretreatment Section		68
, •		3.5.1.(b) Reaction Section		70
	250	3.5.1.(c) Product Collection Section		70
	2.5.2	Activity Test		71
	5.5.5	2.5.2 (a) Liquid Products		71
		3.5.3.(b) Gaseous Products		72
CHAPTER	4	MODELING		73
4.1	, STAT	ISTICAL MODELING		73
4.2	DEA	CTIVATION MODEL		75
4.3	KINE	TIC MODEL	÷	76
CHAPTER	5	RESULTS AND DISCUSSION		82
5.1	CAT	ALYST CHARACTERIZATION		82
	5.1.1	HZSM-5 Zeolite		82
	5.1.2	Mesoporous Material		84
• · · · ·		5.1.2.(a) MCM-41		84
		5.1.2.(b) Large Pore Mesoporous Material (LPMM)	88
	C 1 A	5.1.2.(c) SBA-15		- 91
	5.1.3	Hydrothermal Stability Test		94 00
	5.1.4	Composite Catalyst $5.1.4$ (c). Composite MCN4.41/ $(2-z)$		-99
		5.1.4.(a) Composite MCM-41/Zeolite		: 99

MCM-41/Beta	99
Seeding Method	99
Two-step Crystallization	105
MCM-41/ZSM-5	108
Seeding Method	108
Two-step Crystallization	113
5.1.4.(b) Composite SBA-15/ZSM-5 5.1.4.(c) Composite Alumina/Large Pore	118
5.1.4.(d) Metal-loaded Composite Catalyst	123 126
5.2 CATALYTIC ACTIVITY	130
5.2.1 HZSM-5 Catalysts with Different Si/Al Ratios	132
5.2.2 MCM-41 and Post-treated MCM-41	136
5.2.3 Large Pore Mesoporous Material	140
5.2.4 SBA-15	143
5.2.5 Composite Catalyst	145
5.2.5.(a) MCM-41/Zeolite	146
MCM-41/Beta	146
Seeding Method	146
Two-step Crystallization	150
MCM-41/ZSM-5	154
Seeding Method	154
Two-step Crystallization	159
5.2.5.(b) Composite SBA-15/ZSM-5 5.2.5.(c) Composite Alumina/Large Pore	164
Mesoporous Material	168
5.2.5.(d) Metal-loaded Composite Catalyst	171
5.3 MODELING	178
5.3.1 Statistical Modeling Coupled with the Response	
Surface Methodology	178
5.3.2 Deactivation Model	196
5.3.3 Kinetic Model	198
CHAPTER 6 CONCLUSIONS	211
CHAPTER 7 RECOMMENDATIONS	215
REFERENCES	216
APPENDICES	
Appendix A Organic Liquid Product	225
Appendix B Gaseous Products Analysis	226
Appendix C List of Publications	227

,

LIST OF TABLES

		Page
Table 3.1	Composition of fatty acids mixture, used palm oil and crude palm oil.	49
Table 3.2	List of chemicals and reagents.	50
Table 3.3	Composition of the synthesis gel for the large pore mesoporous material.	53
Table 3.4	Composition of different types of catalysts synthesized.	62
Table 4.1	Independent variables coded and real values used in the model.	.74
Table 5.1	BET surface area and acidity of HZSM-5 with different Si/Al ratios.	82
Table 5.2	Nitrogen adsorption-desorption data for MCM-41 and post-treated MCM-41.	85
Table 5.3	Nitrogen adsorption data for the large pore mesoporous material.	89
Table 5.4	Textural properties of SBA-15 and aluminum-containing SBA-15.	92
Table 5.5	BET surface area of steamed mesoporous materials.	95
Table 5.6	Physicochemical properties of the composite MCM-41/Beta via seeding method.	99
Table 5.7	Physical and chemical properties of composite MCM-41/Beta via two-step crystallization.	106
Table 5.8	Physicochemical properties of the composite MCM-41/ZSM-5 via seeding method.	109
Table 5.9	Physicochemical properties of composite MCM-41/ZSM-5 via two- step crystallization.	116
Table 5.10	Textural properties of the composite SBA-15/ZSM-5.	120
Table 5.11	Physicochemical properties of alumina grafted LPMM-1.	124
Table 5.12	Physicochemical properties of the metal-loaded composite CMZ20.	.127
Table 5.13	Catalytic cracking of FAM over HZSM-5 with different Si/Al ratios.	132
Table 5.14	Catalytic cracking of UPO over HZSM-5 with different Si/Al ratios.	134

