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ANALISIS KESTABILAN KAEDAH CONJUGATE 
GRADIENT YANG SELANJAR 

ABSTRAK 

Kaedah Conjugate Gradient adalah sangat berguna untuk: menyelesaikan masalah 

tiada kekangan paling optimum yang berskala besar. Walaubagaimanapun, carlan 

garis (line search) dalam Kaedah Conjugate Gradient kadang-kadang sukar didapati 

dan pengiraannya menggunakan komputer adalah sangat mahal. Berdasarkan 

penyelidikan oleh Sun dan Zhang [J. Sun and J. Zhang (2001), Global convergence 

of conjugate gradient methods without line search], menyatakan bahawa Kaedah 

Conjugate Gradient adalah menumpu secara global (globally convergence) dengan 

menggunakan langkah (stepsize) ak yang ditetapkan berdasarkan formula 

8r/ ft. Darlpada keputusan yang didapati, mereka mencadangkan carlan 
Ilpkll{4 

garis (line search) adalah tidak diperlukan untuk mendapatkan penumpuan secara 

global (globally convergence) oleh Kaedah Conjugate Gradient. Oleh itu, objektif 

disertasi ini adalah untuk menentukan julat a dan P di mana julat ini akan 

memastikan kestabilan Kaedah Conjugate Gradient. Julat f3 diperolehi dari kajian 

yang dijalankan oleh Torii & Hagan (2002) dan Bhaya & Kaszkurewicz (2003). 

Untuk: mendapatkan julat a, matrik pekali untuk sistem A! = Q telah diandaikan 

sebagai simetri positif-tetap (symmetric positive-definite) nxn autocorrelation 

matrix of a Markov-l isyarat input untuk kes p = 0 . Ini dilaksanakan menggunakan 

realisasi keselanjaran Kaedah Conjugate Gradient pengulanagan semula (iteration) 

dalam bentuk sistem persamaan perbezaan autonomous. Julat a dan f3 yang 

viii 



diperolehi telah disimulasikan untuk demonstrasi penumpuan bagi sistem A;!. = ~ 

pada stationary dan nonstationary Kaedah Conjugate Gradient. Untuk nonstationary 

Kaedah Conjugate Gradient, A dan b adalah berubah mengikut masa. Berdasarkan 

ujian simulasi, penumpuan oleh Kaedah Conjugate Gradient telah diterbitkan untuk 

a dan P dalam julat yang diperolehi di mana ia memastikan kestabilan Kaedah 

Conjugate Gradient. Simulasi telah mengesabkan julat kestabilan juga boleh 

digunakan untuk p> 0 . 
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ABSTRACT 

In order to solve a large-scale unconstrained optimization, Conjugate Gradient 

Method has been proven to be successful. However, the line search required in 

Conjugate Gradient Method is sometimes extremely difficult and computationally 

expensive. Studies conducted by Sun and Zhang [J. Sun and J. Zhang (2001), Global 

convergence of conjugate gradient methods without line search], claimed that the 

Conjugate Gradient Method was globally convergence using "fixed" stepsize at 

determined using formula at = 8rk
T fk . The result suggested that for global 

Ilpkl~ 

convergence of Conjugate Gradient Method, line search was not compUlsory. 

Therefore, tlfts dissertation's objective is to determine the range of a and P where 

this range will ensure the stability of Conjugate Gradient Method. Range for P is 

obtained from research work done by Torii & Hagan (2002) and Bhaya & 

Kaszkurewicz (2003). In order to establish the range for a, the coefficient matrix of 

the system A~ = !!. was assumed to be symmetric positive-definite n x n 

autocorrelation matrix of a Markov-l input signal for case p = O. This was done by 

using the continuous realization of the Conjugate Gradient Method iteration which 

took the fonn of an autonomous system of differential equation. The resulting range 

of a and p was then simulated to demonstrate the convergence for the system A~ = !!. 

on the stationary as well as nonstationary Conjugate Gradient Method. For 

nonstationary Conjugate Gradient Method, A and b were varied with time. Based on 

the simulation test, convergence of the Conjugate Gradient Method was established 

for Q and p within the obtained range whi~n confirms the stability of Conjugate 

Gradient Method. The simulation verify that the stability range also holds for p > 0 . 
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1.0 Background 

CHAPTER 1 
INTRODUCTION 

High achievement in the application of the method of Conjugate Gradient in 

tenns of the numerical solution for large sparse symmetric positive-defInite system 

has sparked intensive searches for the development of this method. There are 3 well 

known properties that make this method so interesting and realistic. They are: 

1) Finite tennination property. 

