TOTAL PRODUCTIVE MAINTENANCE (TPM) AND SOCIO-TECHNICAL ASPECTS FROM MALAYSIAN MANUFACTURING INDUSTRIES PERSPECTIVE

by

NURUL SHAHIDA BINTI MOHD SHALAHIM

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

May 2006
To family, fiancé, and friends, with love.
ACKNOWLEDGEMENTS

I begin in the name of Allah, the most gracious and most merciful. I thank to Allah (SWT) who has seen me through to this level of my academic achievement. May His blessings and His mercy be upon the Holy prophet of Muhammad (SAW).

This thesis would not have been possible without the goodwill and guidance from a wide range of people. I would first like to thank all those involved in helping me attain my MSc in the first place.

I would like to express my profound gratitude to my supervisor Assoc. Prof. Dr. Khairanum Subari whose knowledge in manufacturing has enabled her to know which of my buttons to press. My learning process under her supervision was a rich learning experience, from tense to light moments, from exasperation and frustration to exhilarating success, and from ignorance to knowledge. I also owe sincere thanks to my co-supervisor; Dr. Shahrul Kamaruddin for his guidance and his brilliant opinions.

I would also like to thank Associate Professor Dr. Ahmad Shukri Yahaya which has helped me with the statistical matters. My thanks also go to all the managers and the participated respondents who took the pain to complete the questionnaire for this study, and make the empirical research a successful one.

I also owe a big thank to Universiti Sains Malaysia for allowing me to use its facilities at its best; including libraries and computer labs. Special thank to Institute of Graduate Studies for supporting me in financial under Graduate Assistant Scheme.

I am highly appreciated to my beloved parents; Haji Mohd Shalahim Mamat and Hajah Zaiton Ashari. I am grateful indeed for their sacrifices and supports these past two years. The big thank also goes to my lovely siblings; Ikhwan, Nadia and Idham.
Lovely thanks and flowers have to go to my adored fiancé, Muhammad Firdaus Abas for his unconditional love, sacrifice and support along the journey. Thanks for the sort of love and support that just can’t be put into words.

Huge thanks to my postgraduate friends at School of Mechanical Engineering; Elmy Marina, Noor Ain, Kauthar, Shaliza Azreen, Ali Rifau, Muhammad Zulkarnain, Fawad, and Nor Haniza who assisted me in my efforts towards completing this research. I also owe a great thank to my best of friend, Azuarizal Ezzraq Sharudin for his compassion and the sense of humour. Finally, thanks to all the people who have supported and encouraged me to complete my study and making my second degree a reality.

Thank you so much,

Nurul Shahida Binti Mohd Shalahim.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii
TABLE OF CONTENTS iv
LIST OF TABLES xii
LIST OF FIGURES xvi
LIST OF ABBREVIATIONS xviii
LIST OF APPENDICES xix
LIST OF PUBLICATIONS xx
ABSTRAK xxi
ABSTRACT xxiii

CHAPTER 1: INTRODUCTION TO THE STUDY 1
1.0 Introduction 1
1.1 Originality of the Research 3
1.2 Discussion of the Research Problem 4
1.3 Problem Definition 5
1.4 Objectives of the Study 6
1.5 Scope of the Study 6
1.6 Assumptions of the Study 7
1.7 Research Limitations 7
1.8 The Significance and Justification of the Study 9
1.9 Definitions and Descriptions of Terminologies 10
1.10 Thesis Disposition 12
CHAPTER 2: LITERATURE REVIEW

2.0 Introduction 14

2.1 Maintenance Concept 15

2.1.1 Maintenance Evolution 16

2.2 Total Productive Maintenance (TPM) 17

2.2.1 History of TPM 18

2.2.2 Pillars of TPM 19

2.2.2.1 Autonomous Maintenance 20

2.2.2.2 Planned Maintenance 21

2.2.2.3 Attack upon the Six Big Losses 21

2.2.2.4 Training and Education 22

2.2.2.5 Continuous Improvement 22

2.2.3 Review of TPM Literatures 22

2.3 Socio-technical Aspects 25

2.3.1 Confidence 26

2.3.2 Leadership 27

2.3.3 Communication 28

2.3.4 Motivation 29

2.3.5 Teamwork 29

2.3.6 Attitudes 30

2.3.7 Training 31

2.3.8 Empowerment 32

2.3.9 Ownership 33

2.3.10 Job Enrichment 33

2.4 Theoretical Framework Proposed for this Study 34
2.4.1 Components of the Theoretical Framework
2.4.1.1 The Dependent Variable
2.4.1.2 The Independent Variable
2.4.2 Study Hypotheses

2.5 A General Overview of Failure Modes and Effects Analysis (FMEA) Technique
2.5.1 Review of FMEA Literatures

2.6 Literature Synthesis

CHAPTER 3: RESEARCH METHODOLOGY
3.0 Introduction
3.1 Observation
3.2 Fact Findings
3.3 Research Methodology
3.3.1 Research Design
3.3.1.1 Research Type
3.3.2 Sampling Design
3.3.2.1 The Target Population and Sample
3.4 Data Collection Method
3.4.1 Questionnaire Design
3.5 Scientific Research Design
3.5.1 Assessment of Measurement
3.5.1.1 Rating Scales
3.5.1.2 Reliability of the Questionnaire
3.5.1.3 Validity Testing
3.6 First Phase Survey
 3.6.1 Justification of the Questionnaire Constructs 1st Phase
 3.6.1.1 Section One
 3.6.1.2 Section Three
 3.7 Second Phase Survey
 3.7.1 Justification of the Questionnaire Constructs 2nd Phase
 3.7.1.1 Section One: Employee's Profile
 3.7.1.2 Section Two and Three: Autonomous and Planned Maintenance
 3.7.1.3 Section Four: Socio-Technical Aspects
 3.8 Data Findings and Interpretations
 3.8.1 Statistical Analysis
 3.8.1.1 Descriptive Statistics
 3.8.1.2 Correlation Analysis
 3.9 Evaluating FMEA
 3.10 Report Writing

CHAPTER 4: DATA ANALYSIS AND DISCUSSIONS FOR FIRST PHASE QUESTIONNAIRE

4.0 Introduction
4.1 Response Rate
4.2 Results of Pilot Test
4.3 Goodness of Data
 4.3.1 Reliability Test
 4.3.2 Validity Test
4.4 Descriptive Statistics for Section One – Respondents' Profile
4.4.1 Respondent's Position 73
4.4.2 Company's Location 74
4.4.3 Company's Industry Classification 74
4.4.4 Operating Years of the Company 75
4.4.5 Company Status 76
4.4.6 Number of Full Time Employees 77
4.4.7 The Annual Sales of the Company 78
4.4.8 Quality Awards Certification 79
4.5 Results of Section Three – Total Productive Maintenance 80
4.5.1 Total Productive Maintenance (TPM) Awareness and Practices 80
4.5.2 Level of Understanding and Knowledge on TPM 82
4.6 Respondents' Rank 84
4.7 Hypotheses 87
4.8 Hypothesis Testing 87
4.8.1 Testing of Hypothesis 1 87
4.8.2 Testing of Hypothesis 2 89
4.8.3 Testing of Hypothesis 3 91
4.9 Discussions 92
4.10 Conclusions 94

