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Abstract 
Truss structures can experience thermal loading due to heating from external sources. Changes in 
temperature will induce stresses in the members and cause deformation of tlu! structure. For 10llg 
span truss structures. effect of such thermal loading might be especially critical in the sense that 
excessive deformation or failure due to over-stressing of members might occur. This paper is 
about shape analysis of truss structures subjected to thermal loading with constraints in member 
strains. Strain is chosen as the constraint because it can be easily and directly measured. By 
constraining the member strains to certain prescribed values. stresses caused by thermal loading 
can also be controlled. The governing equations for shape analysis is formulated bv combilling 
stiffness equation for truss structure alld constraint equations in member straills. The existence 
condition of solutioll formulated with the use of generalized ill verse matrix is adopted as the basis 
of analysis. Newtoll-Raphsoll method is used ill the shape analysis process to obtain the shape 
satisfying the constraints. Results of analysis carried out on three truss examples show that the 
adoptetisolution strategyformufaled with the use of generalized inverse is applicable and worth'Y 
of further development. 

Key words: Gelleralized ;'lverse. existence condition/or solutions. shape analysis. 
constraints. strains. thermal loading. 

1. FOREWORD 

Thermal loading due to change in temperature can be 
considered as a kind of external loading in strul:tural 
analysis. Stresses will be induced in the structure if free 
expansion of structural members is restrained. Effect 
of stresses as well as defonnation due to thermal loading 
might be especially critical in large-span lightweight 
truss structures. Fig. I shows an example where 
members in large-span lightweight truss structures might 
experience different changes in temperatures.' 

Shape. analysis constitutes an important step in the 
design process of truss structures. If x = a vector 
representing the shape of structures and gi =ith constraint 
function. then the process of shape analysis with 
constraints could be expressed as follows: 

obtain x under the condition gi(X) :;; O. i = I. 2... (I) 

During shape analysis. topology of structure is kept 
unchanged with the shape of structure being the only 
design variable. In this research study. member strain 
has been chosen as the constraint due to the reason that 
strain could be easily .measured. Overstressing or 
excessive deformation of truss structure under the effect 
of thermal loading could be avoided by limiting the 
strain to a suitable level. 

Members of truss experience 
higher changes in temperature due 
to direct exposure 10 sunlight 
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Members of truss experience lower 
changes in temperature due to 
indirect exposure to sunlight 

Fig.1 Change in temperature in a large-span roof 
structure due to uneven exposure to sunlight 

Results of literature review has shown that shape 
analysis with constraints has been carried out by various 
researchers[ 1-5]. However. shape analysis of truss 
structrues under thermal loading with member strains as 
constraints has not yet been studied. Hence the present 
research work has been carried out with.the objective of 
studying the applicability of a solution algorithm for 
shape analysis of truss structures under thermal loading 
with members strains as constraints by the use of 
generalized inverse. 



This paper consists of four sections. Background to the 
research study is explained in section I. Section 2 
describes the basic governing equations as well as the 
solution algorithm. Results of three numerical examples 
are presented in section 3. Section 4 summarizes the 
work and outlines topics for future research. 

2. BASIC FORMULATION 

Shape analysis considered in this study involves 
deformation analysis of truss structures under thermal 
loading with constraints in member strains. Hence. two 
sets of equations which must be solved simultaneously 
are necessary : i. force.displacement and ii. strain­
displacement relations. A brief description of the basic 
equations are given below. More detail explanation 
could be found in Ref.[7]. 

2.1 Governing equations 
Finite element method is used in the formulation of 
force-displacement relation. Effect of temperature 
changes is treated as equivalent external forces during 
analysis. Let us assume that the numbers of members 
and degrees of freedom of a truss structure are II! and II 

respectively. Using a two-node truss element. force(F)­
displacement(U) relation could be expressed as follows: 

F=KU ... (2) 

where F='i.f:J • K=Lk • (): equivalent member nodal 
forces due to temperature change. K : structure stiffness 
matrix. k: member stiffness matrix. and 'i. represents 
assembly process symbolically. k and () are given by 
the following two equations respectively: 

r' I", _/ 2 -1;1 k _ EeAII 1m 2 -1m ", -m 
--- 2 

12 1m III -I -1m 

-1m 2 1m ",2 -m 

... (3) 

... (4) 

where E •• A .. I. : Young's modulus. cross-sectional area 
and length of member e respectively. t. m : directional 
cosine of member axis with respect to global x and y 
axes respectively. a: coefficient of thermal expansion 
and LiT:change in temperature. 