It stated that for quadratic problems, the method guarantees to terminate after a 

finite number of steps (in exact arithmetic). 

2) Minimization property. 

It claimed that error measures are decreased at every step of the method. 

3) Three-term recurrence. 

It emphasized that the computational requirements for each step is constant. 

Although the finite termination property is rarely of importance in the practical 

application of Conjugate Gradient Method (CGM), it managed to distinguish CGM 

theoretically from other methods, for example the Successive Overrelaxation (S.O.R) 

Method which do not possess this property (Saunders et. aZ, 1988). 

CGM is a successful tool to find an approximate solution for the large-scale 

unconstrained optimization system of n linear equation, such that, 

Ax=b - -' [1.1] 

where A is n x n data matrix which is constant, 

b is n x 1 observation vector, 

x is n x 1 vector of independent variables. 
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For the general problem, 

~~f(x), [12] 

the CGM iteration is in the form of, 

[1.3] 

where the search direction is, 

[1.4] 

where rk , the residual at the kth step is in the direction of negative gradient of the 

functionf(xk ) such that, 

[1.5] 

In this ~ethod, a k is a stepsize generated from the line search along Pk. The 

selection of value Pk is to make Pk becomes kth conjugate direction when the 

function is quadratic and line search is exact. Scalar fik is chosen so that method 

[1.3] and [1.4] reduce to the linear CGM in the case when f is convex quadratic and 

exact line search, 

[1.6] 

was used (Oai & Yuan, 1998). 

1.1 Formula to Generate fik 

There are a lot of studies being conducted to generate other formula for fik • 

Some of the well known formulas are, 

(Hestenes & Stiefel, 1952) [1.7] 
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(Fletcher & Reeves, 1964) [1.8] 

r. T (r. - r. ) 
R PRP = 1 k k-l (polak & Ribiere 1969· Polyak, 1969) [1.9] 
1-'1 h-lIF' " 

(Fletcher, 1987) [1.10] 

(Liu & Storey, 1991) [1.11 ] 

(Dai & Yuan, 1998) [1.12] 

and 
A DY2 = (1-~)h,,2 +~r/ (rk -rk-1) 

k (1- Jlk - O)k) IIrk_11I
2 

+ JlkPk-t (rk - rk_l ) - O)kPk-t rk_1 ' 

(Dai & Yuan, 1999) [1.13] 

with A:t E [0,1], Jlk E [0,1] and O)k E [0,1- Jll]' 

where IHI = 11-112 stands for Euclidean norm, and "T" for matrix transpose. 

1.2 Formula to Generate ak 

In the implementation of CGM, the stepsize a k is determined using either an 

exact or inexact line search. Most of the time, the exact line search is rather difficult 

to obtain, hence people often choose inexact line search according to certain rules, 

such as the Wolfe conditions, 

[1.14] 
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or the strong Wolfe conditions, 

[1.15] 

where 0 < 0 < (j < 1. In many cases, these types of line search had caused a big 

burden for large scale systems because they involve a massive and expensive 

computation of function values and gradient. Dating few years back, research paper 

by Sun & Zhang (2001) has produced a stepsize formula, ak , 

__ or/Pk 
ak - .. ·2 ' [1.16] 

"Pkl~ 

Lipschitz constant that ~ >0, and, Qk is a sequence of positive definite matrices 

satisfying positive constants vmin and vmax and all P E Rn that, 

T TQ T vminP P 5: P kP 5: vJDJlXP p. [1.17] 

The research paper by Sun & Zhang (2001) claimed that the CGM is globally 

convergence using "fixed" stepsize ak determined using formula [1.16]. The 

conclusion of globally convergence hold for any choices of Pk formula, where Pk 

are generated from equation [1.7] - [1.12]. Their result show a discovery for the 

CGM where rather than following the sequence of line search rules, the global 

convergence can be guaranteed by taking a pre-determined stepsize. This is very 

practical for cases when the line searches are expensive, problematic and complex. 
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1.3 Objectives 

In this dissertation, my objective is to determine a specific range of stepsize, 

a and also the range of P that guarantee the stability of COM for the symmetric 

positive-definite n x n autocorrelation matrix of a Markov-I input signal. lIDs is 

done based on the continuous realization of the COM. The continuous realization 

gives rise to an autonomous system of differential equation on which stability 

analysis is conducted. Analysis result for the range of a and P is then simulated to 

demonstrate the convergence for the system A!. = Q. on the stationary and 

nonstationary COM (COM on an adaptive filter) on the nxn autocorrelation matrix 

of a Markov-I input signal where the matrix is symmetric positive-definite matrix. 

