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method with X referred to the weight percent of MCMA1 in the 
composite (20, 30,40). 

Critical micelle concentration 

Composite aluminosilicate MCMA1 with ZSM-5 prepared via 
seeding method with X referred to the Si/ Al ratio of MCM-41 in 
the composite (10,20 and 40). 

Composite aluminosilicate MCMA1 with ZSM-5 prepared via 
two-step crystalline method with X referred to the aging time (48, 
96, 144 hr). 

Composite silica MCMA1 with ZSM-5 prepared via seeding 
method with X referred to the weight percent of MCMA1 in the 
composite (20, 30 and 40). 

Composite aluminosilicate SBA-15 with ZSM-5 prepared via 
seeding method with X referred to the Si/AI ratio of SBA-15 in 
the composite (10 and 20). 

Composite silica SBA-15 with ZSM-5 prepared via seeding 
method with X referred to the weight percent of SBA-15 in the 
composite (20, 30, 60 and 90). 

Design of experiments 
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TGA 

TMA 

TMOS 

TPABr 

TPD 

UPO 
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XRD 

ZnCMZ(L) 

ZnCMZ(X) 

ZSM-5 

Thermal gravimetric analysis 

Tetra-methyl ammonium 

Tetra-methyl orthosilicate 
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Temperature programmed desorption 
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X-ray diffraction 

Zinc loaded CMZ20 by liquid ion exchange 

Zinc loaded CMZ20 by solid ion exchange with X referred to 
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NOMENCLA TURES 

A 

ao 
B 

C 

Cproduc/ 

Dv 

E 

F-value 

k, 

n 

OIC 

R 

T 

WHSV ,.~ 

x 

Y 

Yproduct 

Greek symbols 

a 

E 

T 

Temperature code (K) 

Unit cell dimension (nm) 

Feedstock to catalyst ratio code (gig cat) 

Weight hourly space velocity code (h- I) 

Fatty acids mixturel used palm oil weight fraction (wt%) 

Product weight fraction (wt%) 

Differential pore volume (cc/Alg) 

Activation energy (kJ/mol) 

Ratio of model mean square to the residuals mean square 

Deactivation rate constant (h-I) 

Reaction rate constant, i = 1,2", " 7 (kg l
-
n kgfee/ kgcatalyst-I h- I) 

Order of reaction 

Order of the deactivation rate 

Oil (fatty acids) to catalyst ratio (gig cat) 

Conversion (wt%) 

Gas constant (J mor l K-I) 

Reaction temperature (K) 

Time on stream (h) 

Weight hourly space velocity (kgfeed kgcatalyst-I h- I) 

Independent variable 

Response 

Yield of desired product (wt%) 

Frequency factor (kg l-n kg fee/ kgcatalyst-I h- I) 

Constant in statistical model 

Error of the response Y 

Deactivation function 

Residence time (h) 



BAHAN KOMPOSIT BERLIANG MIKRO-MESO SEBAGAI MANGKIN 
UNTUK PENGHASILAN BAHAN API CECAIR DARIPADA PERETAKAN 
BERMANGKIN BAGI CAMPURAN ASID-ASID LEMAK DAN MINYAK 

KELAPA SA WIT TERP AKAI 

ABSTRAK 

Campuran asid-asid lemak daripada minyak kelapa sawit (F AM) serta minyak 

kelapa sawit terpakai (UPO), merupakan sumber yang murah dan boleh diperbaharui 

telah diterokai untuk penghasilan bahan api cecair daripada proses peretakan 

bermangkin. Proses peretakan bermangkin ini dikaji pada tekanan atmosfera dalam 

reaktor mikro, pada suhu tindakbalas 723 K dan halaju ruang (WHSV) pada 2.5 jam-I. 

Mangkin ZSM-5 berliang mikro dengan nisbah Si/AI yang berbeza dan zeolit Beta, 

aluminosilikat berliang meso serta bahan komposit berliang mikro-meso telah 

digunakan sebagai mangkin peretakan. 