- - -----

Table 5.15	Catalytic cracking of FAM over MCM-41 and post-treated MCM-41.	136
Table 5.16	Catalytic cracking of UPO over MCM-41 and post-treated MCM-41.	138
Table 5.17	Catalytic cracking of FAM over large pore mesoporous material.	140
Table 5.18	Catalytic cracking of UPO over large pore mesoporous material.	142
Table 5.19	Catalytic cracking of FAM over SBA-15.	143
Table 5.20	Catalytic cracking of UPO over SBA-15.	144
Table 5.21	Catalytic cracking of FAM over H-Beta and composite MCM-41/Beta synthesized via seeding method.	147
Table 5.22	Catalytic cracking of UPO over H-Beta and composite MCM-41/Beta synthesized via seeding method.	149
Table 5.23	Catalytic cracking of FAM over composite MCM-41/Beta synthesized via two-step crystallization and the physical mixture MCM-41/Beta.	151
Table 5.24	Catalytic cracking of UPO over composite MCM-41/Beta synthesized via two-step crystallization and the physical mixture MCM-41/Beta.	153
Table 5.25	Catalytic cracking of FAM over composite MCM-41/ZSM-5 synthesized via seeding method.	154
Table 5.26	Catalytic cracking of UPO over composite MCM-41/ZSM-5 synthesized via seeding method.	158
Table 5.27	Catalytic cracking of FAM over composite MCM-41/ZSM-5 synthesized via two-step crystallization and their physical mixture.	160
Table 5.28	Catalytic cracking of UPO over composite MCM-41/ZSM-5 synthesized via two-step crystallization and their physical mixture.	162
Table 5.29	Product distribution of FAM cracking over composite SBA-15/ZSM- 5.	164
Table 5.30	Product distribution of UPO cracking over composite SBA-15/ZSM- 5.	167
Table 5.31	Product distribution of FAM cracking over alumina grafted LPMM-1.	·169
Table 5.32	Product distribution of UPO cracking over alumina grafted LPMM-1.	170
Table 5.33	Product distribution of FAM and UPO cracking over magnesium ion- exchanged composite CMZ20.	172

.

Table 5.34	Product distribution of FAM and UPO cracking over nickel ion- exchanged composite CMZ20.	174
Table 5.35	Product distribution of FAM and UPO cracking over zinc ion- exchanged composite CMZ20.	175
Table 5.36	Experimental data of FAM cracking over HZSM-5(40).	179
Table 5.37	Experimental data of FAM cracking over CMZ20.	180
Table 5.38	Analysis of variance (ANOVA) for the responses conversion, and products yield of FAM cracking over HZSM-5(40).	182
Table 5.39	Analysis of variance (ANOVA) for the responses conversion, and products yield of FAM cracking over CMZ20.	183
Table 5.40	Experimental data of UPO cracking over HZSM-5 (40).	188
Table 5.41	Experimental data of UPO cracking over CMZ40.	189
Table 5.42	Analysis of variance (ANOVA) for the responses conversion, and products yield of UPO cracking over HZSM-5(40).	191
Table 5.43	Analysis of variance (ANOVA) for the responses conversion, and products yield of UPO cracking over CMZ40.	192
Table 5.44	Deactivation rate constant, k_d and deactivation order, n_d for FAM and UPO cracking over different catalysts.	197
Table 5.45	Reaction rate constants, activation energies and frequency factors estimated from 3-lump, 4-lump and 6-lump models for FAM cracking over HZSM-5(40).	199
Table 5.46*	Reaction rate constants, activation energies and frequency factors estimated from 3-lump, 4-lump and 6-lump models for FAM cracking over CMZ20.	200
Table 5.47	Reaction rate constants, activation energies and frequency factors estimated from 3-lump, 4-lump and 6-lump models for UPO cracking over HZSM-5(40).	206
Table 5.48	Reaction rate constants, activation energies and frequency factors estimated from 3-lump, 4-lump and 6-lump models for UPO cracking over CMZ40.	207