1.4 Methodology 

Methodology plays an important role during the research works. It provides 

us guideline and clear sequence on how to carry out the research. 

I) Firstly. we study the current work on the stability of the Steepest Descent and 

COM which has been done by Torii & Hagan (2002) and Bhaya & Kaszkurewicz 

(2003). We need to understand the development of the COM from the Steepest 

Descent Method. 

2) Form the continuous realization of COM. It is in the form of interconnected 

bilinear system and we manipulate it to determine the stability range of a and P 

based on the eigenvalues of n x n autocorrelation matrix of a Markov-I input 

signal where the matrix is symmetric positive-definite matrix. 

3) Finally, the simulations are carried out using Matlab for stationary and 

nonstationary COM. 
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1.5 Scopes and Organization of Dissertation 

In Chapter I, the general introduction of COM is given along with the 

objectives, methodology as well as the scopes and organization of this dissertation. 

The related works are given in Chapter 2. Meanwhile, the stability theory for a 

general autonomous system of differential equation is provided in Chapter 3. 

Continuous realization of COM and brief introductions of adaptive filter that will be 

used in time-varying Modified COM are in Chapter 4. Chapter 5 includes the 

stability analysis of continuous realization of COM and the determination of the 

stability range for a and P for n x n autocorrelation matrix of a Markov-I input 

signal. Simulation to confmn results in Chapter 5 are described in Chapter 6. Finally, 

the overall review and conclusion for this dissertation is in Chapter 7. 
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CHAPTER 2 
LITERATURE·REVIEW 

In order to solve a large-scale unconstrained optimization system, it is more 

efficient and effective to use an iterative method compared by using a direct method 

which would be more time-consuming and computation. COM is a successful 

iterative method to find an approximate solution for the system of n linear equation, 

such that, A!. = Q. However, few problems have occurred when using this method. 

For example in calculating the stepsize, ak and value of Pk which are detennined 

from the line search. The problem is line search is sometimes extremely difficult to 

obtain and computationally expensive. The convergence of COM is needed to show 

that COM is stable. According to Chen & Sun (2001), convergence of COM can still 

be obtained even without using the line search. To do so, the stability analysis that 

ensures the stability of the COM without line search is required. 

Lately, there are few studies done to determine the stability of the COM. For 

example. research work conducted by Bhaya & Kaszkurewicz (2003). Bhaya & 

Kaszkurewicz (2003) have conducted a stability analysis on COM using an advance 

stability technique; by using the Liapunov Direct Method. Using the learning rate, ~ 

and momentum factor, Pt the Liapunov function guaranteed the global asymptotic 

stability for the system of COM. Value of a k and Pk that were calculated using the 

line search were still used in this method. 

In this dissertation, a more basic stability technique is used. This 

dissertation's objective is to determine the range of a and P where this range will 

ensure the stahifity of Conjugate Gradient Method. Range for P is obtained from 

research work done by Torii & Hagan (2002) and Bhaya & Kaszkurewicz (2003). To 
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find the range for a, the technique and steps taken in determining the stability of 

CGM for this dissertation are based on the research work done by Torii & Hagan 

(2002). Their research work is for the stability of the Steepest Descent Method 

(S.D.M). For this dissertation. with few modifications. the technique can also be 

implemented for the stability of CGM. The stability of CGM is obtained by using the 

calculated range for a and ~ where a and ~ do not have to be calculated from the line 

search. 
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CHAPTER 3 
AUTONOMOUS SYSTEM STABILITY 

3.0 Autonomous System 

In a system of first-order differential equatio~ such that, 

x = F(x,t), 

where, 

[3.1] 

[3.2] 

where Xi are functions but not necessarily linear. This system is called non-

autonomous or time-variant where the right hand side of each differential equation 

dependent formally on variable time t. The next equation is as follows, 

X= f(x), [3.3] 

where, 

[3.4] 

This system is said to be autonomous or time-invariant where the variable t does not 

appear explicitly on the right hand side of each differential equation. 
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3.1 Stability of an Autonomous System 

The autonomous linear system, such that, 

dx. 
-=x= px+qy, 
dt 

t =y=rx+sy, 

where r, s, t and u are constants and t is the time. 

