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MEREKABENTUK SISTEM SERAKAN SINAR-X SUDUT 
RENDAH (LAXS) DAN PENGGUNAANNY A DALAM 

PENCIRIAN BEBERAPA BAHAN BIOPERUBATAN 

ABSTRAK 

Serakan foton sinar-X yang bertenaga diagnostik «140 keY), pad a sudut serakan keeil 

«12° ), daripada bahan Z rendah, seeara umumnya berbentuk koheren. Ciri 

kekoherenan ini akan membawa kepada kesan interferens antara foton-foton yang 

terserak itu untuk menghasilkan eorak belauan yang mempunyai kaitan dengan struktur 

antara-atom dan struktur antara-molekul medium serakan. 

Corak-eorak belauan ini menjadi tanda khusu's bagi bahan yang mengalami saling 

tindakan berkaitan dan dengan itu boleh digunakan untuk meneirikan bahan tersebut. 

Corak belauan dalam kajian ini dihasilkan melalui kaedah sebaran tenaga di mana foton 

berbilang tenaga daripada tiub sinar-X menghentam suatu sasaran pada sudut keeil 

tertentu, justeru gelaran Serakan Sinar-X Sudut Rendah (LAXS). Kaedah 1111 Juga 

digelar kaedah Belauan Sinar-X Sebaran Tenaga (EDXRD). 

Sistem LAXS yang mematuhi prinsip-prinsip di atas telah dibina di Makmal Biofizik, 

Pusat Pengajian Sains Fizik, USM. Sistem tersebut terdiri daripada satu tiub sinar-X, 

pemasangan pengkolimat dan sasaran, pemerisaian, kelengkapan pengesanan dan 

kelengkapan pemerolehan data. Prestasi setiap komponen individu dalam sistem 

tersebut telah diuji berasingan dan eiri-eiri masing-masing direkod untuk penggunaan 

optimum. Sistem LAXS seterusnya diperiksa sebagai pemasangan sepadu. Penjajaran 

foton tuju dengan foton serakan melalui pengkolimat plumbum yang telah dibina, 

kearah pengesan LEGe merupakan aspek yang paling meneabar bagi kajian eksperimen 

tersebut. 
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Hasil pengoptlmuman geometn bag! slstem LAXS untuk membuat keputusan tentang 

parameter prestasi yang terbaik boleh dirumuskan seperti berikut: tiub sinar-X harus di 

gunakan pada voltan gunaan 50 kV dan arus 25 rnA untuk tempoh pengumpulan selama 

300 saat menggunakan pengkolimat eelah 2 mm dan pad a sudut serakan 8° ,9° atau 

10° untuk jarak tertentu yang dipilih. Kriteria yang dipilih untuk pemilihan ini adalah 

untuk meneapai keamatan eorak belauan yang tinggi dengan puneak-puneak yang sedia 

terIerai dan mengandungi sebanyak mungkin perine ian puneak dalam masa sesingkat 

mungkin. 

Sistem LAXS telah digunakan dalam kajian fantom tulang yang telah difabrikasi. yang 

menyerupai perubahan ketumpatan tulang dalam osteoporosis. Fantom-fantom telah 

difabrikasi untuk mensimulasikan kehilangan tulang trabekular dan kehilangan tulang 

kortikal. Sistem LAXS didapati berupaya untuk.membezakan antara berbagai kepekatan 

eampuran untuk fantom-fantom tersebut dengan membandingkan eorak EDXRD. 

Beberapa parameter kuantitatif yang mengaitkan komposisi fantom dengan eiri linear 

yang baik telah diwujudkan. Pengurangan dos yang diterima oleh sasaran untuk 

pengukuran in vivo masa hadapan telah diea~ai melalui pengurangan masa 

pengumpulan tanpa kehilangan kelinearan atau kepekaan. 

Contoh beberapa bahan gantian bioperubatan dan biobahan seperti air, PMMA, LLDPE, 

getah, tulang yang dikeringkan, tulang segar, tisu dan bahan lain telah dikaj i dalam 

setup LAXS dan eorak belauan dianalisis. Corak belaun menggambarkan struktur dan 

komposisi bahan. Dengan itu ianya boleh digunakan sebagai eorak khusus untuk 

prosedur pengeeaman pangkalan data masa hadapan. Bahan fantom tulang yaqg 

difabrikasi menghasilkan eorak belauan yang serupa dengan eorak tulang sebenar. 

Pekali serakan kebezaan linear bagi bahan-bahan gantian bioperubatan tersebut telah 

di ukur. 

xx 



Sebatian, campuran, logam, larutan, serbuk dan pepejal menghasilkan corak belauan 

tanda yang mempamerkan ketertiban struktur yang amorfus, semi amorfus atau hablur. 

lni juga menunjukkan versatiliti sistem LAXS. 

