
b-PARTS OF REAL NUMBERS AND THEIR GENERALIZATION 

by 

Mohamad Hadi Hooshmand 

Thesis submitted in fulfillment of the requirements 

for the degree of 

Doctor of Philosophy 

March 2010 



IN THE NAME OF GOD 

iii 



To all scientis.ts and persons who try to extend the 

sciences and make a world for better conciliatory living 

iv 



Table of Contents 

Table of Contents 

Acknowledgements 

List of Symbols and Abbreviations 

List of Publications and Presentations 

Abstrak 

Abstract 

1 Introduction 
1.1 Introduction. 
1.2 Background of study 
1.3 Objectives of study. 
1.4 Organization of thesis. 

2 b-Parts of Real Numbers and Their Analytic Properties 
2.1 Introduction..................... 
2.2 Elementary properties of b-parts of real numbers ..... . 
2.3 Number theoretic explanations of b-parts . . . . . . . . . . 
2.4 Some analytic properties of b-parts and asymptotic formulas 

3 Finite and Infinite b-Representation of Real Numbers 
3.1 Introduction..................... 
3.2 b-Digital sequences and their relations to b-parts 
3.3 Unique finite b-representation of real numbers . 
3.4 Uniform distribution of real sequences modulo b . 

v 

v 

vii 

viii 

xii 

xiv 

xvi 

1 
1 
2 
5 
6 

7 
7 
8 

13 
15 

21 
21 
23 
27 
34 



4 b-Addition of Real Numbers and Some Algebraic Properties of b­
Parts 39 
4.1 Introduction................................ 39 
4.2 b-Addition of real numbers and b-bounded groups. . . . . . . . . .. 40 
4.3 Periodic subsets of real numbers and their relations to b-parts and 

b-bounded sets .............................. 45 

5 Generalization of b-Parts for Groups 
5.1 Introduction ............. . 

49 
50 

5.2 Decomposer functions on groups. . . 51 
5.3 Existence of decomposer types functions 66 
5.4 Parter functions and the generalized division algorithm for groups 68 

6 b-Parts, Decomposer and Associative Functional Equations 75 
6.1 Introduction............... 75 
6.2 Decomposer type functional equations 76 

6.2.1 Decomposer equations . . . . . 81 
6.2.2 Strong decomposer equations . 84 
6.2.3 Some equivalent equations to the strong decomposer equation. 90 

6.3 Associative and canceler equations ................... 91 

7 Decompositional Groups 100 
7.1 Introduction.............. 100 
7.2 f-Multiplication of binary operations 100 
7.3 Decompositional groups ....... 102 

8 Summary and Future Direction of Research 111 
8.1 Summary and thesis contribution 111 
8.2 Future Direction of Research. 116 

Bibliography 118 

vi 



Acknowledgements 

I would like to thank Dr. Hailiza Kamarul Haili, my supervisor, for many suggestions 
and constant support during this research. 

Of course, I am grateful to my mother for her affection and allowance and my wife 
for her patience. Without them this work would never have come into existence. 
Finally, I wish to thank my brothers for their real assistance and my sisters for their 

encouragement. 

Penang, Malaysia 

March 2010 

vii 

Mohammad Hadi Hooshmand 



List of Symbols and Abbreviations 

Set of numbers 
Z 

N* 

Zn 

Zn 
lIJ)n 

Rb 

Rb 

Qr 

Special real and arithmetic functions 

[ ]b 

()b 

[aJ­
(a)_ 
sgn(x) 

X [a,,B) 

Vlll 

integers 

natural numbers (positive integers; Z+) 

non-negative integers 

even integers 

odd integers 

rational numbers 

irrational numbers 

real numbers 

least nonnegative residues modulo n 

least residue system modulo n 

{Oll ... n-l} 
'n' n 'n 

b[O, 1) = {bdlO ::; d < 1} 

Rb U {b} = b[O, 1J 

Rr nQ, where r E Q 

b-integer part function 

b-decimal part function 

various-integer part function of a 

various-decimal part function of a 

signum function 

characteristic function of [a, fJ) 



d(n) 
a(n) 
A(n) 
((s) 

Elementary and analytic number­

theoretic notations 

ale, ate 
a == e (mod b) 

gcd(a, e) 

[xl 
(x), {x} 

[xlb 

(X)b 

f = O(g) 

f(x) "-' g(x) 

~n~xf(n) 

A([a,,B);N;w) 

Real sequences 

{an}n~1 

{an}:;:: 

{ an}(i 

dgtn,b(a) 

dgt~,b(a) 

Abbreviations 

u.d mod 1 

u.d mod b 

number of all positive divisors of n 

sum of all positive divisors of n 

Mangoldt function 

Riemann zeta function 

divide (does not divide) 

congruence 

greatest common divisor 

IX 

integer (integral) part of real number x 

decimal (fractional) part of real number x 

b-integer part of real number x 

b-decimal part of real number x 

f is bounded (Landau symbol) 

L-----+1 
9 

partial summation 

number of terms Xm 1 ~ n ~ N, for which 

sequence 

two-sided sequence 

finite sequence 

b-digital sequence 

finite b-bounded sequence 

uniform distribution modulo 1 

uniform distribution modulo b 



Algebraic notations 

+ 
-, 
+b 
(X, -) 

(8, -) 

(G, -) 

(G,+) 
I

l
-

Ir-
1-

f* 

1* 
P.c:.. 