•

LIST OF FIGURES

		Page
Figure 1.1	World major producers of palm oil 2003 (MPOB, 2004a).	3
Figure 1.2	Prices of gasoline fuel and vegetable oils in year 2003 (MPOB, 2004b).	- 4
Figure 2.1	Framework structure of ZSM-5 (Gates, 1992).	18
Figure 2.2	Pore structure in BEA along b (left) and a (right) axis.	20
Figure 2.3	Phase sequence of surfactant-water binary system.	22
Figure 2.4	Possible mechanistic pathways for the formation of MCM-41.	23
Figure 2.5	Schematic diagram of the composite pellet.	32
Figure 2.6	Proposed reaction pathway for the conversion of vegetable oils over zeolite cracking catalysts (Katikaneni et al., 1995; Leng et al., 1999).	41
Figure 3.1	Model of the composite MCM-41/zeolite.	55
Figure 3.2	Flowchart for the preparation of composite MCM-41/zeolite via seeding method.	56
Figure 3.3	Flowchart for the preparation of composite MCM-41/zeolite via two- step crystallization method.	58
Figure 3.4	Schematic diagram of micro-reactor rig used in catalytic cracking of fatty acids mixture and used palm oil.	69
Figure 4.1	Kinetic scheme for 3-lump model.	77
Figure 4.2	Kinetic scheme for 4-lump model.	78
Figure 4.3	Kinetic scheme for 6-lump model.	80
Figure 5.1	FTIR spectra of (a) HZSM-5(40); (b) HZSM-5(90) and (c) HZSM- $5(140)$.	83
Figure 5.2	XRD pattern of MCM-41.	. 84
Figure 5.3	Pore size distribution of MCM-41 before and after post-treatment.	86

Figure 5.4	TGA spectra of H_3PO_4 impregnated MCM-41 and calcium ion-exchanged MCM-41.	87
Figure 5.5	IR spectra of pyridine adsorbed region for (a) (i) MCM-41; (ii) P4M41; (iii) P8M41 (b)(i) Ca-MCM-41; (ii) CaP4M41; (iii) CaP8M41.	88
Figure 5.6	Pore size distribution of LPMM samples.	90
Figure 5.7	IR spectra of (a) LPMM-1; (b) LPMM-2; (c) LPMM-3 and (d) LPMM-4.	90
Figure 5.8	Nitrogen isotherms and pore size distribution of SBA-15 and Al-SBA-15.	92
Figure 5.9	SEM images of AlSBA(10) of magnification of (a) 1000 X and (b) 5000 X.	93
Figure 5.10	TEM images of AlSBA(10).	94
Figure 5.11	Nitrogen adsorption-desorption isotherms of (a) MCM41, (b) P4M41, (c) P8M41 and (d) Ca-MCM41 before and after exposure to 100% steam at 1073 K for an hour.	96
Figure 5.12	SEM images of (a) fresh MCM-41 and (b) steamed MCM-41 at 1073 K.	97
Figure 5.13	Nitrogen isotherms and pore size distribution of SBA-15 and AlSBA-15 after steaming.	98
Figure 5.14	(a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution for the pure H-Beta, MCM-41 and their composite with different compositions.	100
Figure 5.15	Nitrogen isotherms of composite MCM-41 with zeolite Beta with different Si/Al ratios in the reaction gel of MCM-41.	101
Figure 5.16	XRD images of composite MCM-41/Beta (a) with different coating amount (b) with different Si/Al ratios in the synthesis gel.	102
Figure 5.17	TEM image of CMBA40 showing the presence of hexagonal uni- dimensional of pore structure of MCM-41.	103
Figure 5.18	Morphology of (a) uncoated H-Beta and after coated with 40 wt% Al- MCM-41 (b) CMBA40.	103
Figure 5.19	IR spectra of pyridine absorbed on (a) (i) H-Beta; (ii) CMB20; (iii) CMB30; (iv) CMB40 and (b) (i) CMB40; (ii) CMBA40; (iii) CMBA20; (iv) CMBA10.	104