Sistem LAXS tersebut telah digunakan untuk mengecam bahan dengan menilaikan 

ruang antara-atom dan membandingkan dengan fail PDF dengan kelebihan masa 

pengumpulan yang pantas berbanding peleraian. Kesan ketebalan ke atas corak belauan 

telah dikaji untuk menentukan ketebalan optimum bagi bahan serakan. Aluminium dan 

kuprum digunakan untuk tujuan ini. Di samping itu kesan kepekatan dan ketumpatan 

larutan dikaji dengan ketumpatanjelas lebih sensitif. 
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ABSTRACT 

Scattering of X-rays photons from low Z materials at diagnostic energies « 140 ke V) 

and low scattering angles «12°) is mainly coherent in nature. This coherence property 

will lead to interference effects between these scattered photons resulting in diffraction 

patterns, which are related to the interatomic and intermolecular structure of the 

scattering medium. 

These diffraction patterns are unique signatures pf the interacted materials and therefore 

can be used to characterise them. Diffraction patterns in this work are produced by the 

energy dispersive method where polyenergetic photons from an X-ray tube impinge on 

a target at a fixed low angles and hence the names Low Angle X-ray Scattering 

(LAXS). This method is also referred to as the Energy Dispersive X-Ray Diffraction 

(EDXRD) method. 

A LAXS system that complies with the above principles has been constructed at the 

Biophysics Laboratory, School of Physics, USM. The system comprises an X-ray tube, 

collimators and target assembly, shielding, detection and data acquisition equipments. 

The performance of each individual component in the setup has been tested separately 

and its characteristics are recorded for optimal use. The LAXS system was the,n 

examined as an integrated assembly. Alignment of the incident and scattered photons 

through the manufactured lead collimators and into the LEGe detector was the most 

challenging aspect of the experimental work. 
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The results of geometrical optimisation of the LAXS system to decide on the best 

performance parameters can be summarised as follows: the X-ray tube should be 

working at an applied voltage of 50 kV and current of 25 rnA for collection period of 

300 seconds using 2 mm slit collimators and at scattering angles of 8°, 9°or 10° for 

certain employed distances. The criteria taken for this selection are to obtain highly 

intense diffraction pattern with well-resolved peaks and contain as much as possible 

peak details in the shortest time possible. 

The LAXS system has been utilised in studying fabricated bone phantoms, which mimic 

the changes of bone density during osteoporosis. Phantoms were fabricated to simulate 

trabecular bone loss and cortical bone loss. The LAXS system was found capable to 

disti-nguish between the various mixture concentrations of theses phantoms by 

comparing their EDXRD patterns. Several quantitative parameters that relate to the 

composition of the phantoms with good linear behaviour have been established. 

Reduction in dose received by the target for future in vivo measurements was 

accomplished by the reduction in collection time without the loss of linearity or 

sensitivity. 

Examples of some biomedical su1J.stitute materials and biomaterials such as water, 

PMMA, LLDPE, rubber, dried bone, fresh bone, tissue and others have been examined 

in the LAXS setup and their diffraction patterns analysed. The diffraction patterns 

reflected the structure and composition of the materials so that they can be used as 

signature patterns for future database identification procedures. Fabricated bone 

phantom materials gave diffraction patterns which closely resemble real bone pattern;;. 

The linear differential scattering coefficient of these biomedical substitute materials 

have been measured. 
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Compounds, mixtures, metals, solutions, liquids, powders and solids produced signature 

diffraction patterns that reflect their structural order being amorphous, semi amorpholls 

or crystalline. This also serves to show the versatility of the LAXS system. 

The LAXS system has been used to identify materials by evaluating their interatomic 

spacings and comparing them with PDF files with the advantage of fast collection time 

over resolution. The effect of thickness on the diffraction patterns were investigated to 

determine the optimal thickness of the scattering material, Aluminium and copper were 

used for this purpose. In addition the effect of concentration and density of solutions 

samples were investigated with density appearing to be more sensitive. 
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CHAPTER ONE 

Introduction 

1. 1 Introduction 

Even before the discovery of X-rays by Roentgen in 1895, there was some scientific 

work on radiation scattering by Lord Rayleig~, and others but it was concerned with 

light scattering (Strutt, 1871 a, 1871 b). The first work on X-ray scattering by free 

electrons was conducted by Thomson (1906). 

The subject of scattering of X-rays by crystals was addressed by Darwin (1914) among 

others. Bragg and Bragg got the Nobel Prize (1915) on their experimental work on X-

ray diffraction. The theoretical treatment of X-ray diffraction was established soon by 

Ewald (1916, 1917) and then by Von Laue (193], 1935). 

X-ray diffraction technique was, and still being employed, as a method for 

characterisation of crystalline materials; the familiar subject of crystallography. X-ray 

diffraction by large molecules, which show non-crystallinity with some order on the 

local scale, was also tackled. Since the spacing of such molecules is quite large in trye 

order of tens and hundreds of interatomic spacing, and by inspection of the well known 

Bragg diffraction equation, the restriction to the use of small scattering angle 8 is clearly 

observed, (Guinier and Fournet, 1955). The use of a larger X-ray wavelength Ie is 

another alternative approach to small angle scattering, but in this case, X-ray absorption 



WIll oe grear as TO OImlnISn me IntensIty or the dJrtracted beam and hence burden the 

detector employed with such long wavelengths. 