Po 

I-g 
I+g 

AB 

A+B 

A-B 

A+B 
A:B 

A+B 

A-B 

!:::.\G 

!:::./G 
G 
Ii 

H~K 

binary operation (multiplication) 

commutative binary operation (addition) 

I-multiplication of -

b-addition 

binary system 

semigroup 

group 

Abelian group 

left algebraic inverse of (function) I 
right algebraic inverse of (function) I 
algebraic inverse of (function) I 
left *-conjugate of I 
right *-conjugate of I 
left projection 

right projection 

multiplication of functions I and 9 

addition of I and 9 

left inverse of x 

right inverse of x 

inverse of x 

product of A and B (subsets of a binary system) 

x 

sum of A and B (subsets of a commutative binary system) 

direct product of A and B 

direct sum of A and B 

standard direct product of A and B 

standard direct sum of A and B 

subtraction of A and B 

right co-sets of !:::. in G 

left co-sets of !:::. in G 

factor group 

H is subgroup of K 



Hi;,K 

HSEK 

<b> 
0-1 

l 

0-1 
r 

0-1 

Other notations 

IAI 
A\B 
t=tx 

His sub-semigroup of K (K is group or semigroup) 

H is isomorphic to K 

cyclic subgroup generated by b 

{wi l I wE O} 

{W;l I W E O} 

{w-1 I wE O} 

{[r]blr E R} 

{(r)blr E R} 

b-bounded real set 

power set of A 

cardinal number of A 

set-theoretic difference of A and B 

identity function (on X) 

composition of functions f and 9 

n-composition of f 
f restricted to A 

inverse function 

xi 



List of Publications and 

Presentations 

M.H.Hooshrnand and H. Kamarul Haili, Some Algebraic Properties of b-Parts of Real 

Numbers, Siauliai Math. Semin., Vol. 3, No.11 (2008), 115-121. 

M.H.Hooshmand and H. Kamarul Haili, Decomposer and Associative Functional Equa­

tions, Indag. Mathern., N.S., VoLl8, No.4 (2007), 539-554. 

M.H.Hooshmand and H. Kamarul Haili, Description of uniform distribution of real 

sequences modulo b by using b-decimal part function, to appear. 

M.H.Hooshmand and H. Kamarul Haili, Some asymptotic formulas for b-parts of 

real numbers, 5th Asian Mathematical Conference, June 22 - 26,2009, PWTC, Kuala 

Lumpur, Malaysia. 

M.H.Hooshmand and H. Kamarul Haili, f-Multiplication of binary operations and 

decompositional groups, 20th Seminar on algebra, 22-23 Apr. 2009, Tarbiat Moallern 

University, Karaj, Iran. 

M.H.Hooshmand and H. Kamarul Haili, Generalization of certain properties of uni­

form distribution of real sequences, International Conference on Mathematics and 

Natural Sciences 2008, October 28 - 30, 2008, ITB, Bandung, Indonesia. 

M.H.Hooshmand and H. Kamarul Haili, b-Addition of real numbers and b-bounded 

groups, The Third IMT-GT Conference on Mathematics, Statistics and Their Appli­

cations, 5-6 December 2007 , USM, Penang, Malaysia. 

xii 



xiii 

M.H.Hooshmand and H. Kamarul Haili, Decomposer functions on groups, The 19th 

Seminar of algebra, 9-lO Mar. 2007, Semnan University, Semnan, Iran. 



BAHAGIAN-B NOMBOR NYATA DAN PENGITLAKANNYA 

Abstrak 

Tiga aspek iaitu peringkat permulaan, analisis dan kaedah algebra dikaji dengan 

mempertimbangkan ciri-ciri asas dan utama bagi bahagian-b nombor nyata. 

Bagi aspek pertama, terdapat beberapa subjek dan aplikasi seperti: 

(a) Penjelasan teori nombor bagi bahagian-b dan ciri-ciri asasnya. 

(b) Aplikasi bahagian-b untuk perwakilan unik nombor nyata: terhingga dan tidak 

terhingga, penggunaannya dan algoritma pembahagian itlak; beberapa rumus lang­

sung untuk digit bagi pengembangan unik nombor' nyata tidak terhingga terhadap 

asas integer diperkenalkan serta perwakilan unik nombor nyata terhingga terhadap 

asas sebarang (nombor nyata 0, ±1) dibuktikan. 

(c) Aplikasi bahagian-b untuk menentukan bentuk am subset nyata bagi kala-b dan 

fungsinya. 

Bagi aspek analisis, beberapa rumus asimtot dan untuk hasil tambah separa bahagian­

b serta baki untuk pembahagian itlak nombor nyata positif dipertimbangkan. Konsep 

taburan seragam jujukan nyata modulo-b (untuk sebarang nombor nyata b =1= 0) den­

gan menggunakan fungsi bahagian perpuluhan-b juga akan dijelaskan sebagai aplikasi 

untuk bahagian-b. 

Untuk aspek ketiga, penambahan-b nombor nyata iaitu bahagian perpuluhan-b bagi 

penambahan biasa dan "kumpulan nyata baki-b terkecil" (kumpulan terbatas-b) diperke­

nalkan dan ciri-ciri serta hubungan dengan kumpulan nyata dan kumpulan nisbah 

dikaji. 

Pengitlakan bahagian-b untuk sebarang kumpulan juga merupakan topik lain yang 
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dikaji. MeIaIui cara ini, dapat ditunjukkan bagairnana suatu elernen dalarn kurnpu­

Ian boleh diwakilkan dengan uniknya rnelalui pengulangan dan bahagian-f, seperti 

integer-b dan bahagian perpuluhan-b nornbor nyata. 