CHAPTER 5: DATA ANALYSIS AND DISCUSSIONS FOR SECOND PHASE QUESTIONNAIRE: A CASE STUDY 97
5.0 Introduction 97
5.1 Response Rate 98
5.2 Reliability Test 99
5.3 Respondents' Profiles

5.3.1 Respondents' Profile: Age

5.3.2 Respondents' Profile: Gender

5.3.3 Respondents' Profile: Highest Completed Level of Education

5.3.4 Respondents' Profile: Number of Years Worked in the Organisation

5.3.5 Respondents' Profile: Job Status

5.4 Descriptive Analyses for Section Two, Three and Four

5.4.1 Descriptive Analysis of AM

5.4.1.1 Descriptive Analysis of AM Dimensions: Housekeeping (5S Activities)

5.4.1.2 Descriptive Analysis of AM Dimensions: Cross-training

5.4.1.3 Descriptive Analysis of AM Dimensions: Team

5.4.1.4 Descriptive Analysis of AM Dimensions: Operator Involvement

5.4.2 Descriptive Analysis of PM

5.4.2.1 Descriptive Analysis of PM Dimensions: Disciplined Planning

5.4.2.2 Descriptive Analysis of PM Dimensions: Information Tracking

5.4.3 Descriptive Analysis of Socio-Technical Aspects

5.4.3.1 Descriptive Analysis of Socio-Technical Aspects: Confidence

5.4.3.2 Descriptive Analysis of Socio-Technical Aspects: Leadership

5.4.3.3 Descriptive Analysis of Socio-Technical Aspects: Communication

5.4.3.4 Descriptive Analysis of Socio-Technical Aspects: Motivation
5.4.3.5 Descriptive Analysis of Socio-Technical Aspects: Teamwork

5.4.3.6 Descriptive Analysis of Socio-Technical Aspects: Attitudes

5.4.3.7 Descriptive Analysis of Socio-Technical Aspects: Training

5.4.3.8 Descriptive Analysis of Socio-Technical Aspects: Empowerment

5.4.3.9 Descriptive Analysis of Socio-Technical Aspects: Ownership

5.4.3.10 Descriptive Analysis of Socio-Technical Aspects: Job Enrichment

5.5 Hypotheses

5.6 Hypotheses Testing

5.6.1 Correlation Analysis

5.6.1.1 Relationship between AM and PM

5.6.1.2 Relationship between AM and Socio-Technical Aspects

5.6.1.3 Relationship between PM and Socio-Technical Aspects

5.7 Discussions

5.8 Conclusions

CHAPTER 6: DEVELOPMENT OF FAILURE MODES AND EFFECTS ANALYSIS

6.0 Introduction

6.1 Terminology of FMEA

6.2 Limitations of FMEA

6.3 FMEA Procedure
6.3.1 Step 1: Collect Socio-Technical Aspects Information 133
6.3.2 Step 2: Determine the Function of Each Aspect 134
6.3.3 Step 3: Determine the Potential Functional Failure of Each Aspect 135
6.3.4 Step 4: Determine the Potential Failure Mode for Each Aspect 136
6.3.5 Step 5: Determine the Potential Cause(s) of the Failure 137
6.3.6 Step 6: List Severity, Occurrence, and Detectability Ranking 138
6.3.7 Step 7: Calculate RPN 140
6.3.8 Step 8: FMEA Report 143
 6.3.8.1 (1) Prepared by 143
 6.3.8.2 (2) FMEA date 143
 6.3.8.3 (3) Page ________ of ________ pages 143
 6.3.8.4 (4) Aspect 143
 6.3.8.5 (5) Aspect Functional 143
 6.3.8.6 (6) Potential Functional Failure 143
 6.3.8.7 (7) Potential Failure Mode 144
 6.3.8.8 (8) Potential Failure Cause(s) 144
 6.3.8.9 (9) Severity 144
 6.3.8.10 (10) Occurrence 144
 6.3.8.11 (11) Detectability 144
 6.3.8.12 (12) RPN 144
 6.3.8.13 (13) Recommended Action 145
 6.3.8.14 (14) Responsibility and Completion Date 145
 6.3.8.15 (15) Approval Signature 145
6.4 Discussions 147
6.5 Conclusions 147
CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

7.0 Introduction 149

7.1 Recapitulation of the Study 149

7.2 Conclusions 150

7.2.1 Contextual Factors and the Level of Understanding of TPM Practices 150

7.2.1.1 Company Age 152

7.2.1.2 Company Industry Classification 152

7.2.1.3 Company Size 152

7.2.2 Socio-Technical Aspects and TPM Practices 153

7.2.3 FMEA Approach 154

7.3 Developed Framework Based on the Results 155

7.4 Developed FMEA 158

7.5 Contributions of the Study 160

7.5.1 Theoretical Contributions 160

7.5.2 Practical Contributions 161

7.6 Recommendations for Future Research 162

BIBLIOGRAPHY 164

APPENDICES

Appendix A: Survey Questionnaire and Letters 177

Appendix B: Statistical and Validity Test Results for First Phase Questionnaire 230