In addition to X-ray diffraction, X-ray radiation was used in imaging since the day of its 

discovery. The field of radiology is a well-established science. However. X-ray 

scattering in this field is considered a problem, (Magalhaes et af.. 1995) that reduces 

contrast and signal to noise ratio of the image and therefore, leads to low quality 

images. Such problematic scattering must be overcome and various procedures were 

used in order to minimise the effect of scattering and preserve image quality (Moore el 

al., 1976; Stonestrom and Macovski, 1976; Rudin and Bednarek; 1980, Cack, 1981; 

Joseph and Spital, 1981; and Magalhaes et al., 1995). 

Characterisation of biomedical materials such ~s in the investigation of bone density 

using gamma-rays based on the transmission. technique were done by Cameron and 

Sorenson (1963), Roos et al. (1970), West and Reed (1970), Sorenson and Mazess 

(1970), Bradley et al. (1986) and Mooney and Speller (1992) and in the characterisation 

of other materials by Mancini (1985) and Bradley et af. (1986). X-rays were also 

employed in this area in the work of Buchnea et af. (1982). 

Due to the dominance of scattering cross sections over absorption cross sections for 

common materials and in the radiological energy range of interest 0 - 140 ke V (Holt ef 

af., 1983, 1984 and Chong, 1989), scattering can be a useful tool in characterisation of 

materials using these energies. 

Incoherent scattering is employed 111 the characterisation of materials in addition to 

transmission by several authors such as Clarke and Van Dyke (1973). Webber and 

Kennett (1976), and Chong (1989). The use of the ratio of the coherent to the incoherent 

scattered photons in the determination of bone density was the work of many authors 

such as Puumalainen et al. (1976), Kerr et al. (1980), Ling et af. (1982), Puumalainen ef 

2 



al. (1982) and Mossop et al. (1987), and in the characterisation of other materials by the 

authors Holt et aZ. (1983), Holt et aZ. (1984), Manninen et al. (1984), Webster and 

Lillicrap (1985) Webster et aZ. (1986), Confalonieri et al. (1987), and Shakeshaft et al. 

(1997). Compton scattering alone was used for the purpose of imaging by Holt et of. 

(1984), and Harding and Tischler (1986) and for identification of materials by 

Magalhaes et af. (1995) or their densities by Sharaf (2001). Coherent scattering as a 

single process was used to measure bone density by Kerr et af. (1980), and Ndlovu et of. 

(1991). The Back scattering technique was employed by Mohammadi (1981). Wolf and 

Munro (1985), Confalonieri et aZ. (1987), Tuzi and Sato (1990), El-Kateb and Shehadah 

(1993), Tartari et aZ. (1994), Elyaseery and Chong (1995), Yacouti et af. (1997), and 

Morgan et aZ. (1998) for the identification of m'Jterials. 

1.2 Coherent scattering 

Coherent scattering has been dismissed as a process for identification of materials 

because of its small contribution to attenuation coefficient compared with incoherent 

scattering. Coherent scattered radiation does not depend on energy and its angular 

dependence is forward peaking, i.e. the differential scattering probabi I ity is peaked at 

zero and therefore indistinguishable from transmitted radiation, and in such cases it is a 

reducing quality process (Neitzel et al., 1985). 

However, calculations by Johns and Yaffe (1983) using single scatter shovved that in 

the diagnostic energy range, the differential scattering cross section for coherent 

scattering did not peak at zero angle as it was previously believed but at an angle larger 

than zero. In fact, the differential coherent scattering cross section at zero degJ'ees 

almost vanishes. The work of the above authors was concerned with water, concluded 

that the maximum scattering probability occurred at an angle equals to 3.80 for photon 

energy of 60 keY, which is attributed to intermolecular interference. Their work also 
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showed that coherent scattering was much greater than incoherent scattering at low 

angles, and it contributed significantly to the total scattering process. 

Morin and Berroir (1983) also showed that the forward peaking occurs at a non-zero 

angle for water samples, and the ratio of a single scattered photon to transmitted one is 

energy dependent with a significant contribution from Rayleigh scattering to this single 

scatter. The experimental work carried out by Muntz et af. (1983) confirmed the 

forward peaking of differential scattering cross sections at low angles and showed that 

the positions of the peaks depends on the structure of the material and depends sl ightly 

on the energy. So far, only single scatter is being considered while in real systems 

(thick objects) multiple scattering always occurs. 

The work reported by Neitzel et aZ. (1985) usiQg Monte Carlo simulation showed the 

existence of incoherent multiple scattering, but the dominance is still to single scatter 

for these thick objects when polyenergetic radiation was used. This work also confirmed 

the forward peaking of coherent scattering probability at low scattering angles away 

from the transmitted radiation, and the broadening of the peak of interest with 

increasing sample thickness. 

1.3 Low angle coherent scattering 

An X-ray photon can interact with matter through various processes. Photoelectric 

effect and Compton (inelastic) scattering are the most common interactions. The most 

important interaction processes are dealt with in the next chapter. 

There exist a type of interaction -where the scattering of X -rays photons in the energy 

range of about 140 keY or less and at low scattering angles « 12°) will be mainly 

coherent with no energy change involved in the process. This interaction is called 

coherent elastic scattering or historically known as Rayleigh scattering. X-ray scattering 
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at low angles is considered to be a coherent or elastic process due to the high probability 

of its cross section over incoherent (inelastic) Compton scattering cross section. 