Molekul ayak MCM-41 berliang meso disintesis dan dipascarawat dengan 

menggunakan pertukaran ion dan pembebanan untuk meningkatkan kestabilan 

hidrotermanya. Mesitilena digunakan sebagai pengembang liang bagi sintesis bahan 

,..,~ 

berliang meso yang besar (LPMM). SBA-IS, bahan berliang meso dengan dinding liang 

yang lebih tebal dan kestabilan hidroterma yang lebih baik juga disintesis dalam 

keadaan berasid. Komposit MCM-4Ilzeolit (Beta/ZSM-5) telah disediakan dengan dua 

kaedah berbeza (a) kaedah berbenih (b) penghabluran dua-langkah. Kaedah berbenih 

juga digunakan untuk mensintesis SBA-15/ZSM-5. Bahan' komposit berliang makro-

meso disediakan dengan menyalut LPMM dengan alumina. Ion-ion logam dimuatkaf!. 

dalam bahan komposit MCM-411ZSM-5 dengan pertukaran ion secara cecair dan dalam 

keadaan pepejal masing-masing. Bahan-bahan tersebut dicirikan untuk luas permukaan 

BET dan taburan saiz liangmenggunakan penyerapan nitrogen, pembelauansinar-X 



(XRD), mikroskopi elektron imbasan (SEM), mikroskopi elektron transmisi (TEM), 

plasma berganding aruhan (ICP), resonans magnet nuklear (NMR), inframerah 

transformasi Fouri~r (FTIR), analisis gravimetri terma (TGA), dan penyahjerapan 

pengaturcara suhu (TPD). MCM-41 dengan pascarawatan menunjukkan kestabilan 

hidroterma yang lebih baik berbanding dengan MCM-41 asal. Saiz liang bahan berliang 

meso LPMM bertambah daripada 2.9 kepada 4.2 nm dengan penggunaan mesitilena. 

SBA-15 mempunyai luas permukaan BET yang lebih besar dan saiz liangnya bertambah 

daripada 4.8 kepada 6.S nm apabila aluminium diperkenalkan. Bahan komposit yang 

disediakan dengan kaedah berbenih membolehkan kawalan yang lebih baik terhadap 

nisbah berat fasa mikro/meso berbanding dengan kaedah penghabluran dua-Iangkah. 

Mangkin HZSM-S memaparkan penukaran lebih daripada 90 % berat dan 37-47 

% berat hasilan pecahan gasolin berbanding dengan zeolit Beta. MCM-41 dengan 

pascarawatan kurang memilih terhadap bahagian gasolin. Penambahan aluminium 

dalam SBA-15 meningkatkan penukaran dan kememilihan bahagian gasolin disebabkan 

peningkatan luas permukaan dan kebolehcapaian tapak-tapak aktif. Komposit MCM-

41/ZSM-S merupakan mangkin paling sesuai dalam peretakan FAM serta UPO dengan 

memberikan hasil bahagian gasolin dari 37 hingga 44 % berat. 

Faktorial penuh 33 rekabentuk ujikaji telah digunakan untuk menyelidik kesan 

" pelbagai keadaan operasi dalam peretakan F AM dan UPO masing-masing. Model 

kuadratik yang dicadangkan itu padan dengan data ujikaji dalam lingkungan 95% 

ketepatan. Model-model gabungan 3, 4 dan 6 telah digunakan untuk pengkajian kinetik 

bagi peretakan FAM dan UPO dengan HZSM-S dan kompcisit MCM-41/ZSM-S. Nilai-

nilai pemalar kadar peretakan F AM dengan I?angkin komposit adalah lebih renda~ 

berbanding dengan yang diperolehi dengan HZSM-5. Penukaran dan hasil produk-. 

produk diperolehi daripada model gabungan 6 dan dibandingkan dengan data ujikaji. 



ABSTRACT 

Palm oil based fatty acids mixture (F AM) and used palm oil (UPO), low cost 

and renewable resources were explored for the production of liquid fuel using catalytic 

cracking process. The catalytic cracking reaction was studied at atmospheric pressure in 

a fixed bed micro-reactor at reaction temperature of 723 K and weight hourly space 

velocity (WHSV) of 2.S h-1
• Microporous ZSM-S catalyst with different Si/ Al ratios and 

zeolite Beta, mesoporous aluminosilicates and composite micro-mesoporous materials 

were used as cracking catalysts. 