Hence, equation [3.5] is transformed to the form, 

t=[;]=[::;]=[: ~][;]=AE' 

where A =[: ~ J. 

E=[;J 

[3.5] 

[3.6] 

[3.7] 

[3.8] 

The point x = 0, y = 0 is called an equilibrium point of the system [3.5] where dx 
dt 

and dy disappear where, 
dt 

(dx)2 (dy)2_ - + - -0. 
dt dt 

If the determinant of matrix A. such that, 

p q = ps - qr '* 0 , 
r s 

[3.9] 

[3.10] 

the origin, (0,0) is the only equilibrium point of systems [3.5]. Using the 

characteristic equation, such that 

det(A-AJ) =0, [3.11] 

the eigenvalues ~ and ~ are the roots of the characteristic equation, 
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P-...1, 

r 

q 
=0. 

s-...1, 

Ifwe expand equation [3.12], we obtain, 

...1,2 +(-p-s)...1,+(ps-qr)=O. 

Thus, equation [3.13] is simplify to obtain, 

where a=l, 

b=-p-s, 

c= ps-qr. 

Therefore, the eigenvalues of matrix A is, 

...1,= -b±~b2 -4ac . 
2a 

Theorem 3.1: (Zill & Cullen, 1997) 

In case of real distinct eigenvalues where, 

the general solution of system [3.5] is. 

P.12] 

[3.13] 

[3.14] 

[3.15] 

[3.16] 

where ~ and A:z are the eigenvalues, assuming A:z < ~ while Kl and K2 are the 

eigenvectors. The possibilities are as follow: 

a) If both eigenValues negative, ~ < ~ < 0, then the critical point is called stable 

node. 

b) If both eigenValues positive, 0 < ~ < ~ , then the critical point is called unstable 

node. 

c) If eigenvalues have opposite sign, ~ < 0 < ~, then the critical point is called 

saddle node. 
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CHAPTER 4 
CONTINUOUS REALIZATION OF CONJUGATE GRADIENT METHOD 

Bhaya & Kaszkurewicz (2003) have done a stability analysis on CGM using 

an advance stability technique; stability by using the Liapunov Direct Method. Using 

the learning rate, ~ and momentum factor, Illc the Liapunov function guaranteed the 

global asymptotic stability for the system of CGM. In this dissertation, a more basic 

stability technique was used. The autonomous system of differential equation for the 

continuous CGM is conducted using interconnected bilinear systems to get the 

eigenvalue. From the eigenvalue, it was concluded to obtain the stability analysis for 

the CGM. The continuous realization concept, continuous version of CGM and 

nonstationary CGM are discussed briefly in this chapter. 

4.0 Continuous Realization 

A lot of continuous versions of various iterative processes have been 

proposed and studied. Generally, the discrete method will involve systems of 

difference equations. for example the CGM. Meanwhile. in the continuous method, 

the systems of differential equations are involved. Few advantages have been 

recognized when generating the differential equation system such as (Chu, 1986): 

1) There are a lot of conventional results for continuous dynamical systems. The 

study of continuous system might find critical insight into the understanding of 

the dynamics of the corresponding discrete methods. 

2) The continuous approach frequently offered a global method for solving the 

discrete method problem, compared to the local properties for some discrete 

methods. 
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3) Some existence problems, seemingly impossible to be solved using conventional 

discrete meth<><L may be solved by formulating a special differential equations 

that ensure a specific task was taking place. 

4) The theoretical ordinary differential equation (O.D.E) techniques usually provide 

better understanding on the convergence condition for the discrete method. 

Based on Chu's (1992) perspective, the continuous realization method is like 

joining two abstract problems through a mathematical bridge. Most of the time, one 

of the abstract problem is a make-up where the solution is not important while the 

other is the real problem where the solution is hard to find. The bridge is viewed as a 

continuous path in the problem space. It is hoped that the obvious solution will 

systematically form the solution by following the path. 

The continuation can also be implemented in the iterative method. This is 

because iterative method plays important roles in solving mathematical problem. The 

iterative method can be viewed as a discrete realization process of certain continuous 

dynamical system. In this dissertation, the COM is viewed as a discrete realization. 