Appendix C: Statistical and Validity Test Results Second Phase Questionnaire 237

Appendix D: Validation Letter of FMEA Framework 262

Appendix E: Publications 273
LIST OF TABLES

Table 1.1 Definitions and Descriptions of Terminologies 10
Table 2.1 Maintenance Evolution 16
Table 2.2 Summary of Autonomous Maintenance Goals 20
Table 2.3 TPM Literatures and Their Appearance in Key References 23
Table 2.4 Previous Studies on Socio-technical Aspects 26
Table 2.5 The Four Theories of Motivation 29
Table 2.6 Research Hypotheses for the First Phase Questionnaire 37
Table 2.7 Research Hypotheses for the Case Study 38
Table 2.8 Previous Researches on FMEA 41
Table 3.1 The Advantages and Disadvantages of Data Collection Methods 48
Table 3.2 Principles of Questionnaire Design 51
Table 3.3 The Overall Layout of the First Phase Questionnaire 55
Table 3.4 The Company's Background 59
Table 3.5 The Level of Understanding and Knowledge of TPM 60
Table 3.6 The Overall Layout of the Case Study Questionnaire 61
Table 3.7 The Employee's Profile Variable 62
Table 3.8 The Rating Scales 63
Table 4.1 Rate of Return in Terms of Numbers of Questionnaires Distributed 69
Table 4.2 Demographic Data for the Pilot Tests 70
Table 4.3 Cronbach's Alpha for the Pilot Test 71
Table 4.4 Respondents' Profile 72
Table 4.5 Respondents' Profile: Company's Location 74
Table 4.6 Mean Score for the Level of Understanding and Knowledge on TPM 82
Figure 2.1	Literature Structure	14
Figure 2.2	Manufacturing Functional Areas	15
Figure 2.3	Pillars of TPM	20
Figure 2.4	Theoretical Framework Proposed for This Study	35
Figure 3.1	The Questionnaire Design	43
Figure 3.2	The Process of FMEA	50
Figure 3.3	Flow Chart of Research Methodology	66
Figure 4.1	Respondent's Profile: Company's Industry Classification	75
Figure 4.2	Respondent's Profile: Operating Years of the Company	76
Figure 4.3	Respondent's Profile: Status of the Company	77
Figure 4.4	Respondent's Profile: Number of Full Time Employees	78
Figure 4.5	Respondent's Profile: The Annual Sales of the Company	79
Figure 4.6	Respondent's Profile: The Quality Awards Certification	80
Figure 4.7	Percentage of Awareness of TPM among Companies	81
Figure 6.1	FMEA Process Used in This Study	132
Figure 6.2	Column of Aspect	133
Figure 6.3	Column of Aspect Functional	134
Figure 6.4	Column of Potential Functional Failure	135
Figure 6.5	Column of Potential Failure Mode	136
Figure 6.6	Column of Potential Failure Cause(s)	137
Figure 6.7	Column of RPN	140
Figure 6.8	FMEA Form Evaluated for This Study	146
Figure 7.1	Testing the Proposed Framework	155
Figure 7.2 Suggested Developed Framework 157
Figure 7.3 Developed FMEA 159
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PdM</td>
<td>Predictive Maintenance</td>
<td>1</td>
</tr>
<tr>
<td>RCM</td>
<td>Reliability-Centred Maintenance</td>
<td>1</td>
</tr>
<tr>
<td>TPM</td>
<td>Total Productive Maintenance</td>
<td>1</td>
</tr>
<tr>
<td>FMEA</td>
<td>Failure Modes and Effects Analysis</td>
<td>3</td>
</tr>
<tr>
<td>OEE</td>
<td>Overall Equipment Effectiveness</td>
<td>10</td>
</tr>
<tr>
<td>WCM</td>
<td>World Class Manufacturing</td>
<td>15</td>
</tr>
<tr>
<td>HRM</td>
<td>Human Resources Management</td>
<td>15</td>
</tr>
<tr>
<td>MRP</td>
<td>Material Resources Planning</td>
<td>15</td>
</tr>
<tr>
<td>MP</td>
<td>Maintenance Prevention</td>
<td>17</td>
</tr>
<tr>
<td>MI</td>
<td>Maintainability Improvement</td>
<td>17</td>
</tr>
<tr>
<td>AM</td>
<td>Autonomous Maintenance</td>
<td>17</td>
</tr>
<tr>
<td>JIPM</td>
<td>Japan Institute of Plant Maintenance</td>
<td>18</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
<td>25</td>
</tr>
<tr>
<td>JIT</td>
<td>Just-In-Time</td>
<td>25</td>
</tr>
<tr>
<td>EI</td>
<td>Employee Involvement</td>
<td>25</td>
</tr>
<tr>
<td>TEEP</td>
<td>Total Effective Equipment Productivity</td>
<td>25</td>
</tr>
<tr>
<td>RPN</td>
<td>Risk Priority Number</td>
<td>38</td>
</tr>
<tr>
<td>α</td>
<td>Reliability Coefficient: Cronbach's Alpha</td>
<td>63</td>
</tr>
<tr>
<td>SMI</td>
<td>Small Medium Industries</td>
<td>72</td>
</tr>
<tr>
<td>N</td>
<td>Number of Sent Questionnaires</td>
<td>71</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for Social Science</td>
<td>64</td>
</tr>
<tr>
<td>MITI</td>
<td>Ministry of International Trade and Industry</td>
<td>72</td>
</tr>
<tr>
<td>r</td>
<td>Pearson Product-Moment Correlation coefficient</td>
<td>122</td>
</tr>
</tbody>
</table>
List of Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX A</td>
<td>Survey Questionnaires and Letters</td>
<td>177</td>
</tr>
<tr>
<td>A-1</td>
<td>Sample Letter for First Phase Questionnaire</td>
<td>178</td>
</tr>
<tr>
<td>A-2</td>
<td>List of 200 Companies</td>
<td>179</td>
</tr>
<tr>
<td>A-3</td>
<td>Sample Letter for Second Phase Questionnaire: Case Study Phase</td>
<td>190</td>
</tr>
<tr>
<td>A-4</td>
<td>Sample of First Phase Questionnaire</td>
<td>191</td>
</tr>
<tr>
<td>A-5</td>
<td>Sample of Case Study Questionnaire</td>
<td>208</td>
</tr>
<tr>
<td>A-6</td>
<td>List of Academicians and Expertise</td>
<td>225</td>
</tr>
<tr>
<td>A-7</td>
<td>Summary of the Main and Corollary Hypotheses</td>
<td>226</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>Statistical and Validity Test Results for First Phase Questionnaire</td>
<td>230</td>
</tr>
<tr>
<td>B-1</td>
<td>Reliability Test for First Phase Questionnaire</td>
<td>231</td>
</tr>
<tr>
<td>B-2</td>
<td>Respondents' Profile for First Phase Questionnaire</td>
<td>232</td>
</tr>
<tr>
<td>B-3</td>
<td>Descriptive Statistics for Section Three</td>
<td>234</td>
</tr>
<tr>
<td>B-4</td>
<td>Hypotheses Testing Results</td>
<td>236</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>Statistical and Validity Test Results for Case Study Questionnaire</td>
<td>237</td>
</tr>
<tr>
<td>C-1</td>
<td>Reliability Test for Second Phase Questionnaire</td>
<td>238</td>
</tr>
<tr>
<td>C-2</td>
<td>Case Study: Background of Respondents</td>
<td>246</td>
</tr>
<tr>
<td>C-3</td>
<td>Case Study: Descriptive Analysis for Section Two, Three and Four</td>
<td>248</td>
</tr>
<tr>
<td>C-4</td>
<td>Correlation Analysis Results</td>
<td>259</td>
</tr>
<tr>
<td>APPENDIX D</td>
<td>Validation of FMEA Framework</td>
<td>262</td>
</tr>
<tr>
<td>APPENDIX E</td>
<td>Publications</td>
<td>273</td>
</tr>
</tbody>
</table>
LIST OF PUBLICATIONS