Scattering can be from a single free electron, the classical case of oscillating charge that 

emits radiation of the same frequency as the photons impinging on it. This is known as 

"Thomson scattering". Also scattering can be from bound electrons in an atom of 

atomic number Z and in this case, both the atomic number of the atom and momentum 

transfer q must be taken into account. This is usually expressed as a function F (q, Z) 

known as the atomic form factor. This scattering is known as "Rayleigh scattering", A 

detailed coverage of both interactions is given in the next chapter. 

Since scattering is coherent, the scattered waves will retain the same wavelengths, as 

the incident waves and a definite phase relatjon between them will exist. Interference 

effects will take place and their nature will .depend on the electron distribution of the 

target medium. Interference can be attributed to be due to three basic routes: first 

between scattered waves of electrons in the same atom of object molecule, secondly 

between scattered waves of electrons of neighbouring atoms within the same object 

molecule (interatomic), and thirdly between scattered waves of different molecules 

(intermolecular) . 

Furthermore, if the object material has some regular order, be it short or long order. 

then interference can occur between coherently scattered X-rays photons from adjacent 

atomic planes, at some small angle e. Diffraction will then' occur and is governed by 

Bragg law which is given by . 

n A == 2d sin ~ 
2 
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the scattering angle, and d is interatomic spacing of the material. This equation can be 

expressed in terms of energy as follows 

1 

E 

2d e 
---sm 
n h c 2 

( 1.2) 

where E is the energy of the incident X-ray photon, h is Planck's constant and c is the 

velocity of light. 

The diffraction pattern obtained is composed of the energy spectrum of the incident X-

ray source with the diffraction effects superimposed upon it. This diffraction pattern 

will be a characteristic ofthat object material. 

Inspection of Equation 1.1 and Equation 1.2 shows clearly two distinctive methods of 

obtaining diffraction patterns. Keeping the incident wavelength A of X-ray photon fixed 

by the use of monoenergetic photons and sweeping the various angles e will give a 

diffraction pattern. This technique is known as the angular dispersive method and it is 

common in the field of crystallography. The alternative method is to keep e fixed at a 

given angle and vary the wavelength of the X-ray source and this usually done by 

employing a polyenergetic X-ray source where the various wavelengths exist together. 

via the use of an X-ray tube. This technique is known as the energy dispersive method 

and will be used in this work. 

Therefore, the phenomenon of Low Angle X-ray Scattering (LAXS) or Energy 

Dispersive X-Ray Diffraction (EDXRD) can be exploited to characterise materials of 

low atomic number Z that have some order in their structure. This is done by obtaining 

a diffraction pattern, a "signature" pattern specific of the material under investigation 

since it depends on its molecular structure. X-ray diffraction effects although more 

pronounced in crystalline substances than amorphous substances, do not only result 
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from separations of atomic planes within the crystal, but occur due to any appropriate 

separation of electrons (Royle and Speller, 1995). 

Giessen and Gordan (1968) earlier investigated this phenomenon of Low Angle X-ray 

Scattering (LAXS), by irradiating powdered samples with polychromatic radiation fi"om 

an X-ray tube. The scattered X-ray spectra at low angle (~ 10°) were collected using a 

semiconductor detector and the lattice spacings of the samples were then deducted. 

Energy Dispersive X-Ray Diffraction (EDXRD), employing low angle X-ray scattering 

from synchrotron radiation was used by Bordas et az. (1976) to study biological 

samples. This LAXS technique is used to investigate the bulk structure of materials. 

particularly with low Z materials, that have some local order. 

There is another technique, which is reported t;:xtensively in the literature by many 

authors such as Guinier and Fournet (1955), l(aelble (1967), and Glatter and Kratky 

(1982), namely Small Angle X-ray Scattering (SAXS) which should not be confused 

with LAXS. Though they are similar in certain general aspects, SAXS is used to 

investigate particle size and scattering is due to the particle and not to the internal 

structure it possesses and therefore Bragg diffraction cannot be employed. In addition, 

SAXS experiments employ angular dispersive method in its analysis. 

1.4 Applications of LAXS 

Since in LAXS the scattered X-ray photons have interacted with the target mediulTI then 

they carry with them information- relating to that mediulTI which cannot be said about 

transmission based techniques. The phenomenon of low angle X-ray scattering (LAXS) 

or energy dispersive X-ray diffraction (EDXRD) has some solid theoretical and 

experimental support to be exploited in the field of material identification. It is not' 

surprising to see that the first application of low angle X-ray scattering was a medical 
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application, and in the field of radiology in particular, since most of the previously 

mentioned works were in the field of radiology too. Harding et a1. (1985, 1987) 

experimented on a computed tomography imaging system based on low angle X-ray 

scattering. 

The applications of low angle X-ray scattering may be categorised mainly into two 

fields: the medical and industrial. The development of the LAXS technique in these 

fields will be discussed in some detail. The medical field includes computed 

tomography, bone mineral density determination, characterisation of biomedical 

materials and imaging, and characterisation of related materials. The industrial field 

includes the studies of food contaminants, spices, explosives, and other materials of 

interest. 