For practicality, it then transforms into continuous realization form. 

4.1 Continuous Realization of Conjugate Gradient Method 

COM is a successful tool to find an approximate solution for the system of n 

linear equation, such that, A!. = !2.. The algorithm for the COM is: 

Algorithm 1: Conjugate Gradient Method 

1. Compute ro =b-Axo ' Po =ro 

2. For k = 0,1, ... , until convergence Do: 
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4. Xk+l = xk + akPk 

5. rk+l = rk - akApk 

T 

6. A - r1+1 rk'l'l 
k - T 

rk rk 

7. Pk+l = rk+l + PkPk 

8. EndDo. 

Based on control theory perspective, one way to understand the COM 

algorithm is to imagine 'parameters' a k and Pk as the scalar control inputs to a class 

of systems known as bilinear system (Bhaya & Kaszkurewicz, 2003). The Conjugate 

Gradient algorithm can be viewed as an interconnected bilinear system of the form, 

[4.2] 

[4.3] 

where rk and Pk are the state variables. 

There are a lot of ways to write a continuous version of above discrete 

Conjugate Gradient iteration. One of them is the approach by Bhaya & Kaszkurewicz 

(2003) by writing the continuous version of first order Conjugate Gradient ordinary 

differential equation (O.D.E) and call it as System K System K is in this fonn, 

dr. A -=r=-a lp, 
dk 

dp =ft=r-pp. 
dk 

[4.4] 

[4.5] 

The second order Conjugate Gradient O.D.E was detennined by eliminating the 

vector p, such that, 

;: + pf+aAr =0. [4.6] 

In term of an autonomous system, system K which consist of equation [4.4] and [4.5] 

is in the fonn, 
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E=[~]=[-aAP]=[O -aA][r]=Gf., 
P r-pp I -p P 

[4.7] 

where = IS n x n matrix, G [0 -aA]. 2 2 . 
I -p 

[4.8] 

E =[;] is 2nxn matrix. [4.9] 

System K is an autonomous differential equation. Therefore, stability range for a and 

p can be determined by considering the eigenvalue of matrix G. This will be 

discussed in Chapter 5. 

4.2 Conjugate Gradient Method for Adaptive Filtering Application 

(Nonstationary Conjugate Gradient Method) 

Adaptive filtering is a very practical and recognized application especially in 

the engineering community. It is used in various fields, such as in noise cancellation, 

improves the corrupted images or in medical field, it helps to obtain the exact density 

distribution within the human body from X-ray projections (Artzy et aI, 1979). Filter 

is described as a device that applies to a set of noisy corrupted data with the purpose 

of extracting some prescribed quantity of useful data. 

Adaptive filtering is a filter design technique which allows for adjustable 

coefficients, thus can minimize the measure of error. From mathematical perspective, 

adaptive filtering problem may be formulated as an adaptive least square problem, 

where the values of the coefficients are adjusted so that they are optimized (Ahmad, 

2005). In the adaptive least square problem, the sum of square errors function is a 

time varying function. This means that the coefficients of adaptive least squares have 

a time varying linear system where it could be updated from one iteration to another. 
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Therefore, a method which has the ability to track those chan~es in a data when 

solving adaptive least squares problem is needed. 

However, the standard COM does not posses the ability to track the changes 

in the adaptive least square cost function. Nevertheless, in order to fulfill the 

requirement in implementing it in the nonstationary environment, COM has been 

modified so that it can be implemented into the adaptive least square problem known 

as COl (Chang & Willson, 2000). 

4.2.1 Adaptive Least Square Problem 

The objective of adaptive least square problem is to determine the value of w 

so that the cost function J (n) is minimized with respect to w, such that, 

J(n) = IIA(n)w-b(n)II~, 

= min {wTA(nl A(n)w-2wT A(nlb(n)+b(nlb(n)}. [4.10] 
we9t" 

Minimizing the time varying cost function with respect to w will bring us to the 

adaptive normal equation in the form, 

A(n)T A(n)w = A(n)T b(n) , [4.11] 

or R(n)w=P(n), [4.12] 

where R(n) = A(nl A(n) , [4.13] 

P(n) = A(nlb(n). [4.14] 

4.2.2 Adaptive Filtering 

Adaptive filtering model consists of two components; the unknown system 

and the adaptive filter. The objective of this system is to adjust the coefficients of an 

adaptive filter, W to match as closely as possible to the response of an unknown 
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system, H. The unknown system and the adaptive filter processes the same input 

signal, x(n). While the unknown system produces output d(n) and adaptive filter 

produces output y(n). Figure 4.1 below is a block diagram of system identification 

using adaptive filtering. 