Figure 5.20	Nitrogen isotherms and pore size distribution (insert) of composite MCM-41/Beta.	105
Figure 5.21	XRD patterns of composite MCM-41/Beta.	107
Figure 5.22	SEM image of CMBI48.	107
Figure 5.23	IR spectra of pyridine absorbed on (a) CMBI48; (b) CMBI96 and (c) CMBI144.	108
Figure 5.24	Isotherms of nitrogen sorption for HZSM-5 and composite MCM-41/ZSM-5.	110
Figure 5.25	TEM image of CMZA40 showing the presence of hexagonal uni- dimensional of pore structure of MCM-41.	111
Figure 5.26	Morphology of (a) uncoated ZSM-5 and after coated with 40 wt% Al-MCM-41 (b) CMZA40.	111
Figure 5.27	XRD images of composite MCM-41/ZSM-5 (a) with different coating amount (b) with different Si/Al ratio in the synthesis gel.	112
Figure 5.28	IR spectra of pyridine absorbed on (a) (i) H-ZSM-5; (ii) CMZ20; (iii) CMZ30; (iv) CMZ40 and (b) (i) CMZ40; (ii) CMZA40; (iii) CMZA20; (iv) CMZA10.	113
Figure 5.29	Nitrogen sorption isotherms for composite MCM-41/ZSM-5.	114
Figure 5.30	Pore size distribution of composite MCM-41/ZSM-5.	115
Figure 5.31	XRD images of composite MCM-41/ZSM-5 with pH adjusted to (a) 8.6 and (b) 9.6 during synthesis.	117
Figure 5.32	*SEM image of CMZI96(9).	118
Figure 5.33	Nitrogen adsorption-desorption isotherms for (a) purely siliceous composites and (b) aluminum-containing composites.	119
Figure 5.34	XRD image of composite CSZ60.	120
Figure 5.35	SEM images of CSZ60 at the magnification of (a) 1000 X and (b) 5000 X.	121
Figure 5.36	TEM images of CSZ90.	122
Figure 5.37	IR spectra of pyridine absorbed on (a) (i) CSZ20; (ii) CSZ30; (iii) CSZ60 and (iv) CSZ90; (b) (i) CSZ90; (ii) CSZA20 and (iii) CSZA10.	123

And the second s

tradition for the strate first

Figure 5.38	Pore size distribution of LPMM-1 and LPMM-1 after grafted with different layer of alumina.	124
Figure 5.39	²⁷ Al MAS NMR of sample (a) LPMM-1 and (b) LPMM41(A3).	125
Figure 5.40	NH ₃ -TPD from LPMM-1 and the LPMM-1 after grafted with different layer of alumina.	126
Figure 5.41	IR spectra of pyridine-absorbed (a) MgCMZ(L); (b) MgCMZ(0.5) and (c) MgCMZ(1.0).	128
Figure 5.42	IR spectra of pyridine-absorbed (a) NiCMZ(L); (b) NiCMZ(0.5) and (c) NiCMZ(1.0).	129
Figure 5.43	IR spectra of pyridine-absorbed (a) ZnCMZ(L); (b) ZnCMZ(0.5) and (c) ZnCMZ(1.0).	129
Figure 5.44	Different types of catalysts used in the cracking of FAM and UPO.	131
Figure 5.45	Selectivity of OLP from the cracking of FAM over HZSM-5 with different Si/Al ratios.	133
Figure 5.46	Selectivity of OLP from the cracking of UPO over HZSM-5 with different Si/Al ratios.	135
Figure 5.47	Effect of post-treatment of MCM-41 in the selectivity of liquid products from the cracking of FAM.	137
Figure 5.48	Effect of post-treatment of MCM-41 in the selectivity of liquid products from the cracking of UPO.	139
Figure 5.49	Selectivity of liquid products from the cracking of FAM over large pore mesoporous material.	141
Figure 5.50	Selectivity of liquid products from the cracking of UPO over large pore mesoporous material.	142
Figure 5.51	Selectivity of the fractions in OLP over SBA-15 and AlSBA-15 in FAM cracking.	144
Figure 5.52	Selectivity of the fractions in OLP over SBA-15 and AlSBA-15 in UPO cracking.	145
Figure 5.53	Effect of coating layer and aluminum content of coating layer in composite MCM-41/Beta synthesized via seeding method on the selectivity of the fractions in OLP from the cracking of FAM.	148
Figure 5.54	Effect of coating layer and aluminum content of coating layer in composite MCM-41/Beta synthesized via seeding method on the selectivity of the fractions in OLP from the cracking of UPO.	150