Pertirnbangan ini rnemberi suatu algoritrna pernbahagian itlak untuk kurnpulan Abelian 

tanpa elernen berperingkat terhingga. Dalam bahagian ini juga, penguraian dan 

fungsi kalis sekutuan terhadap kurnpulan difokuskan (terrnasuk kumpulan separuh 

sis tern binari) dan juga penyelesaian fungsian persamaan. 



B-PARTS OF REAL NUMBERS AND THEIR GENERALIZATION 

Abstract 

Considering the basic and main properties of the b-parts of real numbers, we have 

studied them in three aspects: elementary, analytic and algebraic methods. 

As the first aspect we have several subjects and their applications such as: 

(a) Number theoretic explanations of b-parts and their elementary properties. 

(b) Application of b-parts for unique finite and infinite representation of real numbers, 

applying them and the generalized division algorithm, we not only introduce some 

direct formulas for digits of the unique infinite expansion of real numbers to the base 

an integer but also prove a (new) unique finite representation of real numbers to the 

base an arbitrary real number (not equal 0, ±1). 

(c) Application of b-parts for determining the general form of b-periodic real subsets 

and functions. 

As for analytic aspect, we consider some asymptotic and direct formulas for the 

partial summation of b-parts and remainders of the generalized divisions of a given 

positive real number. Also we, intend to explain the conception of uniform distribution 

of real sequences modulo b (for an arbitrary real number b =1= 0) by using the b-decimal 

part function, as an application of the b-parts. 

As the third aspect we introduce b-addition of real numbers that is b-decimal part 

of their ordinary addition and "the least real b-residues group" (b-bounded group) 

and study their properties as well as relations to real groups and their quotient groups. 

Generalization of b-parts for arbitrary groups is another topic that we study. In 

this way we show how an element of a group can be uniquely represented by cyclic 

and f-part, like b-integer and b-decimal part ofreal numbers. This consideration will 
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give us the generalized division algorithm for Abelian groups with no element of the 

finite order. In this part of our research we also focus on decomposer and associative 

functions on groups (even on semi-groups and binary systems) and solve the related 

functional equations. 



Chapter 1 

Introduction 

1.1 Introduction 

In the real numbers system, the (integer) radix or base is usually the number of 

unique digits, including zero, that a numerical system uses to represent numbers. 

Representations of real numbers is an important topic in Number Theory and the 

radix representation is its most important branch. A representation can be infinite 

or finite, unique or non-unique, digital or non-digital. For example representation of 

real numbers by some functions (f-representation) or continued fractions are different 

from the radix and b-adic representation and may be not unique or digital. 

For a given base b (that may be integer or non-integer), every representation corre­

sponds to exactly one real number. 

On the other hand the b-parts of real numbers are as a generalization of the integer 

and decimal parts of real numbers. They have many interesting number theoretic 

explanations , algebraic and analytic properties. Also the generalized division algo­

rithm is one of their results that has several important applications especially for 

unique finite representation of real numbers. The b-parts have some applications for 

1 
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infinite and finite radix-representations of real numbers. For instance by using them 

and b-digital sequences, not only the unique infinite b-representation of real numbers, 

based on an arbitrary integer b i= 0, ±1, is proved but also some direct formulas for 

their digits are obtained. 

1.2 Background of study 

As is well-known any real number a > 0 has a series expansion to any integer base 

b > 1. Almost every a > 0 (with respect to the lebesgue measure) has a unique 

b-adic representation (as the most common and famous radix representation of real 

numbers) of the form 

-00 

a = aNaN-l ... alaO . a_la_2a-3 .. 'b = L anbn 

n=N 
an E {O, 1,··· ,b - I}, (1.2.1) 

(see [4] and [5]). Only rational numbers of the form a = ~ where gcd(p, q) = 1, 

q = pr1 
••• p~m and Pi's are the prime divisors of b, have two different expansions 

of the form (1.2.1). One of them being finite while the other expansion ends in an 

infinite string of b - l's. 

Representation of real numbers in non-integer bases has been systemically studied 

since 1957 by Renyi [14] and Parry [15] (1960). By the expansion (to the base b), 

they mean 
00 00 

x = L ~: = L akb- k , ak E {O, 1, ... , [b]}, 
k=l k=l 

(1.2.2) 

where x E [0,1), b> 1 and [b] is the integer part of b. 

In the integer case (b E Z and b > 1) any real number x E [0,1) can be extended 

to the base b, by (1.2.2). However for a given non-integer b > 1 almost every x E 
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[0,1) has infinitely many different series expansion of the form (1.2.2) (see [8]). An 

expansion of the x E [0,1) of (1.2.2) can be obtained by 

ak = [bTbk-1(x)] = [b(b(··· (bx)··· ))), 

where [.) and (.) denote the integer and decimal part of b, respectively and n : [0,1) -t 

[0,1) is defined by n(x) = (bx) and Tt is the k-fold composition of n (k-iteration 

of n). The first of the above equations generates b-ray expansions, dynamically (see 

[10]). 

In the 1990's a group of Hungarian mathematicians led by Paul Erdos studied the 

radix expansion (1.2.2) to the non-integer base b = q E (1,2), where Ck = ak E {O, 1} 

(because [q] = 1, 0 ::; Ck ::; [q] and the representation is digital). They also considered 

the representation 1 = L:~l ckb-k (see [16]). The studies have been followed by 

Glendinning and Sidorov [8] (2001). 