1.4.1 Computed tomography 

Coherent X-ray scattering in computed tomography was covered by several authors 

such as Harding et al. (1985, 1987, 1990), Westmore et al. (1995, 1997), Barroso el al. 

(1998), and Hall et al. (1998). 

1.4.2 Bone analysis and mineral density determination 

As discussed previously, almost all the work on the measurement of bone mineral 

density was done using gamma-rays as the source of radiation. However, in the work 

done by Webster and Lillicrap (1985) a heavily filtered X-ray beam was used to 

determine bone mineral density. The LAXS technique for bone analysis was utilised 'by 

Royle and Speller (1991, 1995), Farquharson et al. (1997), Farquharson and Speller 

(1998) and Allday and Farquharson (200 I). 
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1.4.3 Characterisation of biomedical materials and diagnostic radiology 

There are many documented research in these areas using coherent X-ray scattering 

such as Bordas et af. (1976) (rat tail tendon), Johns and Yaffe (1983) (water), Morin and 

Ben'oir (1983) (water), Muntz et af. (1983) (perspex), Neitzel et al. (1985), Kosanetzky 

et al. (1987) (muscle), Evans et af. (1991), Speller and Horrocks (1991), Royle and 

Speller (1995) (bone), Chapman et af. (1997), Tartari et al. (1997), Byng et af. (1998) 

(breast tissue), Peplow and Verghese (1998), Bradley et al. (1999b), Elshemey, el al. 

(1999), Kidane et al. (1999) (breast tissue), Royle et al. (1999), Barroso et al. (2000), 

Desouky et al. (2001) (blood), Elshemey et al. (2001) and Poletti et al. (2002) Details 

of some of the above authors can be seen on chapter three 

1.4.4 Characterisation of other materials 
, 

The materials covered in this section are medical substitute material or other non-

medical materials such as Pt, Au, SiC, plastics, stainless steel, oil etc. Authors who 

reported in this area are: Giessen and Gordan (1968), Kosanetzky et al. (1987), Zhu el 

al. (1994), lwanczyk et af. (1995), Westmore et al. (1996), Peplow and Verghese 

(1998), Bomsdorf (1999), Ltlggar et al. (1999) and Bomsdorf and Kosanetzky (2000). 

See chapter three for more details. 

1.4.5 Food industry 

Measurements of contaminants in food were studied by authors such as Martens et al. 

(1993) and Bull et al. (1997). Spices were studied using the LAXS technique by 

Desouky et a1. (2002). 

1.4.6 Detection of explosives 

There are several methods, which can be employed in the detection of explosives. 

Summarised accounts of such methods and the vital role they play in airport security 
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have been reported by Stix (1992), George (1996), Nelms et af. (1999) and Speller 

(2001). The low angle X-ray scattering technique was employed in the detection of 

explosives by several authors such as Luggar et al. (1997), Luggar (1998), Luggar e/ 01. 

(1998), Malden and Speller (2000) and Hastings et al. (2001). A good review on the 

above material can be found in the paper written by Luggar and Gilboy (1999). 

1.4.7 Others 

Theoretical treatment and other experimental aspects of the subject are well covered by 

the following authors Kissel et al. (1980), Roy (1980), Pratt (1983), Kane et al. (1986), 

Bradley et al. (1989), Saha (1995), Luggar et al. (1996), Farquharson et al. (1997), Rao 

et al. (1997), Luggar et al. (1998), Bradley et af. (1999a), Bradley et af. (1999b), Roy e/ 

af. (1999), Sidhu et af. (1999), Tartari (1999); Carney (2000), Tartari et al. (2000) 

Carney and Pratt (2001), and Tartari et al. (2002). 

1.5 Scope of work 

The scope of this work can be summarised in the following points: 

• Characterisation of materials using a LAXS system comes 111 as a natural 

research project in the research scheme of the biophysics group at the school of 

physics, USM. 

• Set up of the system is considered the first phase to be undertaken in the project. 

This phase involves the individual testing of the equipments in the LAXS set up; 

the X-ray machine, the X-ray photon detector and the supporting electronic 

gadgets. 

• The initial phase also includes the selecting and fabrication of collimators,' 

collimators stands, movable arm for selecting angles and shielding. 
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• Experimental works were carried out on all the above aspects to determine their 

features and working conditions and hence evaluate each component 

individually and as part of the designed scattering scheme. 

• The second phase of the project involves experimental work on the previously 

examined LAXS system setup using a standard crystalline material. Calcium 

carbonate powder was employed for this purpose. 

• Parameters that affect the performance of the LAXS system were studied 

extensively and evaluated in order to optimise the best working condition of the 

system. The main parameters studied were: current, applied voltage, type and 

size of collimation system and time of exposure. 

• The third phase of the projects deals wjth some applications of the LAXS 

system. 

1.6 Objectives 

The objectives of this work are to design an LAXS system, optimise it and utilise it in 

several applications, which were categorised as follows: 

(i) Scattering from pure solids, compounds and mixtures 

(ii) Scattering from powders and liquids 

(iii) Scattering from some biomedical materials 

(iv) Scattering from simulated bone phantoms to study changes in bone 

matrix densities and cortical bone thicknesses. 