Figure 5.55	Selectivity of the fractions in OLP from the cracking of FAM over composite MCM-41/Beta synthesized via two-step crystallization and physical mixture.	152
Figure 5.56	Selectivity of the fractions in OLP from the cracking of UPO over composite MCM-41/Beta synthesized via two-step crystallization and physical mixture.	153
Figure 5.57	Selectivity of different fractions present in OLP over HZSM-5, MCM-41 and their composite catalysts synthesized via seeding method in FAM cracking.	156
Figure 5.58	Effect of different amount of MCM-41 in the composite with ZSM-5 synthesized via seeding method on OLP and BTX selectivity from the cracking of FAM.	157
Figure 5.59	Selectivity of different fractions present in OLP over HZSM-5, MCM-41 and their composite catalysts synthesized via seeding method in UPO cracking.	159
Figure 5.60	Selectivity of different fractions present in OLP over composite MCM-41/ZSM-5 synthesized via two-step crystallization and physical mixture MCM-41/ZSM-5 in the cracking of FAM.	161
Figure 5.61	Selectivity of different fractions present in OLP over composite MCM-41/ZSM-5 synthesized via two-step crystallization and physical mixture MCM-41/ZSM-5 in the cracking of UPO.	163
Figure 5.62	Selectivity of different fractions present in OLP over SBA-15 and the composite catalysts in the cracking of FAM.	165
Figure 5.63	Effect of different amount of SBA-15 in the composite with ZSM-5 synthesized via seeding method on OLP and BTX selectivity from the cracking of FAM.	166
Figure 5.64	Selectivity of different fractions present in OLP over SBA-15 and the composite catalysts in the cracking of UPO.	168
Figure 5.65	Selectivity of the fractions in OLP from FAM cracking over LPMM-1 and alumina grafted LPMM-1.	- 170
Figure 5.66	Gasoline yield versus conversion for the cracking of (a) FAM and (b) UPO over different catalysts.	176
Figure 5.67	Response surface plot for gasoline fraction yield obtained from the statistical model for the cracking of FAM over HZSM-5(40) at oil(fatty acids)/catalyst ratio of 8.	185

Figure 5.68	Response surface plot for gasoline fraction yield obtained from the statistical model for the cracking of FAM over CMZ20 at oil(fatty acids)/catalyst ratio of 6.	187
Figure 5.69	Response surface plot for gasoline fraction yield obtained from the statistical model for the cracking of UPO over HZSM-5(40) at oil/catalyst ratio of 10.	193
Figure 5.70	Response surface plot for gasoline fraction yield obtained from the statistical model for the cracking of UPO over CMZ40 at oil/catalyst ratio of 6.	195
Figure 5.71	Time on stream for the cracking of UPO over HZSM-5(40).	196
Figure 5.72	Cracking activity prediction of FAM over HZSM-5(40) obtained from 6-lump model for (a) conversion; (b) yield of gasoline fraction and (c) yield of gas.	203
Figure 5.73	Cracking activity prediction of FAM over CMZ20 obtained from 6- lump model for (a) conversion; (b) yield of gasoline fraction and (c) yield of gas.	204
Figure 5.74	Cracking activity prediction of UPO over HZSM-5(40) obtained from 6-lump model for (a) conversion; (b) yield of gasoline fraction and (c) yield of gas.	209.
Figure 5.75	Cracking activity prediction of UPO over CMZ40 obtained from 6- lump model for (a) conversion; (b) yield of gasoline fraction and (c) yield of gas.	210
Figure A.1	Chromatogram of the organic liquid product (OLP) composition obtained from the catalytic cracking of FAM over HZSM-5 catalyst.	225
Figure B.1	Chromatograph of the gaseous products composition obtained from the catalytic cracking of FAM over HZSM-5(40) catalyst.	226

ABBREVIATIONS

ANOVA	Analysis of variance
APS	Average pore size
BEA	Zeolite Beta
BET	Brunaur-Emmett-Teller
BJH	Barrett, Joyner and Halenda
BTX	Benzene, toluene and xylene
C ₁₂ TMA-Cl	Dodecyltrimethyl ammonium chloride
C ₁₆ TMA-Br/Cl	Cetyltrimethyl ammonium bromide/chloride
CMBAX	Composite aluminosilicate MCM-41 with zeolite Beta prepared via seeding method with X referred to the Si/Al ratio of MCM-41 in the composite (10,20 and 40).
CMBIX	Composite silica MCM-41 with zeolite Beta prepared via two- step crystalline method with X referred to the aging time (48, 96, 144 hr).
CMBX	Composite silica MCM-41 with zeolite Beta prepared via seeding method with X referred to the weight percent of MCM-41 in the composite (20, 30, 40).
eme	Critical micelle concentration
CMZAX	Composite aluminosilicate MCM-41 with ZSM-5 prepared via seeding method with X referred to the Si/Al ratio of MCM-41 in the composite (10,20 and 40).
CMZIX	Composite aluminosilicate MCM-41 with ZSM-5 prepared via two-step crystalline method with X referred to the aging time (48, 96, 144 hr).
CMZX	Composite silica MCM-41 with ZSM-5 prepared via seeding method with X referred to the weight percent of MCM-41 in the composite (20, 30 and 40).
CSZAX	Composite aluminosilicate SBA-15 with ZSM-5 prepared via seeding method with X referred to the Si/Al ratio of SBA-15 in the composite (10 and 20).
CSZX	Composite silica SBA-15 with ZSM-5 prepared via seeding method with X referred to the weight percent of SBA-15 in the composite (20, 30, 60 and 90).
DOE 🚒	Design of experiments

