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Stagnation Point Flow towards a Melting Shrinking Sheet in
an Upper Convected Maxwell Fluid
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11800 USM, Penang, Malaysia
Department of Mathematics, Babes-Bolyai University,
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Abstract. An analysis of the steady stagnation point flow towards a melting shrinking sheet in an upper convected
Maxwell (UCM) fluid has been studied. A similarity transformation is used to reduce the governing partial differential
equations to third-order nonlinear ordinary differential equation which are then solved numerically using an implicit
finite difference method, namely the Keller-box method. The influences of the melting and shrinking parameters on the
flow and heat transfer characteristics are studied. Representative results for the reduced skin friction coefficient and the
reduced heat flux from the surface of sheet (local Nusselt number) as well as the velocity and temperature profiles are
presented. It is found that the solutions are non-unique for some values of the shrinking parameter.
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INTRODUCTION

Many industrial fluids are non-Newtonian or rheological in their flow characteristics (such as molten plastics,
polymers, suspension, foods, slurries, paints, glues, printing inks, blood). That is, they might exhibit dynamic
deviation from Newtonian behavior depending upon the flow configuration and/or the rate of deformation. These
fluids often obey non-linear constitutive equations and the complexity in the equations is the main culprit for the
lack of exact analytical solutions. Therefore the significance of the results reported in the above works is limited as
far as the polymer industry is concerned. Visco-elastic fluids are one of the non-Newtonians fluids which exhibit
both viscous and elastic characteristics. These kinds of fluids are able to keep memory of their past deformations
hence become the focus interest of many researchers. Many fluid models have been suggested to describe the
behaviour of viscoelastics fluids; one of them is the upper convected Maxwell fluid (UCM) fluid which takes into
account the stress relaxation that exists in the flow. Obviously for the theoretical results to be of any industrial
importance, more general visco-elastic fluid models such as upper convected Maxwell model (UCM fluid) or
Oldroyd B model should be invoked.

Recently, the flow due to a shrinking sheet has gained considerable interest. For such flow, the sheet is shrunk
towards a fixed point which would cause a velocity away from the sheet. Miklav¢i¢ and Wang [1] found non-unique
solutions for the problem of shrinking sheet of viscous flow with certain suction rates. Besides, the shrinking
problem near a stagnation point too will give non-unique solutions [2]. Therefore, there are three conditions for
shrinking flow to exist physically, i.e. either imposed adequate suction on the boundary [1], or added stagnation flow
which contains the vorticity [2] or imposition of suction to stagnation point flow [3].

The aim of this study is to investigate the steady two-dimensional stagnation flow of an upper convected
Maxwell fluid impinging on a shrinking sheet in the presence of melting effect. As far as we are concerned, such
analysis has not yet reported in open literature. It should be mentioned here that Hayat et al. [4] investigated the
mass transfer in the MHD flow of UCM fluid over a porous shrinking sheet with chemically reactive species and
solved the nonlinear system of ordinary differential equations by using homotopy analysis method. We mentioned
also the paper by Hayat et al. [5] which considered the problem of boundary layer flow and melting heat transfer in
the stagnation point flow of an UCM fluid but for stretching sheet case while Bachok et al. [6] and Yacob et al. [7]
studied the melting heat transfer in boundary layer stagnation point flow towards both stretching and shrinking sheet
in viscous fluid and micropolar fluid, respectively. The study on melting heat transfer has its applications in magma
solidification, the melting of permafrost and the thawing of frozen grounds [8]. In this paper, we use the UCM
model which given by Sadeghy et al. [9], and Kumar and Nath [10]. The governing equations are analyzed by
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boundary layer approximations and similarity transformations, and the resulting nonlinear equations are solved
numerically using Keller-box method for some values of governing parameters.