Relation between member axial strain and nodal 
displacements could be expressed as follows: 

E =..!..[-L -m 
I, 

I miUUVV2:11 
... (5) 

where u;.Vj : global x and y displacement of node j 
G= 1.2) respectively. Eq.(5) could be rewritten using 
matrix notation as follows: 

... (6) 

Assuming that strains in p(gn) members are 
constrained to the prescribed values. then the p 
constraint equations could be expressed as follows: 

E=BU ... (7) 

where E : vector of member strains with size pxl. 
B='i.Bc and U : vector of structure nodal displacements. 

Basic equations for shape analysis with constraint in 
member strains are obtained by combining Eq.(2) and 
(7) into the following augmented form : 

... (8) 

Denoting 

A =[~] andb =[:] ... (9) 

Eq.(8) could then be written in the following more 
compact form : 

AU=b ... (10) 

Matrix A on the lefthand side of Eq.(10) is a 
rectangular matrix with size (ll+p)XII. Hence Eq.(IO) 
could not be solved by using ordinary inverse matrix. 
As mentioned earlier. shape analysis is carried out 
using shape of structure x as .design variables with all 
other parameters kept constant. Thus matrix A is a 
function of x. i.e. A=A.(x). Since the shape of structure 
satisfying the prescribed member strains is to be 
determined and remains unknown in the beginning of 
analysis. Eq.( 10) will not be satisfied in general. An 
initial shape has to be assumed and ~orrected by mearis 
of iterative calculation until the required shape is 
obtained. 

2.2 Solution algorithm 
Condition for the existing of solution for Eq.(I0) is 
used as the basis of shape analysis. This condi~on 
could be expressed using generalized inverse as follows 

... (11) 



where Ij : identity matrix of size jxj and A + : Moore­
Penrose generalized inverse l for A. For size A of 
(n+p)xn, A + will be of size nx(n+p). Here, generalized 
inverse(6] is adopted due to the reason that A is not a 
square matrix. Since A is a function of shape of 
structure x, then the' task here now is to find x such that 
Eq.(11) is satisfied. Since x is not known beforehand, 
iterative calculation needs to be carried out. Here. 
Newton-Raphson iterative scheme is adopted. 

The lefthand side of Eq.(11) is first denoted as follows: 

... (12) 

Using Taylor series expansion and by retaining only the 
linear term, g(x) could be written in the following form 
for the purpose of iterative calculation: 

... (13) 

where 

[V'g(X;)]jk = ag~~X;) 
} 

... (14) 

V'g(X.) is the Jacobian matrix with size (Il+p)xq where 

q : number of design variables and subscript in vector x 
represents iterative step. Assuming that the required 
shape is obtained at (i+l)'h iterative step, then the 
correction to x vector could be obtained from Eq.( 13) as 
folluws: 

... (15) 

and 

... (16) 

The evaluation of Jacobian matrix V'g(x.) involves the 

calculation of differentiation of both A and its 
generalized inverse A +. Remembering that g(x) is 
given by Eq.(12) and carrying out the differentiation 
with respect to x. it can be shown that the Jacobian 
matrix could be written as follows: 

Partial differentiation appearing in the first term on the 
righthand side of Eq.(17) could be evaluated using the 
following expression: 

• See Appendix A 

a{A(x)A + (x)} = [I . _ A(x)A + (x)]aA(X) A + (X)-::·!!'" 
ax J ax 

+ i1A(x) A + (x)[I. -A(x)A +(x)] ax J 

... (18) 

2.3 Summary of the solution process 
(a) An initial shape Xu is assumed. 
(b) Compute K and Bin Eq.(8). 
(c) Constraints on member strains are prescribed(e in 

Eq.(8». 
(d) From the given change in temperature patterns, 

compute F in Eq.(8) . 
(e) Form matrix A and vector b in Eq.(9). 
(f) Evaluate Jacobian matrix V'g(x.) by using Eq.(17) 

and (IS). 
(g) Evaluate g(Xi) and solve Eq.( 15) for Dxi' 
(h) Update the shape of structure using Eq.(16) . 
(i) Repeat the steps (a) to (h) until the required shape 

is obtained. Replace Xu in step (a) with Xi for i;::l. 