EDX	Energy dispersive X-ray
EO	Ethylene oxide
FAM	Fatty acids mixture
FCC	Fluid catalytic cracking
FTIR	Fourier transformed infra red
HRTEM	High resolution transmission electron microscopy
I	Inorganic precursor
ICP	Inductive coupled plasma
IUPAC	International union of Pure and Applied Chemistry
IZA	International Zeolite Association
LCT	Liquid crystal templating
LPMM	Large pore mesoporous material
М	Metal ion
MCM	Mobil Crystalline Material
MFI	Mobil Five
MgCMZ(L)	Magnesium loaded CMZ20 by liquid ion exchange
MgCMZ(X)	Magnesium loaded CMZ20 by solid ion exchange with X referred to Mg/Al ratio
MTG	Methanol to gasoline
NiCMZ(L)	Nickel loaded CMZ20 by liquid ion exchange
NiCMZ(X)	Nickel loaded CMZ20 by solid ion exchange with X referred to Ni/Al ratio
OLP	Organic liquid product
PEO-PPO-PEO	Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)
РО	Propylene oxide
PONA	Paraffin, olefin, naphthalene and aromatic
RKF	Runge-Kutta-Fehlberg
RSM	Response surface methodology
S	Surfactant head group
SBA	Silica block assembly
SEM	Scanning electron microscopy
ТЕАОН	Tetra-ethyl ammonium hydroxide
TEM	Transmission electron microscopy
TEOS	Tetra-ethyl orthosilicate

A STATE OF A

and the second secon

Contraction of the local distance

ALW A

TGA	Thermal gravimetric analysis
TMA	Tetra-methyl ammonium
TMOS	Tetra-methyl orthosilicate
TPABr	Tetra-propyl ammonium bromide
TPD	Temperature programmed desorption
UPO	Used palm oil
USY	Ultra stable Y
XRD	X-ray diffraction
ZnCMZ(L)	Zinc loaded CMZ20 by liquid ion exchange
ZnCMZ(X)	Zinc loaded CMZ20 by solid ion exchange with X referred to Zn/Al ratio
ZSM-5	Zeolite Socony Mobil Five

•

<u>ب</u>ر

-

NOMENCLATURES

А	Temperature code (K)
ao	Unit cell dimension (nm)
В	Feedstock to catalyst ratio code (g/g cat)
С	Weight hourly space velocity code (h ⁻¹)
C_p	Fatty acids mixture/ used palm oil weight fraction (wt%)
Cproduct	Product weight fraction (wt%)
Dv	Differential pore volume (cc/Å/g)
E .	Activation energy (kJ/mol)
F-value	Ratio of model mean square to the residuals mean square
k _d .	Deactivation rate constant (h ⁻¹)
<i>k</i> _i	Reaction rate constant, $i = 1, 2,, 7$ (kg ¹⁻ⁿ kg _{feed} ⁿ kg _{catalyst} ⁻¹ h ⁻¹)
п	Order of reaction
n _d	Order of the deactivation rate
O/C	Oil (fatty acids) to catalyst ratio (g/g cat)
Pc	Conversion (wt%)
R	Gas constant (J mol ⁻¹ K ⁻¹)
T	Reaction temperature (K)
t	Time on stream (h)
WHSV 🛰	Weight hourly space velocity (kg _{feed} kg _{catalyst} ⁻¹ h ⁻¹)
X	Independent variable
Y	Response
Y _{product}	Yield of desired product (wt%)

Greek symbols

α	Frequency factor (kg ¹⁻ⁿ kg _{feed} ⁿ kg _{catalyst} ⁻¹ h ⁻¹)
β	Constant in statistical model
3	Error of the response Y
arphi	Deactivation function
τ	Residence time (h)

BAHAN KOMPOSIT BERLIANG MIKRO-MESO SEBAGAI MANGKIN UNTUK PENGHASILAN BAHAN API CECAIR DARIPADA PERETAKAN BERMANGKIN BAGI CAMPURAN ASID-ASID LEMAK DAN MINYAK KELAPA SAWIT TERPAKAI