(v) Study of some physical factors that effect sensitivity of LAXS. 

(vi) Evaluation of interatomic spacings of certain substances. 

(vii) Determination of linear differential scattering coefficient of some 

biomedical substitute materials. 
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CHAPTER TWO 

Theoretical Background 

2.1 Interaction of X-rays with matter 

An X-ray photon can interact with the medium it is traversing by many processes. In 

general, X-ray photons can be either absorbed or scattered. A collimated beam of X-ray 

photons has an exponential absorption nature, since each X-ray photon is absorbed or 

scattered in one single event which means that any photon, in the incident beam, passes 

the material had no interaction what so ever. The absorption law can be written as 

follows 

I (2.1) 

where,10 is the initial intensity,1 intensity after passing a medium of thickness x, a,nd 

~l is the linear attenuation coefficient. The possible processes of X-ray photon 

interactions can be deducted from the classification done by Fano (1953), which 

depends on both the type and effect of the interactions as seen in Table 2.1. 
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1 aOle L.1. 1 ype and ettect or possi ble interaction processes 

Type of interaction 

1. interaction with atomic electrons 

2. interaction with nucleons 

3. interaction with electric field surrounding nuclei 

or electrons 

4. interaction with meson field surrounding 

nucleons 

Effect of interaction 

a. complete absorption 

b. elastic (coherent) scatteri ng 

c. inelastic (incoherent) scattering 

There are twelve combinations between the two columns representing the possible 

interaction processes that can be obtained .. Some processes dominate over others 

depending on the energy range. The processes of interest can be listed as follows: 

(i) Photoelectric effect (1 a) 

(ii) Compton scattering (I c) 

(iii) Pair production (3a) 

(iv) Rayleigh Scattering (I b) 

(v) Nuclear Thomson scattering (2b) 

(vi) Delbruck scattering (3b) 

(vii) Nuclear resonance scattering (2c) 

(viii) Photo disintegration of nuclei (2a) 

(ix) Meson production (4a) 

I 

I 

I 

In the energy range from a few keV up to a few MeV, the most common processes are 

the first three processes listed above in addition to the Rayleigh scattering process. A 

brief description of those processes, which are considered to be useful is given below. 
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2.1.1 Photoelectric effect 

This process occurs in the energy range I - 100 ke V, and it involves the removal of 

bound electrons from the atoms upon the absorption of all the incident photon energy. 

The energy of the photon, E should be equal to or larger than the electron binding 

energy, BE. For the latter case, an electron will be ejected with kinetic energy, T given 

by 

T:=E-BE (2.2) 

2.1.2 Compton scattering 

This process dominates at intermediate energy, and it deals with the scattering of X-ray 

photons by atomic electrons that are assumed free, therefore, it occurs at energies 

greater than the binding energy of the electrons. For an X-ray photon with energy, E . it 

will scatter, upon striking a target electron, through angle, 8, made relative to the 

original direction and with energy E' , given by 

E'= 
E 

E 
1 + ---2 (l - cos e) 

rna C 

where, rna represents the mass of electron and c the velocity of light. 

The differential total Compton cross section is given by 

d (5 KN 

dO. 
S(q) 

(2.3a) 

(2.3b) 

where the first term refers to the Klein-Nishina function and the second term is the 

incoherent atomic scatter function. 
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2.1.3 Pair production 

When the photon energy exceeds 1.02 MeV (ma c2
), annihilation of the photon occurs 

with the appearance of electron - positron pair in its place. The electron - positron pair 

has a total kinetic energy equal to the energy of the vanished photon. 

(2Aa) 

where Te - and T e + are the kinetic energies of the electron and positron 

respectively. This process will only take place greatly in the field of the nucleus and 

takes over as the dominant process as the photon energy increases. 

2.1.4 Rayleigh scattering 

The Compton scattering process is an inelastic (incoherent) interaction where the 

scattered photon suffers deviation from its origiqal direction, and carries a lower energy 

than the incident one. The Rayleigh scattering process, on the other hand, is an elastic 

(coherent) interaction where the incident photon does not lose any energy, but suffers 

deviation of small angles from its original direction so that no atomic excitation or 

ionization occurs to the atom. The Rayleigh scattering cross section, (White, 1950), of 

great importance at small photon energies, but it diminishes at higher energies due to 

the increased dominance of the inelastic process. The differential elastic cross section is 

given by 

d C5 Th 

dO 
F 2 (q) (2Ab) 

where the first term refers to Thomson cross section and the second term is the form 

factor scatter function. 

Elastic scatter is predominant at small angles and in the diagnostic energy range or low, 

momentum transfers that is single coherent scatter is much more intense than single 
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Compton scatter. Within this region, single inelastic scatter is suppressed due to electron 

binding effects. Nevertheless, this is in conflict with the fact that the total inelastic 

cross-section is greater than the total elastic scatter cross-section (about 10 %). For 

example, the partial interaction cross-sections for oxygen over the diagnostic energy 

region (0-100 ke V) shows photon attenuation is dominated by photoelectric absorption 

and incoherent (Compton) scatter and at no point is elastic scatter the major influence. 

