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ABSTRACT 

The cure characteristics of accelerated sulphur vulcanization of epoxidized 

natural rubber containing 25 mol % of epoxidation ( ENR 25 ) was studied 

while one grade of unmodified natural rubber - standard Malaysian rubber 

light ( SMR L ) was used as a control. The influences of different accelerator 

types - zinc dimethyldithiocarbamate ( ZDMC ), tetramethylthiuram disulphide 

(TMTD), diphenylguanidine ( DPG ), N-t-butylbenzothiazole-2-sulphenamide 

(TBBS ), and 2-mercaptobenzothiazole ( MBT ) at various temperatures 

were investigated. Three vUlcanization systems - conventional high-sulphur 

vulcanization ( CV ), semi-efficient vulcanization ( semi-EV ) and efficient 

vUlcanization ( EV ) were also investigated. Mooney Shearing Disk 

Viscometer ( MV 2000 ) and Moving Die Rheometer ( MDR 2000 ) were used 

to determine the Mooney scorch time and cure time respectively in the 

temperature range of 100 to 180 DC. The results obtained indicate that 

Mooney scorch time and cure time decreases exponentially with increasing 

temperature for the two type of rubbers studied. At fixed curing temperature, 

ENR 25 shows shorter scorch time and cure time compared to that of SMR L. 

These differences in scorch behaviour and cure time is attributed to the 

activation of the double bond by the adjacent epoxide group in ENR 25. The 

investigation involving different accelerators show that mooney scorch time 

decreases in the order, TBBS > TMTD > DPG > MBT > ZDMC. Studies of 

the effect of varying amounts of MBT at a fixed sulphur concentration show 



that scorch and cure time decrease as the accelerator concentration 

increases. 

From this study it has been fOLJnd that the cure index of SMR L is higher than 

that of ENR 25, especially at lower temperatures of study, i.e., 120 DC and 

below. This is attributed to the activation of double bonds by the adjacent 

epoxide group in the ENR compound. ENR 25 shows higher torque 

maximum than SMR L. This observation can be related to the oxirane group 

which is bulky and this accounts for increased glass transition temperature 

with increase in the level of epoxidation. 

ENR 25 contains epoxide groups that activate the adjacent double bonds, 

thus a faster cure is observed. In all the vulcanization systems, CV shows the 

highest torque maximum followed by semi-EV and than EV. This differences 

are attributed to the amount of active sulphurating agent which increases with 

increasing accelerator concentration. 

ENR 25 shows lower activation energy than SMR L for all the three different 

vulcanization systems and the accelerators studied. This is obviously due to 

the presence of epoxide groups that activate the adjacent double bonds, thus 

lowering the activation energy of vulcanization. However, some differences in 

the magnitude of cure time, cure index, torque maximum and activation 

energy in the temperature and accelerator studies are observed between 

ENR 25 and SMR L. It was also found that the influence of 



accelerator/sulphur ratio becomes less significant as vulcanization 

temperature increases. 

The physical and mechanical properties of SMR Land ENR 25 were also 

studied with three different fillers (i.e., carbon black, silica and calcium 

carbonate ). The semi-efficient vulcanization system ( semi-EV ) was chosen 

rather than other vulcanization systems, because it is suitable for ENR. From 

this study, the physical and mechanical properties of carbon black, silica and 

calcium carbonate-filled ENR 25 shows higher modulus, hardness and 

fatigue life and less tensile strength, elongation at break, tear strength, 

resilience and abrasion loss than SMR L vulcanizates. 

From scanning electron microscopy ( SEM ) of fracture surface of the 

samples subjected to fatigue to failure test ( FTFT ), the process of crack 

propagation is clearly demonstrated. It can be inferred from these 

micrographs that crack initiation and propagation can start from any part of 

the sample provided there is a flaw. 

The ageing properties of filled ENR 25 and SMR L vulcanizates show similar 

trends. After ageing all the vulcanizates showed improvement in modulus, 

resilience, abrasion loss and hardness while tensile strength, elongation at 

break, tear strength and fatigue to failure decreased slightly. From this study, 

it can be said that overall ageing properties of ENR 25 shows similar trend as 

SMR L. 



Tajuk: Ciri-Ciri Pematangan dan Sifat-Sifat untuk 

Getah Asli Terepoksida ( ENR ) 

ABSTRAK 

Sifat-sifat pematangan· bagi pemvulkanan getah asli terpoksida yang 

mengandungi 25 % mol pengepoksidaan ( ENR 25 ) terpecut sulfur telah 

dikaji sementara getah asli ( SMR L ) telah digunakan sebagai kawalan. 