. Criteria for convergence of solution is required in step 
no. (i) above. In this research study. the following 
convergent criteria has been adopted: 

... (19) 

where ~ : vector of member strains at the end of each 
iteration, t\ : vector of prescribed member strains and ~ : 
specified convergent lulc::rance. A value of IxlO's has 
been chosen for 1; . 

3. NUMERICAL EXAMPLES 

Three plane truss structures. with Young's modulus 
£=200 x 109 N/m2, member cross-sectional areaA=0.05 
m2 and coefficient of thermal expansion a;:: 1 2 x 10.(0 I Uc 

, have been analysed. In each of the analysis. a target 
shape XI .. is first identified. The truss structure with xb , 

is then analysed subjected to the given patterns of 
temperature change. The resulting member strains ~ 
are then adopted as the constraints. Shape analysis is 
then started with an initial shape Xu in which the joint 
coordinates are deviated uniformly from X tIt by three 
different levels of percentage: 1%. 3% and 5%. 
Iterative calculation is then carried out until either the 
convergent criteria is satisfied or maximum number of 
iteration specified is exceeded; 

3.1 Numerical example 1: a three-member plane 
truss 

Fig.2 shows a three-member plane truss which has been 
adopted as the first example in which 6T.=IO°C and 
6T1=20°C. The target shape and prescribed member 
strains are tabulated in Table I and 2 respectively. 



Fig.2 Numerical example I : a three-member truss 

Table 1 Joint coordintes of the target shape for 
numerical example I 

Node Coordinates (x,y) 

I (0,0) 

2 (8,3) 

3 (20,0) 

4 (10,0) 

Table 2 Prescribed member strains for numerical 
eltample I 

Member Prescribed member strain 

I -23.72 170x 10.(, 

2 3 1.93 136x10.(, 

3 121.30050x I 0.(, 

Results of analvsis are shown in Table 3 and 4. Ite. In 
Table 3 and 'hereafter denOles number of iteration 
required to achieve convergence. Percentage deviation 
in both Table 3, 4 and hereafter denotes amount with 
which initial shape is deviated from target shape. 

Table 3 Results of shape analysis for numerical 
. 2 example I : coordinates of iotnt 

Percentage Initial Converged Target 
deviation shape shape shape 

1.0 X=8.08 X=8.000 X=8.00 

(ite.=I) Y=3.03 Y=3.001 Y=3.00 

3.0 X=8.24 X=8.001 X=8.00 

(ite.=l) Y=3.09 Y=3.012 Y=3.00 

S.O X=8.40 X=8.002 X=8.00 

(ite.:I) Y=3.IS Y=3.034 Y=3.00 

Table 4 Results of shape analysis for numerical 
I I b t' exam)le : mem er s rams 

Percentage Member Member strains in 
·deviation converl!!ed shape 

-23.72x I 0.(, 
I 

(-23.722xl0'(') 

1.0 31.95xlO-6 
2 

(31.9312x1O-6 ) 

12 1.3 x I 0-6 
3 

(121.301xI0-6 ) 

-23.68xlO-6 
I 

(-23.722xtoo{' ) 

3.0 32.06xI0'(' 
2 

(31.9312xlO.(, ) 

121.5xlO-6 
3 

(I21.30IxI0-6) 

-23.63xIO·n 

I 
(-23.722x I no{' ) 

5.0 32.31xIO-6 
2 

(3 1.93 12xlO-6 ) 

121.9x10o{' 
3 

(121.301 x 10o{') 

(Figures tn parenthesis under the column member strains 
in converged shape represent target values) 

3.2 Numerical example 2 : a five-member truss 

Fig.3 shows a five-member plane truss which has been 
analysed as the second example in which .:1TI=IO°C and 
.:1T2=20°C. Coordinates of both joints 2 and 3 are used 
as design variables. 