Desired Output, d(n) 

Input, 
x(n) 

Unknown System, H 

Adaptive Filter, W 
(N-order) 

+ 

Filter output, 
y(n) 

Error. ern) 

Figure 4.1: Block diagram of system identification using adaptive filtering 
Resources: Adaptive Least Squares 

The filter output, y(n) is compared with a desired response output, d(n) to 

produce an error signal, ern) such that, 

e(n) = d(n)- y(n) , [4.15] 

which is the difference between the filter output and the desired response output. The 

coefficients in y(n) is chosen when the error ern) is as small as possible. The output 

of the adaptive filter at time instant n can be represented as, 

y(n) = wo(n)xn + WI (n)xn_l +A + WN- 1 (n)xn_N+1 , 

N-l 

= Lw;(n)xn_;, 
;=0 

where N the filter order, 

w; the ith coefficient of the filter; 

Xn_; the input data. 
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The n-th state, the cost function is the swn of squared error from time '0' up to n, 

such that, 

n 

J(n) = L A/n
) (X/ w;(n)-d;(n)l , [4.17] 

;=0 

A,(n) = An
-; where O<A<I. [4.18] 

The weighting factor A is a forgetting factor. It is used so that the past data are 

"forgotten" and helps to track the statistical variations of the data. The choice of 

A, (n) , that is A, (n) = A n-i gives an exponentially weighted swn of squared error and 

uses in CO 1 (Ahmad, 2005). 

The solution of adaptive least squares problem is obtained by minimizing the 

cost function [4.17] with respect to the filter coefficients kp i = 0, I, ... , N -1. In 

matrix fonn, the minimization in cost function for adaptive least square problem will 

be represented as, 

n 

minJ(n)=minLA/,,>(X/w;(n)-dln)i, 
x x ;=0 

[4.20] 
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4.2.3 Modified Conjugate Gradient Method (CGl) 

The cost function in least squares problem can be reduced to the form of 

quadratic function. In order to find the least squares solution, we minimize the cost 

function or we can say it as to solve the normal equation which is a system of linear 

equations. Thus, an appropriate mathematical method is needed. COM allows us to 

find the local minimum point of a quadratic function along a set of conjugate 

directions. Through the gradient of the quadratic function, we know that the process 

of minimizing is equivalent to solve a linear equation. Consequently, COM is a 

suitable application with the objective of solving the normal equation. 

However, to solve an adaptive least square problem, we need to minimize the 

cost function J(n) which is a time varying, such that, 

[4.21] 

The weight coefficients are being updated for each changes of data input, x·. The 

standard COM does not have the ability to track the changes in the data input x·. It 

can only be used in solving a normal linear system, Rx = b where matrix R and 

vector b remain constant. That's why the modification on COM is conducted. It is 

modified to obtain the ability of updating the filter coefficients for every time instant. 

Besides that, its performance is still maintained to be comparable with the Recursive 

Least Squares (RLS) and the Least Mean Squares-Newton (LMS-Newton) 

algorithms, giving fast convergence but maintaining low misadjustment (Chang & 

Willson, 2000). Basically, the modified COM updates the correlation matrix R and 

cross-correlation vector b by using a scheme of data window at each iteration. Thus, 

in every time instant, the changes of input data are tracked. The COl algorithm is as 

follow: 
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Algorithm 2: Modified Conjugate Gradient Method (CG 1) 

1. Compute ro = bo , Po = ro 

2. For j=O,l, ... , until convergence Do: 

T 
3. a k =" 

rk rk 
PkTRkPk 

4. Wk+l = wk + akPk 

5. rk+l = Afrk -akRkPk + xk(dk - x/ wk) 

6. A - (rk+1 - rk f rk+1 
k - T 

rk rk 

7. Pk+l = rk+1 + PkPk 

8. Rk+l = ARk + xkx/ 

10. EndDo. 
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CHAPTERS 
STABILITY ANALYSIS OF 

CONTINUOUS CONJUGATE GRADIENT METHOD 

5.0 Continuous Conjugate Gradient Method 

From Chapter 4, for a system of n linear equation, ~ = !!.., the continuous 

realization COM was in the following autonomous system of differential equation, 

E=[~]=[-aAP]=[O -aA][r]=GE, 
p r-fip I -fi p 

where G=[O -aA] is 2nx2n matrix, 
I -fi 

E=[:] is 2nxn matrix. 