ABSTRAK

Campuran asid-asid lemak daripada minyak kelapa sawit (FAM) serta minyak kelapa sawit terpakai (UPO), merupakan sumber yang murah dan boleh diperbaharui telah diterokai untuk penghasilan bahan api cecair daripada proses peretakan bermangkin. Proses peretakan bermangkin ini dikaji pada tekanan atmosfera dalam reaktor mikro, pada suhu tindakbalas 723 K dan halaju ruang (WHSV) pada 2.5 jam⁻¹. Mangkin ZSM-5 berliang mikro dengan nisbah Si/Al yang berbeza dan zeolit Beta, aluminosilikat berliang meso serta bahan komposit berliang mikro-meso telah digunakan sebagai mangkin peretakan.

Molekul ayak MCM-41 berliang meso disintesis dan dipascarawat dengan menggunakan pertukaran ion dan pembebanan untuk meningkatkan kestabilan hidrotermanya. Mesitilena digunakan sebagai pengembang liang bagi sintesis bahan berliang meso yang besar (LPMM). SBA-15, bahan berliang meso dengan dinding liang yang lebih tebal dan kestabilan hidroterma yang lebih baik juga disintesis dalam keadaan berasid. Komposit MCM-41/zeolit (Beta/ZSM-5) telah disediakan dengan dua kaedah berbeza (a) kaedah berbenih (b) penghabluran dua-langkah. Kaedah berbenih juga digunakan untuk mensintesis SBA-15/ZSM-5. Bahan komposit berliang makromeso disediakan dengan menyalut LPMM dengan alumina. Ion-ion logam dimuatkan dalam bahan komposit MCM-41/ZSM-5 dengan pertukaran ion secara cecair dan dalam bahan komposit MCM-41/ZSM-5 dengan pertukaran ion secara cecair dan dalam baban pepejal masing-masing. Bahan-bahan tersebut dicirikan untuk luas permukaan BET dan taburan saiz liang menggunakan penyerapan nitrogen, pembelauan sinar-X

(XRD), mikroskopi elektron imbasan (SEM), mikroskopi elektron transmisi (TEM), plasma berganding aruhan (ICP), resonans magnet nuklear (NMR), inframerah transformasi Fourier (FTIR), analisis gravimetri terma (TGA), dan penyahjerapan pengaturcara suhu (TPD). MCM-41 dengan pascarawatan menunjukkan kestabilan hidroterma yang lebih baik berbanding dengan MCM-41 asal. Saiz liang bahan berliang meso LPMM bertambah daripada 2.9 kepada 4.2 nm dengan penggunaan mesitilena. SBA-15 mempunyai luas permukaan BET yang lebih besar dan saiz liangnya bertambah daripada 4.8 kepada 6.5 nm apabila aluminium diperkenalkan. Bahan komposit yang disediakan dengan kaedah berbenih membolehkan kawalan yang lebih baik terhadap nisbah berat fasa mikro/meso berbanding dengan kaedah penghabluran dua-langkah.

Mangkin HZSM-5 memaparkan penukaran lebih daripada 90 % berat dan 37–47 % berat hasilan pecahan gasolin berbanding dengan zeolit Beta. MCM-41 dengan pascarawatan kurang memilih terhadap bahagian gasolin. Penambahan aluminium dalam SBA-15 meningkatkan penukaran dan kememilihan bahagian gasolin disebabkan peningkatan luas permukaan dan kebolehcapaian tapak-tapak aktif. Komposit MCM-41/ZSM-5 merupakan mangkin paling sesuai dalam peretakan FAM serta UPO dengan memberikan hasil bahagian gasolin dari 37 hingga 44 % berat.

Faktorial penuh 3³ rekabentuk ujikaji telah digunakan untuk menyelidik kesan pelbagai keadaan operasi dalam peretakan FAM dan UPO masing-masing. Model kuadratik yang dicadangkan itu padan dengan data ujikaji dalam lingkungan 95% ketepatan. Model-model gabungan 3, 4 dan 6 telah digunakan untuk pengkajian kinetik bagi peretakan FAM dan UPO dengan HZSM-5 dan komposit MCM-41/ZSM-5. Nilainilai pemalar kadar peretakan FAM dengan mangkin komposit adalah lebih rendah berbanding dengan yang diperolehi dengan HZSM-5. Penukaran dan hasil produkproduk diperolehi daripada model gabungan 6 dan dibandingkan dengan data ujikaji.