On the other hand b-parts of a, for arbitrary real numbers a and b i= 0, were introduced 

and studied in [21). The b-parts are as a generalization of the integer and decimal 

parts of real numbers and have been used for evaluating some direct formulas for the 

digits an and also a new proof of (1.2.1). Recall that for a real number a the notation 

[a) is the largest integer not exceeding a and (a) = a - [a] is the decimal part of a 

(also it is denoted by {a} and is called fractional part of a). One can see so many 

elementary and analytic number theoretic properties of integer and fractional parts of 

real numbers in [1]. If b is a nonzero constant real number, then for any real number 

a, its b-parts are defined as follows 

Here the notation [alb is called b-integer part of a and (ah b-decimal part of a. Also 
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[alb and (ah are called b-parts of a. 

There are some interesting number theoretic explanations for b-parts that state, if 

b> 0, then (a)b is the remainder of the (generalized) division of a by band [alb is the 

largest element of bZ not exceeding a. Moreover if b is positive integer, then [a1b is 

the same unique integer of the residue class {[a1- b + 1, [a]- b + 2·· . ,[aJ} (mod b) 

divisible by b. 

The various properties of b-parts can be considered from the three aspects: number 

theoretic, analytic and algebraic senses. Also the b-parts functional equations 

f(f(x) + y - f(y)) = f(x) : (b-parts type functional equation), 

f(x + y - f(y)) = f(x) : (strong b-parts type functional equation), 

f(f(x + y) + z) = f(x + f(y + z)) = f(x + y + z) : (strongly associative equation), 

link it to some topics in functional equations. 

One of the most important properties of b-parts functions is that the sum of their 

ranges makes a direct decomposition for the real numbers group. In fact for any real 

number b =F 0 

(1.2.3) 

where ~b = ( )b(~) = b[O, 1) = {bdld E [0, I)}, [ M~) = [R]b = bZ =< b > and 

+ denotes the direct sum. Therefore the range of the b-decimal part function is a 

direct factor of real numbers group that is not a subgroup (and also sub-semigroup), 

and this leads us to more studies and also a generalization of b-parts regarding to the 

direct decomposition (factorization) by subsets. The first study about factorization 

of a group by subsets comes from the paper (24] of Rajos (1942). In order to solve a 
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geometric problem, he introduced the notation of direct product of subsets. He said 

that the group G is the direct product of two its subsets A and B if each element 

of G is uniquely expressible in the form ab, a E A, b E B, and showed that under 

certain circumstances one of the set is a group. The topic has been followed by Stein 

1967, [12], Sands 1991, [11], Szabo 2005, [13J, and other mathematicians (see [6]). 

The uniform distribution of real sequences is another branch of Number Theory that 

has some connections to the b-adic representation of real numbers [3, Chapter 8}. Also 

the b-parts were used for defining continuous uniform distributed real functions mod 

m E Z (m > 1, see [3, p. 316]). The uniform distribution of real sequences mod 1 is 

defined by using their decimal parts, and also uniform distributed integer sequences 

modulo an integer m ;::: 2, was introduced in [18}. Hence it seems that b-decimal part 

function will be useful for interpreting uniform distribution of real sequences mod b. 

1.3 Objectives of study 

The main objectives of the study are listed below: 

1. To prove some asymptotic formulas for b-parts of real numbers. 

2. To introduce a unique finite representation of real numbers to the base an arbitrary 

real number b:/= 0, ±1 (by using the b-parts and the generalized division algorithm) 

and prove a necessary and sufficient condition for the finite b-representation to be 

digital. 

3. To study b-addition of real numbers and b-bounded groups and characterization 

of b-periodic real subsets and functions (by using the b-parts functions). 

4. To generalize the conception b-parts from real numbers group to arbitrary groups. 

5. To solve b-parts functional equations and their generalized forms on arbitrary 
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groups, semigroups and even some binary systems. 

6. To genaralize the topic b-bounded groups and study j-decompositional groups, 

where j is a b-parts type function on a group G. 

1.4 Organization of thesis 

The organization of the thesis is as follows: 

Chapter 2 is about elementary and basic properties of b-parts of real numbers and 

some of their analytic properties. 

Chapter 3 contains a study of infinite and finite unique b-representation of real num­

bers and also uniform distribution of real sequences modulo b. 

In Chapter 4 we first discuss b-addition of real numbers and then study b-bounded 

groups and also b-periodic real subsets. 

Chapter 5 starts with introducing decomposer functions on groups and goes on to 

consider generalization of b-parts for groups. Also the generalized division algorithm 

for some Abelian groups will be studied. 

In chapter 6 b-parls type functional equations and their generalized forms on semi­

groups and binary systems will be studied. 

Chapter 7 contains a generalization of b-bounded groups and a study of j-decompositional 

groups. 



Chapter 2 

b-Parts of Real Numbers and 
Their Analytic Properties 

In this chapter we consider b-parts of real numbers and their number theoretic expla-

nations, then study some ( 

2.1 Introduct 

For any real number 

(a) = a - [aJ (the del 

For all real numberf 

We call the note 

and (ah are cal 

Since (ah = ( 

sometimes Wf 

Now let a, 1 

---'T)erties. 

jon, 

where 
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q , r are integers and ° :::; r < b, so 

(a)b = (bq + r)b = (rh = r. 

It means that (a)b is the same remainder of the division of a by b. It is an important 

fact that leads us to several properties of b-parts. 

2.2 Elementary properties of h-parts of real num­

bers 

This section introduces some basic properties of b-parts which will be used repeatedly. 