BASIC EQUATIONS

Consider the steady stagnation point flow towards a shrinking sheet in an upper convected Maxwell fluid with
melting effects. It is assumed that the velocity of the shrinking sheet is u,(x) = cx, while the flow velocity outside
boundary layer (inviscid fluid) is u, (x) = ax, where a (> 0) and c are constants, with ¢ > 0 for a stretching sheet and ¢
< 0 for a shrinking sheet, respectively. The flow taking place in the space y < 0, where x and y are the Cartesian
coordinates measured along the surface of the sheet and normal to it, respectively. It is also assumed that 7, and C,,
are the constant melting temperature and melting concentration of the solid surface, while T, and C,, are the constant
temperature and constant concentration of the ambient fluid. Applying the boundary layer approximations, the basic
equations for the problem under consideration can be written as [9-10]

9u 422 o M
dx dy
d 2 2 2 2
u%+va—u=u£ u£+V8—u+ku u26u+vzau+2uv o (2)
ox oy dx 2 Oxt 0 y? dxdy)

Uu—+v—=a 3)

subject to the boundary conditions

u=u,(x)=cx T=T,, aa y=0

2 42 @
u=u,(x)=ax, I'=7,, as y->w
along with the melting condition [11]
oT \
ko= =ply+Cs (T, ~Ty)x0) )
6y)y=[i

Here u and v are the velocity components in the x and y directions, respectively, T is the fluid temperature, kg is the
relaxation time, « is the thermal diffusivity, p is the density, v is the kinematic viscosity, k is thermal conductivity, y
is the latent heat of the fluid, C; is the heat capacity of the solid surface and T} is the melting temperature of the solid
surface. Equation (5) states that the heat conducted to the melting surface is equal to the heat of melting plus the
sensible heat required to raise the solid temperature 7} to its melting temperature 7, [8, 11].

In order to solve equations (1)-(3) with the boundary conditions (5), we consider the following similarity

variables

u=ax ['(n), v:—(.cw)"f2 ), éay=T-T,)/(T,-T,) r}:(afv)”zy (6)
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where primes denote differentiation with respect to 7. Substituting (6) into equations (2)+3), we obtain the

following ordinary differential equations

[ L= 2K 2 ) =0 )
0"+ Pr£6'=0 (®)

and the boundary conditions (4) and (5) become

f'(=cla=A4, Prf(O+Ma'0)=0, 8(0)=0, ©)
f'm—>1, 00p)—>1, as 5w
The dimensionless parameters appearing in these equations are the Deborah or Weissenger number K [12], the

stretching ratio A, the Prandtl number Pr, the thermal diffusivity @ and the melting number M, which are defined as

8 5 k C (Tw_Tm)
K=ak,, Zzi, Pr:K, a=——, M= P
a o

5 = (10)
pC, y+Cs (T, —Ty)

Quantities of physical interest in this problem are the skin friction coefficient C, the local Nusselt number Nu,

which are defined as

Cr=—2—, Nuj=—T®__ (11
pu;(x) k(T,—-T,)

where tw is the wall skin friction or shear stress and g,, is the heat flux from the plate which are given by

rw=u(l+m[ﬁ\ : q,,,:—k[g\ (12)
82}y 9y ),
Substituting (7) into (14) and using (13), we get

Re/>C, =(1+K) f"(0), Re."? Nu,=-6'(0) (13)

where Re, =u,(x)x/v is the local Reynolds number.
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RESULTS AND CONCLUSION

The differential equations (7) and (8) subjected to boundary conditions (9) are solved numerically using the
Keller box method, i.e. an implicit finite difference method in conjunction with Newton linearization. It has been
widely used in solving boundary layer flow problems. In order to validate the results obtained, we have compared
our results with those reported by Wang [2] who use the finite difference method; Bachok et al. [6] and Yacob et al.
[7] who use the Runge-Kutta-Fehlberg method with shooting technique. The comparisons are shown in Tables 1 and
2 for the case when the Deborah or Weissenger number K equals zero. It is found that the results are in very good
agreement therefore we are confident of the accuracy of the results in this study.