Fig.3 Numerical example 2 : a five-member truss 

'nt 



The target shape and prescribed member strains are 
tabulated in Table 5 and 6 respectively. 

Table 5 Joint coordinates of target shape for 
. al I 2 numenc example 

Node Coordinates: (x,y) 

1 (0.0) 

2 (8.1) 

3 (7.2) 

4 (20.0) 

Table 6 The constraints: prescribed member 
. f . I I 2 strains. or numerlca exampl e 

Member Prescribed member strain 

1 74.59469 xlO"" 

2 86.32100 xl0"" 

3 190.21551 xl0-6 

4 91.15596 x 10"" 

5 23.79050 xl 0-1
• 

Results of analysis showing joint coordinates and 
member strains in converged shape are shown in Table 7 
and 8 respectively. 

Table 7 Results of shape analysis for numerical 
I'" d' f" 2 d 3 example ~ : coor matcs 0 ,OInt!> an 

Percentage 
Initial 

deviation Node shape Converged shape 

X=8_04 
2 

X=8.004(8.0) 

1.0 Y=I.OI Y=I.OOI(I.O) 

(ite.= I) X=7.07 X=7.004(7.0) 
3 

Y=2_02 Y=2.003(2.0) 

X=8_24 X=8.000(8.0) 
2 

3_0 Y=1.03 Y=I.OOO(1.0) 

(ite.=I) X=7.21 X=6.999(7.0) 
3 

Y=2.06 Y=2.00 I (2.0) 

X=8.40 X=7_999(8.0) 
2 

. 5.0 Y=1.05 Y= 1.00 I (1.0) 

(ite.=I) X=7.35 X=6.998(7.0) 
3 

Y=2.10 -Y=2.002(2_0) 

(Figures In parentheSIS under the column converged 
shape represent target values) 

Table 8 Results of shape analysis for numerical 
I 2 be . example :mem r strams 

Percentage Member Member strains in 
deviation converged shape 

7459xlO"" 
I 

(74.595 xlO"") 

86.32xl0"" 
2 

(86.321 xl0~) 

190.2x1O"" 
LO 3 

(190.216xIO~ ) 

9 1.1 5XIO"" 
4 

(91.156 x 10"") 

23.8IxI0"" 
5 

(23.791 xlO"" ) 

7.459xI0"" 
I 

(74.595 xIO-n ) 

86.32xIO"" 
2 

(86.321 x I 0-" ) 

190.2xI0-n 
3.0 3 

(190.216 x 10"" ) 

9 1.1 7xlO"" 
4 

(91.156xlO.{o ) 

23.80x I 0-6 

5 
(23.791 XIO.{o) 

74.59xI o.{o 
I 

(74595 xlO-n) 

86.32xI0"" 
2 

(86.321 xlQ.{o) 

190.2xI0"" 
5_0 3 

(190.216 x10""') 

91.19x10"" 
4 

(91.156 xl 0"") 

23.83x I 0"" 
5 

(23.791 xIO"") 

(Figures in parenthesIs under the column member strams 
in converged shape represent target values)-



3.3 Numerical example 3 : a ll-member plane truss 
FigA shows a II-member plane truss which has been 
analysed as the third example. In this example. only 
coordinates of nodes 3 and 5 are allowed to change. 
Coordinates of nodes 2. 4 and 6 remain fixed during the 
analysis. 

< 
£lT

I 
= 101IC £lT2= 201lC 

20.0m 

FigA Numerical example 3 : a I I-member truss 

> 

Joint coordinates and prescribed member strains are 
given in Table 9 and 10 respectively. 