ABSTRACT

Palm oil based fatty acids mixture (FAM) and used palm oil (UPO), low cost and renewable resources were explored for the production of liquid fuel using catalytic cracking process. The catalytic cracking reaction was studied at atmospheric pressure in a fixed bed micro-reactor at reaction temperature of 723 K and weight hourly space velocity (WHSV) of 2.5 h⁻¹. Microporous ZSM-5 catalyst with different Si/Al ratios and zeolite Beta, mesoporous aluminosilicates and composite micro-mesoporous materials were used as cracking catalysts.

Mesoporous molecular sieve MCM-41 was synthesized and post-treated using ion-exchange and impregnation method to improve its hydrothermal stability. Mesitylene was used as the pore expander for the synthesis of large pore mesoporous material (LPMM). SBA-15, another mesoporous material with thicker pore wall and better hydrothermal stability was synthesized under acidic condition. Composite MCM-41/zeolite (Beta/ZSM-5) was prepared using two different methods (a) seeding method (b) two-step crystallization. Seeding method was applied for the synthesis of SBA-15/ZSM-5. Macro-mesoporous composite material was prepared by coating LPMM with alumina. The metal ions were loaded in the composite MCM-41/ZSM-5 material by liquid and solid state ion exchange methods respectively. These materials were characterized for BET surface area and pore size distribution using nitrogen adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), inductive coupled plasma (ICP), nuclear magnetic resonance (NMR), Fourier transformed infra red (FTIR), thermal gravimetric analysis (TGA) and temperature programmed desorption (TPD). Post-treated MCM-41 showed improved

hydrothermal stability as compared to fresh MCM-41. The pore size of the mesophase in LPMM material increased from 2.9 to 4.2 nm with the addition of mesitylene. SBA-15 had large BET surface area and its pore size increased from 4.8 to 6.5 nm when aluminum was incorporated. The composite materials prepared via seeding method resulted in better control for the weight ratio of microphase/mesophase as compared to two-step crystallization.

HZSM-5 catalyst gave more than 90 wt% conversion and 37–47 wt% gasoline fraction yield as compared to zeolite Beta. The post-treated MCM-41 was less selective towards gasoline fraction. Incorporation of aluminum in SBA-15 enhanced both the conversion and selectivity of gasoline fraction due to the increase of surface area and improved accessibility to the active sites. Composite MCM-41/ZSM-5 was the most suitable catalyst in the cracking of FAM as well as UPO by giving gasoline fraction yield from 37 to 44 wt%.

3³ full factorial design of experiments was used to study the effect of different operating conditions over FAM and UPO cracking respectively. The quadratic model proposed was in good agreement with the experimental data within 95% confidence. The 3-lump, 4-lump and 6-lump model were applied for the kinetic study of FAM and UPO cracking reaction over HZSM-5 and composite MCM-41/ZSM-5 respectively. The rate constant values for the cracking of FAM over composite catalyst were lower in magnitude compared to values obtained over HZSM-5. The simulated conversion and yield of products were obtained from 6-lump model and compared with the experimental data.

CHAPTER 1

INTRODUCTION

1.1 ALTERNATIVE RESOURCES

Transportation fuels are currently the main refinery products covering nearly 38% of world petroleum production (Anon, 1997). As crude oil resources eventually begin to deplete, there are large investments in developing alternative fuel engine (Kalam & Masjuki, 2002). The most common alternative fuels are compressed natural gas (CNG), liquefied natural gas (LNG), methanol, ethanol and hydrogen (fuel cell vehicle). However, instead of converting engine to run on alternative fuels in the future, the market is more willing to convert the alternative energy resources into synthetic liquid fuels that are similar to gasoline or diesel (Piel, 2001).

The conversion of hydrocarbon sources to produce fuels is one of the most significant developments. Yet, regulators, environmentalists and societies also demand for the environmentally sustainable development for the planet and at the same time looking for accelerating economic growth (Cusumano, 1995). As a consequence, several studies on the production of hydrocarbons from plant oils such as canola oil, tall oil and jojoba oil using cracking catalysts such as HZSM-5, silica alumina and their physical mixtures were reported (Sharma & Bakhshi, 1991; Katikaneni *et al.*, 1995; Adjaye *et al.*, 1996; Idem *et al.*, 1997). Most of these studies concentrated on developing alternative sources of hydrocarbons needed in a wide range of industrial applications.