praktis TPM iaitu AM dan PM dengan sepuluh aspek sosio-teknikal telah dijalankan di dalam sebuah kilang pembuatan yang terpilih berdasarkan markah tertinggi yang diperolehi dan telah dianugerahi dengan anugerah TPM Awards. Data diperolehi daripada pekerja-pekerja yang terlibat secara langsung dengan penyelenggaraan mesin melalui kaedah soal-selidik. 30 soalan kaji selidik telah diedarkan kepada pekerja-pekerja terlibat dan kadar respon adalah 83.3%. Keputusan menunjukkan konteks utama, iaitu AM dan PM, mempunyai hubungan korelasi yang penting dengan sepuluh aspek sosio-teknikal yang dikaji. Dalam kedua-dua fasa soal-selidik, data dianalisis menggunakan perisian komputer berstatistik iaitu Statistical Package for Social Science (SPSS) versi 12.0. Setelah data dianalisis dalam fasa kedua, fasa ketiga dijalankan iaitu pembentukan borang Analisis Mod Kegagalan dan Kesas (FMEA). Sebagai keputusannya, borang FMEA direka untuk disesuaikan dengan aspek-aspek sosial-teknikal untuk menambahbaikkan sistem penyelenggaraan di kilang-kilang pembuatan di Malaysia, khususnya.
TOTAL PRODUCTIVE MAINTENANCE (TPM) AND SOCIO-TECHNICAL ASPECTS FROM MALAYSIAN MANUFACTURING INDUSTRIES PERSPECTIVE

ABSTRACT

Maintenance is a vital function in manufacturing industries. Manufacturing industries are exposed to newer and rapidly changing paradigms. A well-conceived maintenance strategy such as Total Productive Maintenance (TPM) should deserve more attention by the manufacturing plants. Apart from that, the socio-technical aspects also play as an important role in the organisations. Referring to the above matter, this study investigates the interrelatedness between two TPM practices; Autonomous Maintenance (AM) and Planned Maintenance (PM) with ten socio-technical aspects which are: [1] confidence; [2] leadership; [3] communication; [4] motivation; [5] teamwork; [6] attitudes; [7] training; [8] empowerment; [9] ownership; and [10] job enrichment. This study was conducted in three phases. In the first phase, the level of knowledge and understanding of TPM practices was investigated via random postal survey of 200 Malaysian manufacturing companies. The response rate was 22.5%. Spearman Rho Product-Moment Correlation Analysis was used for the hypotheses testing. The results showed that the level of knowledge and understanding of TPM practices among the respondents is categorised as average mode. However, the results also showed that only 4.4% of the respondents were certified with TPM Awards certification. Thus, it shows that demanding quality in maintenance practices is still a far cry. Lack of structural format in TPM implementation is the major factor for this state. In the second phase, which is a case study, research on two TPM practices which are AM and PM and ten socio-technical aspects stated above was performed in a manufacturing company. The company was selected based on the highest
marks scored in the respondents rank and is awarded with TPM Awards certification. Data was gained from the employees whose directly involved with machine maintenance by using a questionnaire method. Thirty questionnaires were distributed to the employees and the response rate was 83.3%. The results showed that the main constructs, namely AM and PM are significantly correlated with ten socio-technical aspects studied. In both phases of questionnaire survey, data was analysed using statistical software called Statistical Package for Social Science (SPSS) version 12.0. The third phase which is the evaluation of Failure Modes and Effects (FMEA) form is executed after the data has been analysed in second phase. As for the result, the FMEA form is designed to correspond with socio-technical aspects mentioned above and to enhance maintenance systems in Malaysian manufacturing companies, particularly.
1.0 Introduction

Maintenance is an inevitable function in manufacturing plants. Machine can operate to its maximum capacity by the use of a good maintenance system (Mobley, 1990). Over the past few decades, there are many maintenance policies have been developed and applied in the industrial organisations, for example, Preventive Maintenance, Predictive Maintenance (PdM), and Reliability-Centred Maintenance (RCM). However, most of the earlier policies do not emphasise on the socio-technical aspects. Providentially, the other maintenance policy that highlighted the importance of socio-technical aspects is Total Productive Maintenance (TPM) which is invented by Seiichi Nakajima in the year 1988 (Nakajima, 1988).

TPM is a manufacturing program designed primarily to maximise machine effectiveness throughout its entire life through the participation and motivation of the entire work force (Nakajima, 1988). While research that considers the mathematical modelling and statistical research base of machine maintenance has been extensive (McKone et al., 1999), least research has directly investigated the socio-technical aspects in TPM maintenance activities. McKone et al. (1999) added that TPM addresses machine maintenance through a comprehensive productive-maintenance delivery system covering the entire life of the equipment and involving all employees from production and maintenance personnel to top management.

This study proposes a theoretical framework integrating the abovementioned variables which are TPM and socio-technical aspects in an attempt to show how these two constructs depend on each other. It also explores the mediating role of each of socio-technical aspect in the relationship between each of the two TPM practices. Specifically, this study will provide a model in which the socio-technical aspects as intervening variables to help maximising the better TPM in one company. The main claim of this study is that socio-technical aspects will enhance the Total Productive Maintenance activity in a company.

The other main part of this research is to find a systematic way to documenting the socio-technical aspects that affect TPM activities. This research suggests the Failure Modes and Analysis Techniques (FMEA) to documenting the socio-technical aspects. This research studies the conventional FMEA technique to evaluate a new form to document the critical aspects of socio-technical in manufacturing plants.
This chapter generally contains the following subchapters: an overview of the originality of the research, followed by the discussion of the research problem, problem definition, objectives of the study, scope of the study, assumptions, research limitations, the significance and justification of the study, and the definitions and descriptions of terminologies used throughout this thesis. Finally, the disposition of this thesis is written at the end of this chapter.

1.1 Originality of the Research

According to Phillips and Pugh (2000) cited by Ahmad (2003), originality can comprise of any one or more of the following items:

i) Carrying out empirical work that hasn't been done before.
 This study is the first empirical work in examine the linkage between TPM activities and socio-technical aspects.

ii) Taking a particular technique and applying it in a new area.
 This study uses the widely used Failure Modes and Effects Analysis (FMEA) but with a new approach; which uses the socio-technical aspects as the functions in the form.

iii) Trying out something in this country that has previously only been done in other countries.
 TPM is a broad study which has been done in several countries such as United Kingdom, United States, Japan and Nigeria; but still new in Malaysia.
iv) Looking at areas the people in the discipline haven't looked at before. TPM is a broad study, but there is no research that examines TPM activities and socio-technical aspects in Malaysia, so far.

v) Adding to knowledge in a way that hasn't been done before. This study is adding knowledge to the researchers in the same and different field.