Proposition 2.2.1. The following properties hold, for every real number a: 

(I) For every 13 E bZ, we have [a + j3lb = [alb + 13, (a + j3h = (a)b so if m, n are 

integers, then 

(II) (a)b = a {=:? a E b[O, 1) {=:? [alb = 0, 

(III) (a)b = ° {=:? a E bZ {=:? [aJb = a, 

(IV) 

\(ahl < Ibl ~ < _a_ < [alb + b , lal- Ibl < /[albl, 
, sgn(b) - sgn(b) sgn(b) 

where sgn is the signum function. So ifb > 0, then 0:::; (a)b < band [aJb-b < [alb:::; a. 

(V) If b is a positive integer, then 

([a])b = [(a)b] = (ah - (a) = (ah - ((a)b) = [a]- [[a]]b = raj - [alb. (2.2.2) 
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(VI) For every real number b i- 0, the set {(nahln E Z} is finite if and only if a E bIQ 

(i.e. % is rational number). In addition if % is irrational, then the sequence (nah is 

dense in the close interval b[O, 1J (= [0, bJ or [b, OJ). 

Proof. Let 13 = kb where k E Z. Then 

a 13 a a 
[a + f3Jb = b[l; + bJ = b[l; + k] = b[bJ + bk = [alb + 13, 

(a + f3)b = a + f3 - [a + f3lb = a + f3 - [aJb - 13 = (a)b' 

(m(a)b + nC)b = (ma - m[a]b + nch = (ma + nch, 

because m[a]b E bZ. The proof of the other parts of (2.2.1) are similar. 

Now we have 

a a 
(a)b = a {:} a - [aJb = a {:} [bl = 0 {:} 0::; b < 1 {:} a E b[O, 1) 

a a a 
(a)b = 0 {:} a - [alb = 0 {:} l; = [l;J {:} b E Z {:} a E bZ 

To prove (IV), first we have I{ahl = Ibll(%hl < Ibl. So 

Now multiplying the inequality [%l ::; % < [%J + 1 by b, implies [alb ::; a < [alb + b if 

b > 0 and [alb + b < a ::; [alb if b < O. Therefore the proof of (IV) is complete. 

Considering the identities a = [alb + (ah = [[allb + ([a])b + (a) and since b E Z+, 

([a])b E Z, we have 0 ::; ([a])b ::; b - 1 so 0 ::; ([aJh + (a) < b thus ([anb = (a)b - (a) 

and [[a]Jb = [alb. On the other hand 

Therefore we can deduce the identities (2.2.2). 

Now if m and n are two distinct integers, then (nah = (mah if and only if a = 
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[nal~=!:alb (notice that [nah - [ma]b E bZ). Also if no is a fixed integer and a = :: b, 

then (nOa)b = (ma)b = ° and for every integer k we have 

In fact we have {(na)b/n E Z} = {O, (a)b' (2a)b,··· ,((no - l)a)b}. 

Finally the identity (nah = b(n~h and the Kronecker's theorem (see [1]) imply that 

the sequence {(na)b}n~l is dense in the close interval b[O, 1], if ~ is irrational. 0 

Remark 2.2.1. As can be seen from Chapter 4, in fact the set {(na)b/n E Z} 

is a cyclic subgroup of the b-bounded group (lRb' +b) (the least real residues group 

modulo b), where lRb = b[O, 1) and +b is the b-addition (x +b Y = (x + Y)b, 't/x, Y E lR). 

The above property states that a cyclic subgroup of (b[O,I),+b), generated by a, is 

dense in b[O, 1] if and only if ~ is irrational. Also if ~ = ~ is a rational number for 

which no > 0, gcd(mo, no) = 1, then the cyclic group < a > is finite and 

< a >= {O, (a)b' (2ah,··· ,((no - l)a)b}, 

so the order of a is equal to no. 

If a and b are integers, then (a)b is also an integer. Hence this raises the ques­

tion when is (a)b an integer? The answer of this question is important, because first 

we want to know that if a, bE lR and b > 0, when is the remainder of the division of 

a by b an integer (like the quotient of the division) . Secondly we need it (in the next 

chapter) to determine when the finite b-representation of a real number is digital. 

Before stating the related lemma notice that: 
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A necessary condition for (ah to be an integer is that a E< 1, b > (where < 1, b > is 

the real subgroup generated by 1 and b). So if (a h is integer, then the real numbers a, 

band 1 are linearly dependent on Z and Q. The converse is not valid (the conditions 

are not sufficient), because if b = V2 and a = 2V2 + 2, then a E< 1, b > and a, b 

and 1 are linearly dependent, and (a h = 2 - V2. But the necessary and sufficient 

condition for (a)b to be an integer is that a belongs to a subset of < 1, b > as follows: 

{m + kblk E Z, mE Z nlR.b}, 

because in this case 

m m 
(a)b = (m+ kbh = (mh = b(b'h = bb' = m. 

(its converse is clear). Also in general we have the following inferences: 

In the case a and b are irrationals, if the real numbers a, band 1 are linearly inde-

pendent, then (a h is also irrational. 

Lemma 2.2.2. If b =1= 0 is a rational number, then (ah is integer if and only if 

a and b have the reduced rational forms a = ~ and b = X (i.e. (3,).. E Z+ and 

gcd(a, (3) = gcd(')',)..) = 1) such that 

Proof. If b E Q and (a)b E Z, then a E Q, clearly. So there exist integers a, 'Y and 

positive integers (3, ).. for which gcd(a, (3) = gcd(')',)..) = 1 and a = ~, b = X. Now 
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putting 0 = [%] we have (a)b = ex)..;fIi1 thus ,B'\la'\ - ,BO, and so ,BI,.\, ,\I,BO. Therefore 

there exists integer d such that [%] = [~~] = 0 = ~d and this implies ~ - ~ < d :::; ~. 