This conflict is resolved by observing the differential cross-sections for scatter in the 

momentum range below 0.5 A-I (corresponding to 10° at 70 keY) where coherent scatter 

is the dominant mechanism for photon scattering. By comparing both the coherent form 

factor function and the incoherent scattering function below the momentum transfer 

value stated above, it can be said that the coherent scatter is confined to a narrow 

forward scattering peak and the Compton scatter vanishes as the momentum transfer 

approaches zero due the incoherent scattering function. A detailed outline of this 

process will be given later. 

2.1.5 Nuclear Thomson scattering 

This is another type of elastic scattering which, combines coherently with Rayleigh 

scattering. It is detected at high energies, and attributed to the scattering from the 

nucleus, which is considered to be a point charge. This interaction has small 

contributions due to the large mass of the nucleus, (Davey, 1953; Strickler, 1953; 

Wilson, 1953). 

2.1.6 Delbruck scattering 

Delbruck scattering is also an elastic (coherent) scattering process, and is due to the. 

formation of virtual electron-positron pair in the field of the nucleus followed by 

annihilation in the same field. It takes place at energies above 1 Me V. 
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2.1.7 Nuclear resonance scattering 

This process is an elastic one and occurs at energies above 1 MeV. It involves the 

excitation of the nuclear levels by the impinging photon followed by emission of this 

excitation energy, and it also involves nuclear resonance giant dipole transitions. 

2.1.8 Photo disintegration of nuclei 

This process is referred to as the nuclear photoeffect, it takes place when the energy of 

the photon is larger than the nucleon separation energy and it is restricted to energies 

above 8 MeV. This absorption process has very small cross sections. 

2.1.9 Meson production 

Meson production is an absorbing process, which requires high photon energy in the 

range of about 150 MeV. The cross section associated with this process is negligible. 

2.2 Principles of X-ray scattering 

2.2.1 Introduction 

X-rays are electromagnetic waves that consist of electrical fields, E and magnetic 

fields, B perpendicular to each other and to the direction of propagation. 

Electromagnetic waves can be represented by a plane wave expressed in terms of the 

electric field vector E . For linearly polarized electromagnetic waves, it can be written 

in general in the form 

(2~5) 

where, k is wave vector along the direction of propagation and its magnitude 

k = 27r is called the wave number, Ie is the wavelength. Eo, is the amplitude of the 
A 
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A 

electric field, co is angular frequency, and u, is a unit vector, which represents the 

polarization of electric field. If the direction of propagation is assumed to be along the 

z- axis then Equation (2.5) can be simpl ifled by taking its real part, to 

E (z , t) = £iE 0 SIll (kz - (j) t) (2.6) 

The above description is a classical one. The quantum mechanical conception of an 

electromagnetic wave is one consisting of photons each carrying definite amounts of 

energy called "quantum". The energy of the photon E is given by 

E = nm (2.7) 

The photon also has a momentum P associated with it given by 

P = nk' (2.8) 

The intensity 1 of an X-ray beam equals the number of photons per second that 

transverses a given area. Classically, the intensity of X-ray beam is proportional to the 

square of the electric field. 

(2.9) 

2.2.2 Scattering of X-rays by single electron "Thomson scattering" 

When an X-ray photon of low energy (tz OJ « me 2 ) strik,es a single electron, the 

electric field of the incident electromagnetic wave will exert a force on it. According to 

the classical theory of radiation, the electron will accelerate and therefore will emit an 

electromagnetic radiation of the same wavelength as the incident one that represents the 

scattered wave. This is a description of an elastic process. Note that in this classical. 

view momentum transfer is ignored. In fact, some momentum is bound to be transferred 

to the electron since any photon has momentum given by Equation (2.8). 
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If the electron IS bouno to an atom, tne InClOem pnman s momemUIIl WIll ue Llall::'lellCU 

not to the electron concerned but to the whole atom. In this case, the energy loss will be 

given by 

E loss 

p2 

2M 

where M is the atomic mass and not the electronic mass mo. 

(2.10) 

Since M > > m 0 , then the energy of the scattered photon is almost unchanged from 

the incident one and the process remains an elastic process. An elastic process, 

therefore, can involve momentum transfer to some extent. 

Consider a free electron that is struck by an electromagnetic plane polarised radiation 

with its electric vector in the y-z plane given by 

E. 
In (2.11 ) 

The electronic charge will be accelerated back and forth along the y-axis in very small 

amplitudes. The field, at some observation point P, which is at a distance r from the 

electron and makes an angle e with respect to the direction of travel, must be calculated. 

The observer can be located either in the y-z plane (i.e. in a plane of polarisation of the 

incident wave) at PI or in the x-z plane (i.e. in plane perpendicular to the plane of 

polarisation) at P2, as in Fig. 2.1. 