1.2 Discussion of the Research Problem

The problem investigated in this study can be viewed from several dimensions. The maintenance departments are having maintenance failures according to previous researches and studies as discussed as follows.

In the UK, industry spends £14 billion on maintenance, 1/5 of the total value of all plant and equipment, to which must be added the cost of maintenance failures, usually downtime following breakdowns, and quality failures because equipment wasn't properly set up by the maintenance crew (Tudor, 1994).

The study by Thilander (1992) shows that the productivity of the companies is positively influenced by the well-defined areas of responsibility, of appointing one individual who holds the overall responsibility for the maintenance of a machine line, and of establishing direct contact between the operators and maintenance technicians.

A study by Chan et al. (2003) at a manufacturing company in Hong Kong shows that maintenance problem such as: [1] frequent problem repetition, [2] insufficient proactive maintenance, [3] paucity of predictive maintenance occurred because of several reasons
and one of the reasons is that the operator is not being responsible for the ultimate care of his/her equipment.

Based on the previous researches stated above, it is clear that one of the reasons of the maintenance problems occurrence is because of human or maintenance crew's behaviour. Thus, the question then arises: Do socio-technical aspects affect maintenance activities, or in particular concern, TPM activities?

1.3 Problem Definition

Problem definition or problem statement is a clear, precise and succinct statement of the question or issue that is to be investigated with the finding of an answer or solution. Sekaran (2000) also added that problem definitions could pertain to: [1] existing business problems where a manager is looking for a solution; [2] situations that may not pose any current problems but which the manager feels can stand improvement; [3] areas where some conceptual clarity is needed for better theory building; or [4] situations in which a researcher is trying to answer a research question empirically because of interest in the topic. Thus, this study is focused on the fourth definition of the problem statement criteria. Hence, the main problem statement for this study is: Do socio-technical aspects affect the TPM activity in a company?

However, on the basis of extensive reviews on literatures and articles and the problem statement, the following research questions have been proposed related to Malaysian manufacturing companies and then will be investigated using the empirical data. The main objective of this study is to answer these questions, which are stated as follows:
Question 1: Is there a significant relationship between the autonomous maintenance and planned maintenance in a company?

Question 2: Is there a significant relationship between autonomous maintenance and socio-technical aspects in a company?

Question 3: Is there a significant relationship between planned maintenance and socio-technical aspects in a company?

1.4 Objectives of the Study

According to the problem definition defined in Section 1.3 above and the questions of the study, thus this study seeks to achieve the above objectives:

i) To explore the interrelatedness between autonomous maintenance and planned maintenance in Malaysian manufacturing industries.

ii) To explore the interrelatedness between autonomous maintenance and socio-technical aspects in Malaysian manufacturing industries.

iii) To investigate the interrelatedness between planned maintenance and socio-technical aspects in Malaysian manufacturing industries.

iv) To evaluate a new designed FMEA form to document the socio-technical aspects that affect the TPM activities in Malaysian manufacturing industries.

1.5 Scope of the Study

phase of questionnaire, a simple random sample of the Malaysian manufacturing companies was chosen from the SIRIM Directory 2004 for certified products and companies for this study. However, for the second phase questionnaire, the best practice company from the previous phase is selected. The best company scores the highest rank in the level of understanding and knowledge of TPM and has been awarded with TPM Awards which is a maintenance systems award from the first phase survey.

1.6 Assumptions of the Study

The following assumptions were taken into account in this study:

i) The respondents to the questionnaire have in-depth knowledge of maintenance activities in their companies.

ii) The perception of the respondents is representative of their organisation (Amjad, 2005).

iii) The respondents are answering the questionnaire based on their daily maintenance routine.

iv) It is assumed that the respondents are able and willing to provide accurate responses to the questions asked which is consistent with the assumption (Carr et al., 1997).

1.7 Research Limitations

There will always be limitations and weaknesses in any study, the same goes for this study. It is necessary to evaluate the study in the context of its limitations after the study has been completed. Hence, the refinement to the study could be made in the future. Thus, it can be argued that this study has some limitations as follows:
i) The limited sample size even though comparable with several studies (Shah and Ward, 2003; Sohail and Hoong, 2003; Zadry, 2004). This limitation usually means that the results of the findings cannot be generalised to the rest of the population, or to other population. However, according to Ahmad (2003), this in itself is not critical and the fact that the lack of external validity is a rather common limitation among the empirical studies.

ii) The survey was conducted during the first half of 2005. The sample data used in this study was therefore a cross sectional study. It does not account for changes over time. Several studies suffered from this limitation such as (i.e. Suwignjo et al. 2000; Rahman and Bullock, 2004).

iii) This study focuses on socio-technical aspects which studies the human behaviour, thus it is not always possible to conduct investigations that are 100 percent scientific, in sense that the results will not be exact and error-free. This is primarily because this study encounters with the collection of data in the subjective areas of perceptions and attitudes. However, still, to the extent that this study is designed to ensure the objectivity, precision and confidence, nevertheless this study has endeavoured to engage in scientific investigation.

iv) This study was conducted in one country only, which is Malaysia. Thus, the results of this study must be treated with caution and the generalisation is limited. In particular, the representative of one country will be called into question despite the several of countries.

v) There are also issues with self-reported performance data and possible single respondent bias. This is comparable with Shah and Ward (2003).
1.8 The Significance and Justification of the Study

This study is expected to contribute to the theory and practice of TPM and socio-technical aspects. The proposed questions in this study are important for at least four reasons.

Firstly, this study explores the effects of the implementation of the two practices of TPM which are autonomous maintenance and planned maintenance on the companies' maintenance systems. In other words, these two practices will affect Malaysian companies to achieve better maintenance systems in terms of reducing machine's breakdowns, and other machines losses.

The second significant aspect of this study is related to the country to be studied. Most of the studies in both TPM practices and socio-technical aspects have been carried out in the western countries and Japan. Little research on TPM practices and socio-technical aspects are conducted in Asian countries, and to this study particular concern, in Malaysia as well.

Thirdly, this study is vital because it discusses and assesses the effects of socio-technical aspects on TPM practices in one company. The link between TPM practices and socio-technical aspects is represented by the proposed theoretical framework. Furthermore, this study is necessary since there are so many previous researches study the importance of TPM in one company.

Fourthly, this study discusses the importance of TPM practices itself. This study also list down all the reasons why most of the companies have abandoned the TPM practices. Hence, it is hope that this study will an 'eye opener' to the Malaysian
manufacturing companies, that maintenance is one of the important aspects to their companies.