But since ~ :::; 1, then 
a,B a a a 
- - - < d = [-] = - - (-). 
,'\ '" 

So (~h < ~ and 

( ) 
_ a'\ - ,BO, _ a - d, _ (a)")' 

a b - ,B'\ - ,B - 73' 
therefore ,BI gcd('\, (a)")'). 

Conversely supPQse that the conditions are held. Then ,BI'\ and (~h < ~ imply 

[%] = [~~] = ~[~] (considering the next note) and so (a)b = ~-~~[~] = (ex)l E Z. 0 

Note: For every real numbers x and K =1= ° we have 

1 
[KX] = K[X] ¢:> (KX) = K(X) ¢:> (x) = (x)J. =? (x) < I-I, 

I< K 

and the converse of the last conclusion is valid if K = k is a natural number (x E 

[0, i) + Z ¢:> (x) < i ¢:> (x) = (x)t)· So we conclude that the condition (~h < ~ in 

the above theorem can be replaced by [~~] = ~[~]. 

Corollary 2.2.3. Let a, b be reduced rational numbers a = ~ and b = X. 
(i) A necessary condition on a and b for (ah to be an integer is 

A(~h < ,B :::; minp, l(a)")'I}· , 
Also (in that case) if,B t ,\ or,B t (a)")' or ,B ~ ITI or,B :::; A(~h, then (ah is a 

non-integer rational number. 

(ii) If b > 0, then the b-bounded remainder of the (generalized) division of a by 

b is an integer if and only if ,BI gcd('\, the remainder of the division of a by, ) and 
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(~h < ~ (notice that the identity ~ = p~ implies there exists another remainder 

for the division a by b for which is f3,-bounded and can be gotten from the ordinary 

division algorithm). 

2.3 Number theoretic explanations of b-parts 

For every positive integer b and real number a, [alb is the same unique integer of the 

residue class {[a]- b + 1,··· ,[aJ} (mod b) that is divisible by b (because bl[a]b and 

[a]- b + 1 ::; [alb ::; raJ). Also, for the general explanation of [alb, if b > 0, then [alb is 

the largest element of bZ not exceeding a and if b < 0, then [alb is the least element 

of bZ not less than a. 

Now let a , b are positive integers. By the division algorithm we have a = bq + r 

where q , r are integers and 0 ::; r < b, so 

(ah = (bq + rh = (rh = r. 

It means that (a)b is the same remainder of the division of a by b. This is an im­

portant fact that leads us to the generalized division algorithm (for real numbers) 

and algebraic properties of b-parts. Now we first state and give another proof for 

the generalized division algorithm, and then using it we can introduce the number 

theoretic explanation of b-decimal part in the general case. 

Theorem 2.3.1. Suppose b i= 0 a fixed real number. 

(aJ (The unique representation of real numbers by b-parts) For every real number a 

there exist unique numbers al and a2 such that 

a = al + a2 , al E bZ , a2 E b[O, 1). 
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(b) (The generalized division algorithm) For every real number a, there exist a unique 

integer q and a unique non negative real number r such that 

a = bq + r , 0::; r < Ibl. 

(q and r are called integer quotient and b-bounded remainder of the division of a by 

b, respectively.) 

Proof. i) Clearly a = [alb + (a)b. Now if a = al + a2 with the asserted conditions 

then, (a)b = (al + a2h = (a2)b = a2 so al = [alb' 

ii) Let b > ° and put S = {a - bqlq E Z,a - bq ~ O}. Clearly S #- 0 and is 

bounded below, now put r = inf S. If q* is an integer for which % - 1 < q* ::; %, 

then a - bq* E S n [0, b). Moreover if a - bql and a - bq2 are elements of S n [0, b), 

then -b < b(ql - q2) < b so ql = q2 and rl = a - bql = a - bq2 = r2. Therefore 

S n [0, b) = {r} and the proof, for b > 0, is complete. 

Now if b < 0, then there exist q' E IE and ° ::; r < -b = Ibl such that a = (-b)q' + r. 

Putting q = -q', we have a = bq + r and the conditions hold. 0 

Applying the above theorem we can here state the general number theoretic ex­

planation of (a)b: 

If b > 0, then (a)b is the same b-bounded remainder of the (generalized) division of a 

by b, and if b < 0, then (a)b is the inverse of the remainder of the division of -a by 

-b (because (a)b = -( -a)-b). 

Therefore a == c (mod b) if and only if (a)b = (C)b. 
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2.4 Some analytic properties ofb-parts and asymp­

totic formulas 

In this section we consider b-parts functions and give some asymptotic formulas for 

summation and mean values of various-decimal part functions. 

Recall that for every positive integer n, d(n) and u(n) denote the number and sum 

of the all divisors of n respectively. The arithmetical function A is called Mangoldt's 

function and defineq by 

A(n) = {loOgp if n = pm for some prime p and m ~ 1 

otherwise 

If f is an arithmetical function and x > 0, then the partial summation of f is defined 

by 

LJ(k) = wk=1 -
{

,,[xl f(k) x > 1 

k~x 0 0 < x < 1 

Also j(x) = 1 2:k<x f(k) is the mean value function of f. x _ 

The function ( given by 

((8) = {2::=1 ~s 
r (" 1 x1

-.) lllx->oo wn~x n S - I-a 

8>1 

0<8<1 

denotes the Riemann zeta function. 