5.1 Analysis of Eigenvalue for Matrix G 

[5.1] 

[5.2] 

[5.3] 

Based on Theorem 3.1, in order to determine the stability of the continuous 

COM, the eigenvalue of matrix G, equation [5.2] needed to be calculated. There is a 

lot of ways to determine the eigenvalue. For this dissertation, to calculate the 

eigenvalue, technique by research work by Torii & Hagan (2002) is used. Their 

research work is for the stability of the Steepest Descent Method (S.D.M). With 

some modifications, the technique can also be implemented for the stability of 

continuous COM. This was solved in stages. First, the eigenvalues and eigenvectors 

of matrix G would satisfy, 

[5.4] 

where A G and w were the eigenvalues and corresponding eigenvectors. 

Hence, the expansion of equation [5.4] was in the form of, 
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[5.5] 

where If = [ ::J. [5.6] 

Now, from equation [5.5], 

[5.7] 

[5.8] 

In tenn of WI' equation [5.8] was in the form of, 

[5.9] 

Consequently, the substitution of equation [5.9] into equation [5.7] resulting, 

[5.10] 

Bringing coefficient -a from left hand side to the right hand side, we obtained, 

[5.11] 

which produce, 

[5.12] 

[5.13] 

Notice that equation [5.12] was an eigenvalue problem for the coefficient matrix ~ 

where A A was the eigenvalue and w2 was the corresponding eigenvector. Because of 

that, in order to determine the eigenValue of matrix G, knowledge of A A was 

required. Therefore, assumption on matrix A had to be made fIrst in order to fInd 

stability range for a and p. 
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5.1.1 Autocorrelation Matrix of a Markov-1 Input Signal 

In this dissertation, the matrix A used is n x n autocorrelation matrix of a 

Markov-1 input signal where the matrix is the symmetric positive-definite matrix. 

This matrix is widely used as an example for the signal in adaptive filter system. The 

n x n autocorrelation matrix of a Markov-l input signal is in the form of, 

pn-l pn-2 1 

Figure 5.1: . n x n autocorrelation matrix of a Markov-1 input signal 

where O<p<1. 

Value p represents the autocorrelation between the signals. The input signal 

is said to be uncorrelated when p = O. The higher the value of p (as p approaching 

1), the higher the correlation signals. The maximum and minimum eigenvalues of 

n x n autocorrelation matrix of a Markov-l input signal are 1 2 and 1 
(1 + p) (1-P )2 

respectively (Beaufays, 1995). 

p also determines the condition number of matrix A. The condition number 

of a matrix measures the solution of a system of linear equations' sensitivity towards 

the errors in the data. It gives an indication of the accuracy of the results from matrix 

inversion and the linear equation solution. The condition number of a matrix is 

calculated as follow, 

[5.14] 
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The condition numbers for n x n autocorrelation matrix of a Markov-l input signal is 

according to size of matrix as in table below: 

Table 5.1: Comparison the condition numbers for n x n autocorrelation matrix of a 
Mk l' ut' al diiD t' f trix ar ov- mpl sigm on eren SIze 0 ma 

Condition Number for Matrix Markov-l 
n p=O p=0.5 p=0.9 
50 1 8.9294 302.40 
100 1 8.9813 339.47 

Values of condition number of a matrix around 1 indicate a well-conditioned matrix 

and ifit not near 1, indicate the matrix is ill-conditioned. According to Table 5.1, the 

matrix will be more ill-condition as p increase. 

5.2 Stability Range for a and II 

Since the maximum and minimum eigenValues of n x n autocorrelation 

matrix of a Markov-l input signal were, 

[5.15] 

we can substituting equation [5.13] inside equation [5.15] to obtain, 

[5.16] 

Assume the input signal was an uncorrelated, such that, 

p=O, [5.17] 

where it represented the identity matrix. For any choice of p, the diagonal element 

which was 1 still dominant (largest) compared to other element in the matrix 

especially for a large-scale problem. Since p = 0, equation [5.16] was in this form, 

[5.18] 
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