It is hope that this study can contribute to the body of knowledge on TPM practices and socio-technical aspects as a whole. It is also hope that Malaysian companies will start to adopt the best new tools, techniques and practices in maintenance systems. Therefore, this research intends to contribute in the accumulated knowledge is this topic of research in the manufacturing industry.

1.9 Definitions and Descriptions of Terminologies

Following are the definitions and descriptions of terminologies that have been used in this study shown in Table 1.1.

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Definitions and Descriptions</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Productive Maintenance (TPM)</td>
<td>A maintenance concept aimed at continuously decrease the equipment losses and to improve the availability.</td>
<td>Nakajima (1988); Rodriguez (1990); Sherwin (1999).</td>
</tr>
<tr>
<td>Overall Equipment Effectiveness (OEE)</td>
<td>An effective measurement to analyse the efficiency of a single machine or an integrated manufacturing system; and it is a function of machine's availability, performance rate, and quality rate.</td>
<td>Nakajima (1988).</td>
</tr>
</tbody>
</table>
Table 1.1 ... continued

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Descriptions</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Maintenance</td>
<td>A maintenance system which is performs on the machine at a scheduled time regardless of its actual state of deterioration.</td>
<td>Eti et al. (2004).</td>
</tr>
<tr>
<td>Autonomous Maintenance</td>
<td>A maintenance system which consists of the activities that carried out by operators with the technical assistance of maintenance crew.</td>
<td>Tajiri and Gotoh (1992).</td>
</tr>
<tr>
<td>Training and Education</td>
<td>A system to expose the maintenance and production staff to the new ways to deal with corporate physical assets.</td>
<td>Nakajima (1988).</td>
</tr>
<tr>
<td>Preventive Maintenance</td>
<td>A maintenance system to reduce maintenance costs and deterioration losses in new machine considering past maintenance data and the use of the latest technology when designing for higher reliability, maintainability, operability, safety, and other requirements.</td>
<td>Nakajima (1988).</td>
</tr>
<tr>
<td>Socio-technical</td>
<td>Socio-technical is one of the crucial aspects in leading a good performance in manufacturing industries.</td>
<td>Emery (1990).</td>
</tr>
<tr>
<td>Confidence</td>
<td>Confidence is measured by the employee’s trust towards the machines that they operate and the maintenance system in the organisation.</td>
<td>Bisantz and Seong (2001).</td>
</tr>
<tr>
<td>Leadership</td>
<td>A process of giving purpose (meaningful direction) to collective effort and causing willing effort to be expended to achieve purpose.</td>
<td>Jacobs and Jaques (1990).</td>
</tr>
<tr>
<td>Communication</td>
<td>The process of a sender transmitting a message to a receiver with mutual understanding.</td>
<td>Lussier (1996).</td>
</tr>
<tr>
<td>Motivation</td>
<td>The term motivation means the internal process leading to behaviour to satisfy needs.</td>
<td>Lussier (1996).</td>
</tr>
<tr>
<td>Teamwork</td>
<td>Teamwork is two or more employees interacting to achieve an objective.</td>
<td>Lussier (1996).</td>
</tr>
<tr>
<td>Attitudes</td>
<td>A strong belief or feeling toward people, things, and situations.</td>
<td>Lussier (1996).</td>
</tr>
<tr>
<td>Training</td>
<td>Training is the systematic modification of behaviour through learning which occurs as a result of education, instruction, development, and planned experience.</td>
<td>Armstrong (1999).</td>
</tr>
<tr>
<td>Empowerment</td>
<td>Empowerment simply means giving the authority to make decisions to that level or place in the organisation which, by virtue of available knowledge and closeness to the activity concerned, is most able to make a correct, quick, and effective decision.</td>
<td>Kruse (1995).</td>
</tr>
</tbody>
</table>
Table 1.1 ... continued

<table>
<thead>
<tr>
<th>Terminology</th>
<th>Descriptions</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Enrichment</td>
<td>A process to increase the motivation and satisfaction of the employees and improve productivity in the process.</td>
<td>Hackman et al. (1975).</td>
</tr>
<tr>
<td>A Technique</td>
<td>Set of tools which has wider applications.</td>
<td>McQuater et al. (1995).</td>
</tr>
<tr>
<td>Failure Modes and Effects Analysis (FMEA)</td>
<td>A systematic technique using engineering knowledge, reliability, and organisational development techniques; in other words, teams to optimise the system, design, process, product, and/or service.</td>
<td>Stamatis (1991).</td>
</tr>
</tbody>
</table>

1.10 Thesis Disposition

This thesis contains seven chapters and is organised as follows. Chapter One describes about the study briefly. It provides an overview of the origins of the research, the problem statement, objectives of the study, scope of the study, assumptions, research limitations, the significance and justification of the study, definitions and descriptions of terminologies and finally thesis disposition.

Chapter Two provides rigorous literature reviews related to the variables of interest, which is Total Productive Maintenance which presented into two main activities which are autonomous maintenance and planned maintenance, and their association with socio-technical aspects, which are [1] confidence, [2] leadership, [3] communication, [4] motivation, [5] teamwork, [6] attitudes, [7] training, [8] empowerment, [9] ownership, and [10] job enrichment. Furthermore, this chapter also discusses the theories on two main Total Productive Maintenance activities which are autonomous maintenance and planned maintenance and how they are influenced by the socio-technical aspects that stated above. Theoretical framework proposed for this study is also presented in this chapter.
The third chapter describes the details of the research methodology used for the study. Chapter Three also includes the research design, data collection methods, survey instruments, assessment of measurement and statistical techniques used for inference of this study.

Chapter Four on the other hand discusses the findings of the first phase questionnaire. It includes the analysis of the respondent's background, descriptive statistics and the results of hypotheses testing using Spearman Rho Product-Moment Correlation Analysis.

Chapter Five presents the findings of the second phase questionnaire which is a case study in a company in Penang, Malaysia. The company for the case study was chosen based on the highest score in respondent rank that has been depicted in Chapter Four. The data obtained are the background of the company, TPM practices which are AM and PM and the socio-technical aspects that affect those two TPM practices.

Chapter Six discusses the FMEA approach used in this study. The developed FMEA in this study will be used to verify all the critical socio-technical aspects in the company. The FMEA is an important technique for evaluating the design and documenting the review process. All credible failure modes and the resultant effects of socio-technical aspects are identified and documented.

Chapter Seven presents the conclusions and recommendations for the future research. The developed framework based on the results is also been discussed in this chapter. Finally, the contributions of the study in term of theoretical and practical contributions have also been comprised in Chapter Seven.
2.0 Introduction

The purpose of this chapter is to review the related literature on the maintenance concept and evolution. Nevertheless, this chapter emphasises literatures on TPM. Furthermore, Chapter Two also discusses the entire literature on socio-technical aspects. The definition, history, concepts, and components of FMEA are reviewed in the last section. This literature review provided the basis for designing and developing the research instruments and final analysis. The initial sources of this chapter came from books, journals, dissertations, proceedings, and information from the websites. The structure of this literature is illustrated in Figure 2.1.