If g(X) > 0 for all x ~ a, we write f(x) = O(g(x)) to mean that there exists a 

constant M > 0 such that If(x)1 ~ Mg(x) for all x ~ a. Also an equation of the 

form f(x) = h(x) + O(g(x)) means that f(x) - h(x) = O(g(x)). We say that f(x) is 

asymptotic to g(x) as x ~ 00 and write f(x) '" g(x) as x ~ 00 if limx-too ~ = 1. 
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Now we want to study I:n~x(X)n' Note that if x = m is a positive integer, then 

this is the sum of remainders of divisions of m by positive integers less than or equal 

to m. The following statement is the well known formula in analytic number theory 

(Theorem 3.11 in [1]). 

Theorem. If F(x) = I:n~x f(n) we have 

(2.4.1) 

Putting f = LJR (the identity function) in the above equation we get 

(2.4.2) 

On the other hand 

so 

(2.4.3) 

This formula connects the partial summation to partial summation of (J'. For more 

explanation we first introduce the b-parts and various-decimal parts functions. 

Definition 2.4.1. Fix real numbers a and b =1= O. By the notations (-h and (a)_ 
[[-]b and [a]_] we mean b-decimal part and various-decimal part-a [b-integer part and 
various-integer part-a] functions, respectively and defined by 

(-h(x) = (X)b , (a)_(x) = (a)x [[-Mx) = [X]b , [a]_{x) = [a]x]. 

We call both {-)b and [-]b, b-parts functions and often these notations are replaced 
by ( )b and [lb, Also the functions (a)_ and [a]_ are called various-parts functions 
(of a). 
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The domains of ~parts functions are JR, but the various-parts functions cannot be 

defined at zero by the equations. But considering limx ..... o(a)x = 0 and limx-.o[a]x = a, 

we can extend their definitions to all real numbers. So 

{
falx 

, [al-(x) = a 
X=f=O 

x=O 

Hence the various-parts functions are continuous at zero. 

It is easy to see that the following properties hold: 

(A) For every a E JR and b E JR \ {O} we have (a)_ + [aJ- = a, ( h + [ ]b = [,R 

(the identity function on JR). The ~parts functions satisfy the following equations 

f(f(x) + y - f(y)) = f(x) : ~parts type functional equation 

and ( )b also satisfies the equations 

f(x + y - f(y)) = f(x) : strong ~parts type functional equation. 

f(f(x + y) + z) = f(x + f(y + z)) = f(x + y + z) : strongly associative equation. 

(B) The ~decimal part function is bounded (I( )bl < Ib/), ~periodic, idempotent and 

we have ( )bO[ ]b = [ JbO( h = O. This functions are totaly disconnected at every 

points of bZ =< b >. But the set of all disconnected points of (a)_ and [al- is 

Zero((a)_) = {±a, ±~" .. }, where Zero((a)_) is the set of all zeros of (a)_. The 

main properties of various-parts functions of a occurs on the open interval (-Ial, lal). 



If a> 0, then 

a+x 

a+2x 

a+nx 

a-nx 

a-x 

a 

x:S: -a 

-a < x < -!! - 2 

__ a_ < X <_!! 
n-l - n 

x=o 

_a_<a<!! 
n+l - n 

a<x 

Also if a, b > 0, then we have the following limit properties: 

lim (xh = 0, lim (X)b = b, lim (a) x = -00;, lim (a)x = a, 
x-+o+ x--+o- x ...... -oo x ...... +oo 

also the limits of (X)b at ±oo do not exist. 
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(C) If b > 0, then the function ( )b corresponds every x to the remainder of its 

division by b. For the three other functions there are similar explanations, consider-

ing the generalized division algorithm. 

If a is an integer, then Zero((a)_) n Z = D(a) (i.e. the set of all divisors of a). 

Now we come back to the equation (2.4.3). It implies that 

2:)(a)- + cr)(n) = 2:)a)n + I: cr(n) = ala], 
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so the mean value function of (a) _ + a at a is equal to the integer part of a. 

Now we are ready to introduce the asymptotic formulas for partial sums and mean 

values of various-parts functions, and also determine their average orders. 

Theorem 2.4.1. If x ~ 1, then 
(a) 

1l'2 

I)X]n = La(n) = 12x2 + O(xlog(x)), 
nSx nSx 

1l'2 

L(X)n = x[x] - 12x2 + O(x log(x)). 
nSx 

(b) If x is fixed and f(t) = (x)tJ for every t > 0, then (J(t) = t '2::n<t(x)n and) we 
- 2 -

have f(x) = [x]- ~2X + O(log(x)) and so 

_ 1l'2 

f(x) '" [x]- 12x as x -+ 00. 

(e) If x = N is a fixed positive integer, then the average order of (N)n (iJ 'En<N(N)n) 
is 12;:;7r2 N ~ 0.1775 N. -
(d) 

(e) 

L A(n) (x)n = x + O(x + log(x)). 
n 

nSx 

where the sum is extended over all primes. 

Proof. Considering (2.4.2), (2.4.3) and the following well known asymptotic formulas 
for the partial sum of a (see Theorem 3.4 in [1]), we have 

L a(n) = ~(2)X2 + O(x log(x)), 
nSx 

and since (2) = 7r: we get (a). The part (b) is concluded from (a), considering 

limx-too [~~~~~x = 0, and (b) implies (c) directly. Now applying the following asymp­

totic formula of Theorem 3.16 in [1]: 

L[::]logp = xlogx + O(x), 
pSx p 
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we get 
"" logp "" logp ~(x)p- = x(~ - -log(x)) + O(x). 
p~x p p~x p 

On the other hand I:p~x ~ = log (x) + 0(1) (see Theorem 4.10 in [1]). These 
equations imply (e). The following equations (see [1]) 