Table 9 Joint coordinates of target shape 
f . I I 3 or numenca example 

Node Coordinates: (x,y) 

1 (0.0) 

2 (4.4) 

3 (6,3) 

4 (10.5) 

5 (14.3) 

6 (16.4) 

7 (20.0) 

Table 10 Prescribed member strains for numerical 
I 3 example 

Member Prescribed member strains 

I 130.731 lOx I 0-6 

2 262.42893 x I 0-6 

3 -129.1900 X 10-6 

4 210.86089xI0-6 

5 -94.20543x I 0-6 

6 58.66208x 10-6 

7 -44.13117xI0-6 

8 165.45533x I 0-6 

9 -10 1.3 7098x I 0-6 

10 214.49785x I 0-6 

II 71.88832x 10-6 

The results of analysis showing the joint coordinates and 
member strains of the converged shape are shown in 
Table II and 12 respectively. In Table 12. only the 
results correspond to percentage deviation 5% are listed. 

Table II Results of analysis for numerical example 3 ; 
Jomtcoo rd' f h mates 0 converged s ape 

Percentage 
Node 

Initial Converged 
deviation shape shape 

6.06 
3 

6.000(6.0) 

\.0 3.03 3.000(3.0) 

(ite.=2) 14.14 14.00(14.0) 
5 

3.03 3.000(3.0) 

6.18 
3 

6.000(6.0) 

3.0 3.09 3.000(3.0) 

(ite.=3) 14.42 14.000( 14.0) 
5 

3.09 3.000(3.0) 

6.3 6.000(6.0) 
3 

5.0 3.15 3.000(3.0) 

(ite.=4) 14.7 14.000( 14.0) 
5 

3.15 3.000(1.0) 

(Figures In parenthesIs under the column converged 
shape represent target values) 

Table 12 Results of analysis for numerical example 3 ; 
member strains in converged shape 

Percentage Member Member strains in 
deviation converged shllJ».e 

130.8xI0-6 
5.0 I 

(I 30.73 I X 10-6 ) 

262.5xI0-6 
2 

(262.429 xIO-6) 

-129.2x10-6 . 
3 -

(-129.190 xlO-6) 

21 0.9x 10-6 
4 

(21O.86IxI0-6 ) 

-94.25x 1 0-6 
5 

(-94.205xlO-6 ) 



58.65x1O-li 
6 

(58.662XIO-li ) 

-44.llxIO-li 
7 

(-44.13IxIO-li ) 

I 65.5x10-li 
8 

(165.455x I O-li ) 

-1 o 1.4x10-li 
9 

(-101.37 I xlO-li ) 

214.5x\O-li 
10 

(214.498x I O-li ) 

71.89xl0-li 
11 

(71.888x I O-li ) 

(Figures m parenthesis under the column member strams 
in converged shape represent target values) 

3.4 Discussions 
From the results presented. it can be seen that 
convergence has been achieved after I iteration for 
numerical example I. 2(Table 3 and 7) and after 2-4 
iterations(Table II) for numerical example 3. 
Comparison between joint coordinates and member 
strains of converged shape with the corresponding values 
of target shape for all three numerical examples have 
shown that the solution algorithm yield results with high 
accuracy (Table 3.4.7.8,11.12). 

4. CONCLUSIONS 

Shape analysis of truss structures under thermal loading 
with constraints in member strains has been studied. A 
solution algorithm involving the use of generalized 
inverse and Newton-Raphson iteration scheme has been 
adopted and its applicability investigated. Results 
obtained from analysis carried out on three simple plane 
truss structures have shown that the solution algorithm 
adopted yield solutions with sufficient accuracy. Based 
on the above. it can be concluded that the adopted 
solution algorithm is applicable to shape analysis 
problems and worthy of further development. 

Among areas that need further research y.'orks are as 
follows: 
(a) Verification of applicability of solution algorithm to 
problems with higher degrees of freedom including 3D 
problems. 
(b) Investigation on sensitivity of final converged shape 
with respect to initial assumed shape. 
(c) Potential extension of the solution algorithm to 
problems involving shape control of truss structures with 
member strains as constraints. 
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APPENDIX A 

Let A be a matrix of size mXII (m;t:.n in general). A 
matrix, denoted as A + with size nXm. which satisfies the 
following four conditions is called the Moore-Penrose 
generalized inverse for A : 

AA+A=A 
A+AA+=A+ 
(AAjT =AA+ 
(AAjT = (AAj 

... (AI) 
... (A2) 
... (A3) 
... (A4) 

Generalized inverse exists for all matrix including 
singular matrix. 