TABLE (1). Shrinking shect case for different values of shrinking parameter when K =0 and M= 0

f"(0)

P Wang |2] Bachok et al. [6] Yacob et al. [7] Present study
Upper Lower Upper Lower Upper Lower Upper Lower
branch branch branch branch branch branch branch branch

-0.25 1.40224 1.4022408 1.402241 1.402241

-0.50 1.49567 1.4956698 1.495670 1.495670

-0.75 1.48930 1.4892983 1.489298 1.489298

-1.00 1.32882 0 1.3288170 0 1.328817 0 1.328817 0

-1.15 1.08223 0.116702 1.0822315  0.1167022 1.082231 0.116702 1.082237 0.116702

TABLE (2). Stretching sheet case for different values of Prandtl number
and melting parameter when K =0 and A =1

Pr M -8'(0)
Bachok et al. [6] Present study

1 0 -0.7978846 -0.79789

1 -0.5060545 -0.50605

2 -0.3826383 -0.38264

3 -0.3119564 -0.31196
7 0 -2.1110042 -2.11101

1 -1.3388943 -1.33890

2 -1.0123657 -1.01237

3 -0.8253591 -0.82536

Figure 1 show the variation of skin friction coefficient, Re,” C, and local Nusselt number, Re;""? Nu, with the

shrinking parameter A for different values of K when M = 1. Here we have used fixed value of Prandtl number, Pr =
0.7 throughout the computation for all figures in the present work. It is observed that for fixed values of A and M,
both skin friction coefficient and local Nusselt number increase as eclastic parameter K increases. It should be
mentioned here that the surface velocity gradient / ''(0) decreases with increasing of K, however, due to the
coefficient (1+K) in equation (13), Re)> C, in Figure 1(a) increases with increasing of K. Figures 1(a) and (b)

clearly show that unique solution is found for 4> -1 while the existence of dual solutions for shrinking sheet case is
found for 4. £ A <-1 where solution does not exist for value below the critical value A.. In the present study, these
critical values are 4.~ -1.192, -1.110 and -1.051 for K = 0.1, 0.5 and 1.0, respectively. The curves in Figure 1(a)
increase gradually and then decrease to approximate value zero near A = -1. From literature papers [7-8], the curves
in Figures 1(a) and (b) should end at (-1, 0), but the computation by our method become unstable and inconsistent
for value near to A = -1, therefore we are able to find the second solutions near to A= -1 only but not at A = -1.
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FIGURE 1. (a) Velocity profiles f'(7) and (b) temperature profiles # () for different values of K when A = -1.05 (shrinking
case), M= 1and Pr=0.7

The effects of governing parameters on velocity and temperature profiles are given in Figures 2 and 3. Dual
solutions are also presented in these figures for A = -1.05 (shrinking case) and Pr= 0.7. As can be seen from Figures
2 and 3, the boundary layer thickness for the upper branch solutions is smaller than that of lower branch solutions.
Besides, the boundary layer thickness increases as K and M increases for upper branch solutions, however, opposite
trend is observed for lower branch solutions. Physically, increase in K will increase the resistance of fluid motion so
that the velocity will decrease result in increase of momentum boundary layer thickness. Meanwhile, increase in M
will increase the intensity of melting which act as blowing boundary condition at the shrinking surface [7] hence
tends to thicken the boundary layer. It is also noticed that not much effect of melting parameter on the lower branch
solutions, see the overlapping dotted lines in Figure 3. The stability analysis of the dual solutions for some boundary
layer problems has been performed by some researchers [13-16]. From their studies, they revealed that the solutions
along the upper branch solutions are stable while those on the lower branch solution are unstable.
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FIGURE 2. (a) Velocity profiles f'(7) and (b) temperature profiles & (#7) for different values of K when A = -1.05 (shrinking
case), M= 1 and Pr=0.7
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FIGURE 3. (a) Velocity profiles /() for different values of M when A = -1.05 (shrinking case), K = 0.5 and Pr= 0.7 and
temperature profiles @ () for different values of M when A = -1.05 (shrinking case), K= 0.5 and Pr=0.7

CONCLUSIONS

The problem of stagnation flow towards a shrinking and melting sheet in an UCM fluid has been studied
numerically. Results for the skin friction coefficient, local Nusselt number, velocity profiles and temperature profiles
are presented for some values of governing parameters. Non-unique solutions are found for some values of shrinking
parameter. Increasing of elastic parameter and melting parameter will increase both the momentum and thermal
boundary layer thickness.
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