Mesoporou~ molecular sieve MCM-41 was synthesiz~d and post-treated using 

ion-exchange and impregnation method to improve its hydrothermal stability. 

Mesitylene was used as the pore expander for the synthesis of large pore mesoporous 

material (LPMM). SBA-lS, another mesoporous material with thicker pore wall and 

better hydrothermal stability was synthesized under acidic condition. Composite MCM-

411zeolite (Beta/ZSM-S) was prepared using two different methods (a) seeding method 

(b) two-st~p crystallization. Seeding method was applied for the synthesis of SBA-

lS/ZSM-S. Macro-mesoporous composite material was prepared by coating LPMM 

with alumina. The metal ions were loaded in the composite MCM-41/ZSM-S material 

by liquid and solid state ion exchange methods respectively. These materials were 

characterized for BET surface area and pore size distribution using nitrogen adsorption, . 

X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), inductive coupled plasma (ICP), nuclear magnetic resonance 

(NMR), Fourier transformed infra red (FTIR), thermal gravimetric analysis (TGA) and 

temperature programmed desorption (TPD). Post-treated MCM-41 showed improved 



hydrothermal stability as compared to fresh MCM-41. The pore size of the mesophase 

in LPMM material increased from 2.9 to 4.2 nm with the addition of mesitylene. SBA-

IS had large BET surface area and its pore size increased from 4.8 to 6.S nm when 

aluminum was incorporated. The composite materials prepared via seeding method 

resulted in better control for the weight ratio of microphase/mesophase as compared to 

two-step crystallization. 

HZSM-S catalyst gave more than 90 wt% conversion and 37-47 wt% gasoline 

fraction yield as compared to zeolite Beta. The post-treated MCM-41 was less selective 

towards gasoline fraction. Incorporation of aluminum in SBA -15 enhanced both the 

conversion and selectivity of gasoline fraction due to the increase of surface area and 

improved accessibility to the active sites. Composite MCM-411ZSM-5 was the most 

suitable catalyst in the cracking of F AM as well as UPO by giving gasoline fraction 

yield from 37 to 44 wt%. 

33 full factorial design of experiments was used to study the effect of different 

operating conditions over F AM and UPO cracking respectively. The quadratic model 

proposed was in good agreement with the experimental data within 95% confidence. 

The 3-lump, 4-lump and 6-lump model were applied for the kinetic study of F AM and 

UPO cracking reaction over HZSM-S and composite MCM-41/ZSM-S respectively. The 

rate constant values for the cracking of F AM over composite catalyst were lower in 

magnitude compared to values obtained over HZSM-5. The simulated conversion and 

yield of products were obtained from 6-lump model and compared with the 
.~~~ 

experimental data. 



CHAPTER 1 

INTRODUCTION 

1.1 ALTERNATIVE RESOURCES 

Transportation fuels are currently the main refinery products covering nearly 38% 

of world petroleum production (Anon, 1997). As crude oil resources eventually begin to 

deplete, there are large investments in developing alternative fuel engine (Kalam & 

Masjuki, 2002). The most common alternative fuels are compressed natural gas (CNG), 

liquefied natural gas (LNG), methanol, ethanol and hydrogen (fuel cell vehicle). 

However, instead of converting engine to run on alternative fuels in the~future, the 

market is more willing to convert the alternative energy resources into synthetic liquid 

fuels that are similar to gasoline or diesel (Piel, 2001). 

The conversion of hydrocarbon sources to produce fuels is one of the most 

significant developments. Yet, regulators, environmentalists and societies also demand 

for the environmentally sustainable development for the planet and at the same time 

looking for accelerating economic growth (Cusumano, 1995). As a consequenc~, several 

studies on the production of hydrocarbons from plant oils such as canola oil, tall oil and 

jojoba oil using cracking catalysts such as HZSM-5, silica alumina and their physical 

mixtures were reported (Sharma & Bakhshi, 1991; Katikaneni et a!., 1995; Adjaye et. 

a!., 1996; Idem et a!., 1997). Most of these studies concentrated on developing 

alternative sources of hydrocarbons needed in a wide range of industrial applications. 