Figure 2.1 Literature Structure
2.1 Maintenance Concept

Maintenance is not an expense; it is an investment in improved manufacturing (Katila, 2000). Investment in maintenance, one of the basic functions of a firm, returns improved quality, safety, dependability, flexibility, and lead times (Teresko, 1992). Over the past few decades, there has been increased recognition that in a World Class Manufacturing (WCM), maintenance is not a separate, isolated function that makes repairs and performs assorted activities as needed (Katila, 2000). Katila (2000) also quoted Ettiene-Hamilton (1994), that maintenance is a full partner striving together with other functions to achieve the company's strategic goals.

Ahmed et al. (2002) added that maintenance is a major contributor to the performance and profitability of manufacturing systems (Figure 2.2). Its importance is increasing as there are increasing trends towards automation and integration of manufacturing systems, i.e., installation of advanced manufacturing technology (Maggard and Rhyne, 1992) Good maintenance is fundamental to a productive manufacturing (Besterfield et al., 1999) to discover a lot of potential working hours, and to reduce costs.

HRM = Human Resources Management; MRP = Material Resources Planning

Figure 2.2 Manufacturing Functional Areas
2.1.1 Maintenance Evolution

According to Deshpande and Modak (2002), the evolution of maintenance can be traced through three generations since 1930s as follows:

i) First Generation
It covers the period up to World War II. Industry was not highly mechanised, equipment was simple and over designed. Hence, the maintenance was easy, and the need for skills was also lower.

ii) Second Generation
By 1950s, due to increased mechanisation, complex machines were involved. Hence, concept of preventive maintenance was introduced. In 1960s, this consisted of mainly equipment overhauls at regular intervals. Maintenance planning and control systems were developed to control the maintenance costs.

iii) Third Generation
Since the mid-1970s, the changes in industry have gathered momentum and it is revealed that the six big losses (discussed in Section 2.2.1) actually occur in practice, hence, TPM was introduced.

Table 2.1 Maintenance Evolution

<table>
<thead>
<tr>
<th>Generation</th>
<th>Maintenance Policy</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>First generation (1930s, 1940s)</td>
<td>Corrective Maintenance</td>
<td>Fix it when it broke</td>
</tr>
<tr>
<td>Second generation (1950s, 1960s)</td>
<td>Preventive Maintenance based on bathtub curve theory</td>
<td>Higher plant availability, Longer equipment life, Lower costs</td>
</tr>
<tr>
<td>Third generation (1970s, 1980s, 1990s, 2000s)</td>
<td>Condition monitoring, TPM, RCM</td>
<td>Higher plant availability, Greater safety and effectiveness, Better product quality</td>
</tr>
</tbody>
</table>
2.2 Total Productive Maintenance (TPM)

Total Productive Maintenance (TPM) is a maintenance programme which is developed in Japan by Seiichi Nakajima. According to Nakajima (1988) cited by Chan et al. (2003), the word 'total' in TPM has three meanings:

i) Total effectiveness indicates TPM's pursuit of economic efficiency and profitability.

ii) Total maintenance system includes Maintenance Prevention (MP) and Maintainability Improvement (MI), as well as PM. Basically, this refers to 'maintenance-free' design through the incorporation of reliability, maintainability, and supportability characteristics into the equipment design.

iii) Total participation of all employees includes autonomous maintenance (AM) by operators through small group activities. Essentially, maintenance is accomplished through a 'team' effort, with the operator being held responsible for the ultimate care of his/her equipment.

There are so many benefits of the TPM implementation in one company, such as follows:

i) Increased productivity (Carannante and Haigh, 1996; Roberts, 1997; Chan et al., 2000; Al-Hassan et al., 2000).

ii) Machine's breakdowns occur rarely (McKone et al., 1999; Chand and Shirvani; 2000; Portela, 2000; Willmott and McCarthy, 2001; Chan et al., 2003).

iii) Cleanliness and pride improves the working environment (Carannante and Haigh, 1996; Roberts, 1997; Chan et al., 2000).
As can be seen, there are many benefits gained from TPM implementation in one company. TPM can also reduce equipment losses by investing in people who can then improve equipment availability, improve product quality, and reduce labour costs (Takashi, 1989). TPM system requires all employees working in autonomous small group to work together to eliminate equipment breakdown (Nakajima, 1989). Everyone is involved since every component of the manufacturing systems, including operations, product design, process design and management, impacts equipment maintenance (Nakajima, 1989).

2.2.1 History of TPM

Total Productive Maintenance (TPM) policy can be traced back its originality in the year of 1960s in Japan. Seiichi Nakajima, vice-chairman of the Japanese Institute of Plant Engineers (JIPE), the predecessor of the Japan Institute of Plant Maintenance (JIPM), promoted TPM throughout Japan and has become known as the father of TPM (McKone et al., 1999). In 1971, TPM was defined by JIPE as follows:

"TPM is designed to maximise equipment effectiveness (improving overall efficiency) by establishing a comprehensive productive-maintenance system covering the entire life of the equipment, spanning all equipment-related fields (planning, use, maintenance, etc.) and, with the participation of all employees from top management down to shop floor workers, to promote productive maintenance through motivation or voluntary small-group activities" (Tsuchiya, 1992).

To eliminate waste, Toyota was the first company to implement TPM (Nakajima, 1989). Toyota measures six categories of equipment losses throughout its production system. The six losses then were combined into one measure of overall equipment effectiveness (OEE). These are (Fredendall, 1996): [1] equipment failure; [2] setup and

In the year 1995, there were about 800 companies or company units using the TPM in Japan (Johansson, 1996). Also the European companies have started to apply TPM (Katila 2000). One of the very first has been the Swedish car manufacturer Volvo in the Gent factory in Belgium.

2.2.2 Pillars of TPM

According to the inventor of TPM, Seiichi Nakajima (1988), TPM has five pillars as shown in Figure 2.3. However, this study only focuses on the two pillars which are autonomous maintenance and planned maintenance.

i) Pillar 1: An attack upon the six big losses and improvement in overall equipment effectiveness (OEE).

ii) Pillar 2: Planned maintenance that consists of scheduled planned inspections and service and entails major planned restoration of machine during a works shutdown phase.

iii) Pillar 3: Establish autonomous maintenance.

iv) Pillar 4: Training and education, which is the centre of TPM, with maintenance and production staff exposed to new ways of dealing with corporate physical assets.

v) Pillar 5: Continuous improvement in machine improvement and maintenance prevention which the goal is to reduce maintenance costs and deterioration losses.
2.2.2.1 Autonomous Maintenance

According to McKone et al. (1999), to achieve the goals of autonomous maintenance, it is obvious that the programme must involve teams of production and maintenance people, daily activities to maintain the condition of the equipment, cross-training to improve operator skills, and participation of operating personnel in the maintenance delivery process. The summary of each goal is presented in Table 2.2.