Kesan berbagai pemecut - zink dimetilditiokarbamat ( ZDMC ), 

tetrametiltiuram disulfida (TMTD ), difenilguanidin DPG), N-t­

butilbenzotiazol-2-sulfenamida ( TBBS ) dan 2-merkaptobenzotiazol ( MBT ) 

pada suhu yang berlainan dikaji. Tiga jenis sistem pemvulkanan -

pemvulkanan konvensional bersulfur tinggi (CV ), pemvulkanan semi-efektif ( 

semi-EV) dan pemvulkanan efektif ( EV ) juga telah dikaji. Mooney Shearing 

Disk Rheometer ( MV 2000 ) dan Moving Die Rheometer ( MDR 2000 ) 

masing-masing telah digunakan untuk menentukan masa skorj Mooney dan 

masa pematangan di dalam julat suhu 1 aaoc hingga 18aoc. Keputusan yang 

didapati menunjukkan bahawa masa skorj Mooney dan masa pematangan 

berkurang secara eksponen dengan peningkatan suhu bagi kedua-dua jenis 

getah tersebut. Pada suhu pematangan yang ditetapkan, ENR 25 

menunjukkan masa skorj dan masa pematangan yang lebih pendek 
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berbanding dengan SMR L. Perbeza~n dalam kelakuan skorj dan masa 

pematangan ini wujud disebabkan oleh pengaktifan ikatan dubel oleh 

kumpulan epoksi yang berada bersebelahan dengan ikatan dubel tersebut di 

dalam ENR 25. Kajian ke atas berbagai pemecut menunjukkan bahawa 

masa skorj Mooney berkurang mengikut turutan berikut: TBBS > TMTO > 

OPG > MBT > ZOMC. Kajian ke atas pelbagai amaun MBT pada satu nilai 

kepekatan sulfur yang tetap menunjukkan bahawa masa skorj dan masa 

pematangan berkurang apabila nilai kepekatan pemecut meningkat. 

Oaripada kajian ini, didapati bahawa indeks pematangan bagi SMR L adalah 

lebih tinggi daripada ENR 25, terutamanya pad a suhu yang lebih rendah, 

iaitu 120°C dan ke bawah. Ini adalah disebabkan oleh pengaktifan ikatan 

dubel oleh kumpulan epoksi yang berada bersebelahan dengan ikatan dubel 

tersebut di dalam sebatian ENR 25. ENR 25 menunjukkan niiai tark 

maksimum yang lebih tinggi daripada SMR L. Ini adalah kerana kumpulan 

oksirana merupakan suatu kumpulan yang besar, maka suhu peralihan kaca 

akan meningkat dengan meningkatnya darjah pengepoksidaan. ENR 25 

mengandungi kumpulan epoksida yang boleh mengaktifkan ikatan dubel 

yang bersebelahan dengannya, maka suatu pematangan yang cepat dapat 

diperhatikan. Oi antara semua sistem pemvulkanan, CV menunjukkan tork 

maksimum yang paling tinggi, diikuti oleh semi-EV dan EV. Perbezaan ini 

bergantung kepada jumlah agen sulfur yang aktif yang mana ianya akan 

meningkat dengan meningkatnya kepekatan pemecut. 
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ENR 25 memberikan tenaga pengaktifan yang lebih rendah berbanding 

dengan SMR L bagi ketiga-tiga sistem pemvulkanan dan ke semua pemecut 

yang dikaji. Ini adalah jelas disebabkan oleh kehadiran kumpulan epoksi 

yang bertindak mengaktifkan ikatan dubel yang terdapat bersebelahan 

dengannya, yang mana akan mengurangkan tenaga pengaktifan bagi 

pemvulkanan tersebut. Walau bagaimanapun, beberapa perbezaan di antara 

ENR 25 dan SMR L dapat diperhatikan di dalam magnitud masa 

pematangan, indeks pematangan, tork maksimum dan tenaga pengaktifan 

bagi kajian ke atas suhu dan pemecut. Kesan nisbah pemecutlsulfur juga 

diperhatikan menjadi kurang berkesan apabila suhu pemvulkanan 

ditingkatkan. 

Sifat-sifat fizikal dan mekanikal bagi SMR L dan ENR 25 dengan 

penambahan tiga jenis pengisi yang berlainan (hitam karbon, silika dan 

kalsium karbonat) juga dikaji. Sistem pemvulkanan semi efektif ( semi-EV ) 

telah dipilih di antara sistem-sistem yang lain kerana ianya sesuai untuk 

ENR. Oaripada kajian ini, didapati bahawa sifat-sifat fizikal dan mekanikal 

bagi ENR 25 terisi hitam karbon, silika dan kalsium karbonat telah 

menunjukkan modulus, kekerasan dan hayat fatig yang lebih tinggi dan 

kekuatan tensil, pemanjangan pad a takat putus, kekuatan cabikan, resiliens 

dan kehilangan pelelasan yang lebih rendah berbanding dengan vulkanisat 

SMR L. 



Oaripada kajian Mikroskop Pengskanan Elektron ( SEM ) ke atas permukaan 

putus sampel selepas ujian kegagalan fatig dilakukan ( FTFT ), didapati 

bahawa perembatan retak dapat diperhatikan dengan jelas. Oaripada 

mikrograf-mikrograf ini, dapatlah dikatakan bahawa permulaan dan 

perambatan retak baleh bermula daripada sebarang bahagian daripada 

sampel tersebut. 