LA~n) = log (x) +0(1) , LA(n)[;J=xlog(x)+O(x), 
n~x n~x 

imply (d) similar to (e). o 



Chapter 3 

Finite and Infinite 
b-Representation of Real Numbers 

In this chapter we first consider b-digital sequences. Thereafter by using b-parts and 

b-digital sequences we not only give a new proof for the unique infinite b-adic repre­

sentation of real numbers, based on an arbitrary integer b i= 0, ±1, but also provide 

several direct formulas for their digits. In this way we prove necessary and sufficient 

conditions for a (two sided) sequence to be digital sequence. In continuation we ex­

tend the base b from integers to real numbers and introduce finite b-representation 

of real numbers based on an arbitrary real number b i= 0, ±1, by using b-parts and 

the generalized division algorithm. Finally applying b-parts we describe and consider 

uniform distribution of real sequences modulo an arbitrary fixed real number b i= 0 

and state its relation to the uniform distribution of real sequences modulo 1. 

3.1 Introduction 

In mathematical numeral systems, the (integer) base or radix is usually the number of 

unique digits, including zero, that a numeral system uses to represent numbers. For 

21 
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example, for the decimal system (the most common system in use today) the radix 

is 10, because it uses the 10 digits from 0 through 9. 

A radix-representation in R is started with elementary facts. If b > 1 is a fixed positive 

integer, then for any given positive integer a, there exists a nonnegative integer N 

and N + 1 integers ao, aI, .. , ,aN such that a may be represented uniquely in the 

following form 

(3.1.1) 

In general, for a given positive integer b, called the radix or base, a set D of real 

numbers with the property that every r E R can be represented in the form a = 

,",00 b-i 
L.Ji=-N(a) ai , ai ED, is called a radix representation for R The standard repre-

sentation is to use b = 10 and D = {O, 1,2, ... ,8, 9}. 

The most common radix representation of real numbers is b-adic expansion (see [4]), 

that is, an expansion of the form 

00 

a = [a] + I: ~: = [a].ala2··· an'" 
n=l 

(3.1.2) 

where the" digits" an are integers with 0 ~ an < b for n 2:: 1, and also an < b - 1 for 

infinitely many n. 

But we have several kinds of representation for real numbers. For a given base, 

every representation corresponds to exactly one real number. A representation can 

be infinite or finite, unique or non-unique, digital or non-digital (see [2, 4, 5, 8, 22]). 

For example representation of real numbers by some functions (f-representation) or 

continued fractions are different from the radix representation and may be not unique 

or digital. 

In [21] some applications of b-parts for the infinite radix representation of real numbers 
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(to the base integer b =1= 0, ±l) were studied. 

3.2 b-Digital sequences and their relations to b­
parts 

We call a function a: Z -+ S (where S =1= 0 is an arbitrary set) a "two sided sequence 

II and denote it by {an}:t~. Since infinite radix representation of a real number is in 

fact a two sided sequence of integers with some properties, and considering the fact 

that it is possible that a real number has two different radix representation to the 

base a fixed integer b > 1 (e.g. Ni = 5.1000 ... = 5.0999 ... ), we should choose only 

one of them as the unique representation (like b-adic representation). 

Definition 3.2.1. Let b > 1 be a fixed positive integer. A b-digital sequence (to base 
b) is a two-sided sequence {an} +: of integers which satisfy the following conditions 
i) 0 ::; an < b : 'in E Z, 
ii) there exists an integer N such that an = 0, for all n > N 
iii) for every integer m, there exists an integer n ::; m such that an =1= b - 1. 

In the above definition we will consider N as the largest integer that aN =1= 0, when 

an is not the zero b-digital sequence (we set N = 0, for the zero b-digital sequence ). 

The following theorem not only characterizes the b-digital sequences but also gives us 

a new proof for the b-adic representation of positive real numbers by using b-parts. 

Theorem 3.2.1. (Fundamental theorem of b-digital sequences). Let b > 1 be a pos­
itive integer. A two-sided sequence {an} +~ of integers is a b-digital sequence if and 
only if there exists a nonnegative real number a such that 

Proof. Let {an} N,b be a b-digital sequence. Clearly the series 2:~: anbn is convergent 
(and equal to 2:-;.00 anbn = aNbN + aN_1bN- 1 + ... ). Put a = 2:~: anbn . If m is a 



fixed integer, then 
-00 -00 

b-
m 

'" b
n
-
m 

'" b
n a = L....J an = L....J an+m . 

+00 +00 

There exits an integer k $ -1 such that ak+m $ b - 2 so, 

therefore, 

Thus 

Hence 

-00 -00 

-1 -1 

= 1- bk < 1, 

o -00 

[b-ma] = L an+mbn , (b-ma) = 2.::: an+mbn. 
+00 -1 

o 
[b-ma]b = b[b-m- 1ah = b L an+m+lbn 

+00 

am = [b-ma]- [b-ma]b = (b-ma)b - (b-mah. 

Now considering (2.2.2) and (3.2.1) we get 

an = ([b-na])b = [b-na] - [b-na]b 

= (b-na)b - (b-nah : Vn E Z. 
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(3.2.1) 

(3.2.2) 

Conversely, let a ~ 0 and an = ([b-na])b, for all integer n. Clearly an satisfies the 
conditions (i) and (ii) of Definition 3.2.1. If N I , N2 are integers such that NI ~ N2, 

then 
N2 N2 
L anbn = L {[b-nahbn - [b-n-Iahbn+l} (3.2.3) 

= [b-N2 ahbN2 _ [b-Nl-lahbNl+l. 

N ow if there exists an integer m such that an = b - 1 for all n $ m, then 

-00 -00 

m m 