The radiated field at point P is given by 

(2.12) 
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x 

P2 

z 

Fig. 2.1 Coordinate axes and observer points for EM wave of electric field E. 

where, a (t - !.--) is the acceleration at time (t - !.--), which is called the retarded 
c < c 

acceleration, and should be the component of acceleration perpendicular to the line of 

r 
sight (F eynman et al., 1965). In this case it equals to a (t - -) cos e. Therefore, 

c 

Equation (2.12) becomes 

(2.13) 

It can be noted that if e = 1f then a = 0 and hence no acceleration is observed, and 
2 

ifB = 0, the full acceleration is observed at that position. Therefore, if the observer is at 

position P2, the acceleration at any point in that plane is perpendicular to the line of 

sight and the radiated field will be give by Equation (2.12). The acceleration is related 

to the electric field by the following relation 
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a 
- e ~ 

--Eil1 

me 

()) 

Using Equation (2.11), k = - and then rearranging to obtain 
c 

r - e ~ 'k 
aCt - -) = --Ein e' r 

C me 

Therefore, Equation (2.12) becomes 

r 

And Equation (2.13) becomes 

Ein cose 
r 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

The first term is defined as ra the classical electron radius or sometimes it is known as 

, 
e-

Thomson scattering length r 0 = = 2.82 x 10 -15 m, and the second 
4nEol11eC2 

e ikr 

term --, represents a spherical wave. Equation (2.16) and Equation (2.17) can be 
r 

written as the ratio between the radiated or scattered electric field and the incident 

electric field. 

ikr e 

r 

E e ikr 

~=-r --cose 
~ a 

Eil1 r 
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Note that In all the above equatIons the minus sIgn IS there to mdlcate that the scattered 

field is 1800 out of phase with the incident field and therefore, the scattering process 

involves a phase shift equal to IT . 

The differential scattering cross section, ~ , is defined as: 
dO. 

dC5 number of X - rays scattered per second in solid angle t-.o. 
= 

dO. incident flux x t-.n 
(2.20) 

Let us define scattering intensity, Is as the number of photons per second recorded by 

the detector, and incident intensity, I in as the number of incident photons per second. 

I 
The incident flux is given by the relation, _"~1 which can be written as 

Ain 

1 E rad 12 r 2 i1f2 

IEin 12 AilJ 
(2.21 ) 

where, t-.Q is the solid angle subtended by the detector, r 2 t-.Q is the cross sectional area 

of the scattered beam and Ain is the cross sectional area of the incident beam. Hence, 

Equation (2.20) becomes 

dO' 

dO. 

Substitute into Equation (2.19), one obtains 

dO' 2 1 - = ra (cos ~ 8) 
dO. 

(2.22) 

(2.23). 

This is the differential coherent scattering cross section for an X-ray beam with 

polarisation in the scattering plane. Substitute into Equation (2.18), one obtains 
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d (5 

dQ 
2 

r a (2.24) 

This is the differential coherent scattering cross section for an X-ray beam with 

polarisation perpendicular to the scattering plane. 

For unpolarized X-rays, the incident electric field is equally probable in the x-y plane 

and its average value is given by (E i~ > = (if ,: ) + (E,~ ) but the last two 

components will be equal when averaged over many photons and will be equal 

< jj; i;') Th C to -- . ere lore, 
2 

2 - 2 

l < E in ) (1 + cos 2 f3 ) 
r2 2 

We can substitute, into Equation (2.22), to obtain 

d (5 Th 

dO. 

(2.25) 

(2.26) 

This is the differential coherent scattering cross section for an unpolarized X-ray beam, 

known as the Thomson formula. The total coherent scattering cross section, (5 T • can be 

obtained by integrating over all possible scattering angles, e . 

(5 T 
8 7l 2 --r 

3 0 (2.27) 

(5 T = 0.665 xl 0 -28 m 2 0.665 barn. 

Concluding remarks 

• The total or differential classical scattering cross section by free electrons is 

constant and independent of energy. 

• The polarization factor, p, which depends on the X-ray source has values of 

p = 1, for electric field perpendicular to the scattering plane. 
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• 

• 

p = COS
L fJ , for electric field in the scattering plane. 

p =-.!..(1 + COS
2 fJ), for unpolarized source. 

2 

du/ 
The differential scattering cross section, in units of r}, / ~ 0. fluctuates in 

r 0-

1 magnitude between 1 for scattering angle 0 and ;rr and when scattering 
2 

;rr 
angle equals 

2 

The Klein- Nishina formula is given by 

() KN 
2 8IT 21i m 

=ro -(1- + ... ) 
3 m c 2 

. 
o 

2 7rmo c
2 

[InC 2lim ) + ~] 
() KN = ro lim m c 2 2 

o 

for 11 CD < < mo c 2 

for 11 CD » mo c 2 

At low photon energies, much less than the electron's rest mass energy, the Klein-

Nishina cross section, (J KN approaches Thomson scattering cross section, crr . At high 

photon energies, quantum mechanical effects appear and the cross section departs from 

the Thomson scattering cross section. 

2.2.3 Scattering of X-rays by an atom "Rayleigh scattering" 

For an atom with Z with electrons, scattering is considered to be from the cloud of 

electrons surrounding the nucleus, which acts as the origin of coordinates (Cowley, 

1975). Each electron has a distribution function or electron density function, Peer), 

\vhich gives the probability that an electron is confined to a volume element at position 

r . This process is known as Rayleigh scattering. 
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