Table 2.2 Summary of Autonomous Maintenance Goals
Source: McKone et al. (1999)

<table>
<thead>
<tr>
<th>Objective</th>
<th>Descriptions</th>
<th>Author(s)</th>
</tr>
</thead>
</table>
Table 2.2 ... continued

<table>
<thead>
<tr>
<th>Objective</th>
<th>Descriptions</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-training</td>
<td>Cross-training allows operators to maintain equipment and to identify and resolve many basic equipment problems. TPM is designed to help operators learn more about how their equipment functions, what common problems occur and why, and how those problems can be prevented through early detection and treatment of abnormal conditions.</td>
<td>1. Nakajima, 1988. 2. Suzuki, 1992. 3. Tajiri and Gotoh, 1992.</td>
</tr>
<tr>
<td>Teams</td>
<td>The objective of the teams is to stabilise conditions and deterioration of equipment.</td>
<td>1. Nakajima, 1988. 2. Suzuki, 1992.</td>
</tr>
<tr>
<td>Operator Involvement</td>
<td>This is to prepare operators to become active partners with maintenance and engineering personnel in improving the overall performance and reliability of the equipment.</td>
<td>1. Tajiri and Gotoh, 1992.</td>
</tr>
</tbody>
</table>

2.2.2.2 Planned Maintenance

According to Nakajima (1988), cited by McKone et al. (1999), planned maintenance typically involves the work conducted by highly skilled maintenance technicians. As more tasks are transferred to operators through autonomous maintenance, the maintenance department takes a more proactive approach to maintenance and is able to develop a disciplined planning process for maintenance tasks, such as equipment repair or replacement, and on determining countermeasures for equipment design weakness. Typically, strong planning departments also have good information tracking systems that enable them to capture the process data, gather and disseminate data to operators, and identify trends or problems with equipment (Suzuki, 1992).

2.2.2.3 Attack upon the Six Big Losses

TPM is designed to eliminate the ‘six big losses’ and thereby to improve the effectiveness of the equipment (Tajiri and Gotoh, 1992). The ‘six big losses’ of the

2.2.2.4 Training and Education

Training and education are the systematic modification of behaviour through learning which occurs as a result of education, instruction, development, and planned experience (Armstrong, 1999).

2.2.2.5 Continuous Improvement

In this kind of maintenance policy, machines are replaced or restored to their optimal working condition before a failure is allowed to occur and it is widely accepted that it reduces random breakdowns, and unplanned downtime of facilities (Gupta et al. 2001).

2.2.3 Review of TPM Literatures

Numerous books on TPM have presented TPM improvement activities in plants and suggested steps for TPM implementation based on case studies (Hartmann, 1992; Suzuki, 1992; Tsuchiya, 1992; Tajiri and Gotoh, 1992; Varughese, 1993; Steinbacher and Steinbacher, 1993; Shimbun, 1995). According to McKone et al. (2000), the researches that consider the mathematical modeling and statistical research base of equipment maintenance have been extensive (McCall, 1965; Pierskalla and Voelker, 1976; Valdez-Flores and Feldman, 1989; Shaked and Shanthikumar, 1990). However, little research has directly investigated TPM activities. Table 2.3 depicts some of the studies that discussed the TPM implementation with respect to the various issues.
Table 2.3 TPM Literatures and Their Appearance in Key References

<table>
<thead>
<tr>
<th>TPM Category</th>
<th>TPM Literature</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Implementation</td>
<td>Implementation</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Comparison between different countries</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Understanding of TPM concept</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improvement activities</td>
<td></td>
</tr>
<tr>
<td>Benefits Gained</td>
<td>Overall Equipment Effectiveness (OEE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Autonomous Maintenance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Planned Maintenance</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Six big losses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Costs</td>
<td></td>
</tr>
<tr>
<td>Difficulties</td>
<td>Abandonment</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Difficulties in implementation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Satisfaction level</td>
<td></td>
</tr>
<tr>
<td>Mathematical and Statistical</td>
<td>Machine reliability and statistical</td>
<td></td>
</tr>
<tr>
<td>Studies</td>
<td>Contextual issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematical modeling</td>
<td></td>
</tr>
</tbody>
</table>

(1) McKone et al. (1999)
(2) Cua et al. (2001)
(3) Chan et al. (2003)
(4) Adam et al. (1997)
(5) Co et al. (1998)
(6) Jostes and Helmes (1994)
(7) Chand and Shirvani (2000)
(8) Carannante and Haigh (1996)
(9) Eti et al. (2004)
(10) Ahmed and Hassan (2002)
(11) Miyake et al. (1995)
(14) Nakajima (1989)
(15) Suzuki (1992)
Table 2.3 shows the previous researches on TPM. Several studies have been done on TPM implementation (McKone et al., 1999; Chan et al., 2003; Chand and Shirvani, 2000; Carannante and Haigh, 1996; Eti et al., 2004; Wireman, 1991; and Al-Hassan et al., 2000). Their studies show that implementing TPM in one's company can give great benefits in terms of productivity and equipment effectiveness. Appropriate implementation of TPM offers tremendous potential in improving, not only the equipment efficiency and effectiveness, but in areas of quality, flexibility, and employee-workfriendliness as well. Besterfield et al. (1999) wrote, "TPM is keeping the current plant and equipment at its highest productive level through cooperation of all areas of an organisation".

However, there are several studies present the difficulties in TPM implementation as in Chan et al., 2003; Adam et al., 1997; Co et al., 1998; Jostes and Helmes, 1994; Chand and Shirvani, 2000; and McAdam et al., 1996. Their studies show several difficulties in TPM implementation such as: [1] lack of management support; [2] lack of resources; [3] lack of structural format in TPM implementation; [4] TPM is a time-consuming programme which take two to three years to give the benefits to the company; and [5] TPM is a money-consuming maintenance programme.

Consequently, there are researches which compare the effectiveness of TPM programme between different countries (McKone et al., 1999; Carannante and Haigh, 1996; Wireman, 1991; and McAdam et al., 1996. For example, the study by Carannante and Haigh (1996) shows that Japanese manufacturing plant have better TPM programme compared to the manufacturing plants in the United Kingdom. The study also shows that Italian plants are in the third place after Japan and the UK plants. It is probably because