Sifat-sifat penuaan bagi ENR 25 dan SMR L telah menunjukkan pala yang 

sama. Selepas penuaan, semua sebatian meminjukkan peningkatan dalam 

modulus, resiliens, kehilangan pelelasan dan kekerasan manakala kekuatan 

tensil, pemanjangan pada takat putus, kekuatan cabikan dan kegagalan fatig 

pula didapati berkurang. Oaripada kajian ini, dapatlah dikatakan bahawa 

secara keseluruhannya sifat-sifat penuaan ENR 25 menunjukkan pala yang 

sama seperti SMR L. 
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CHAPTER ONE 

INTRODUCTION AND LITERATURE REVIEW 

1.1 INTRODUCTION 

Elastomers are sometimes randomly referred to as rubbers. More 

appropriately, a rubber may be a natural material or synthetic polymer. Such 

a large number of rubber-like polymers exist, that the broad term elastomer is 

most fitting and most commonly used to describe them. 

Natural rubber ( NR ) IS generated in the Hevea brasiliensis tree as an 

emulsion of cis-polyisoprene and water, known as latex dl,1ring the 1920s. The 

latex is coagulated and then dried to produce a clear crepe rubber. Natural 

rubber was the only rubber available for more than a century but the growth in 

the demand for tyres has out-stripped the available supply and today NR 

represents less than 33% of the total usage of rubber. World consumption of 

NR is in excess of 4 million tonnes per year with Malaysia as the 3rd largest 

single producer. 

Since World War II, most of the widely used types of synthetic rubber have 

become available in latex form. Styrene-butadiene ( SBR ) copolymer latices, 

with styrene contents in the range 25 - 50 % and total solids contents of 40 -

65 %, are supplied by a number of producers. Chloroprene ( CR ) and nitrile 

(NBR ) rubber latices are available with solids content up to 50 %. These 

have supplemented' and replaced the natural product for a number of 



applications. The CR and NBR have oil and solvent resistance, which is taken 

advantage of in gloves and bonded fabrics designed to withstand dry­

cleaning. The fire -retardant property of CR is also exploited. 

Epoxidized natural rubber ( ENR ) is a chemically modified natural rubber 

(NR) [1 - 5 ] which in addition to retaining some of the advantages of NR 

exhibits characteristics similar to some synthetics [ 4,5 ]. Natural rubber is 

very versatile and the vulcanization type is determined by the intended use. 

But it was soon realized that this is not the case with ENR. ENR cured with 

the conventional vulcanization system ( CV ) was found to exhibit poor ageing 

properties [ 4 - 6]. In CV systems the ratio of sulphur is higher than the 

accelerator leading to the formation of crosslinks which are predominantly 

polysulphidic. Although CV cured vulcanizates show good fatigue properties, 

their ageing characteristics are not as good as efficient vulcanization ( EV ) 

cured vulcanizates. Consequently, the use of semi-efficient ( semi - EV ) 

vulcanization system in which the sulphur to accelerator ratio are about the 

same was found to be more suitable [ 4 - 6 ]. Semi-EV cured compounds 

exhibit properties which are intermediate between CV and EV. Efficient 

vulcanization yields mainly monosulphidic crosslinks as the ratio of 

accelerator is higher than that of sulphur. This reflects the importance of 

sulphur to accelerator ratio in ENR compounding which in effect determines 

the nature of sulphur crosslinks. The recommendations favouring semi - EV 

were based mainly on vulcanizate properties while the vulcanization 

characteristics are still largely unexplored. Some studies have been reported 

on conventional vulcanization systems [7-9]. Most of the studies on ENR 
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concentrated on its physical and mechanical properties [ 2,5,10 - 16 ] or 

miscibility with other polymers [ 17 - 23 ] and fewer studies on the cure 

characteristics have been reported [ 2,8,9,24,25 ]. 

While the few studies conducted on the cure characteristics of ENR are 

mainly on scorch and reversion [ 2,8,9,24,25 ], studies on cure kinetics 

(activation energy), cure rate and different vulcanization systems are rather 

limited. In view of the importance of curing characteristics, it is the aim of this 

study to describe further some of the findings in this area of research. 

As this project deals mainly with cure kinetics, cure rate, optimum cure, and 

properties, the main cure characteristics and properties of rubber compounds 

are briefly discussed next. 

1. 1. 1 CURE CHARACTERISTICS 

Curing or vulcanizing is a process whereby a rubber compound is converted 

to a strong elastic material. Curing process can be described by a Rheometer 

curve ( Fig. 1.1 ). The curve has three stages: ( i ) Induction and Scorch, ( ii ) 

Curing and ( iii ) Over cure [ 26 ]. The period of time before vulcanization 

starts is referred to as 'scorch time' or scorch delay. Scorch is premature 

vulcaniation in which the rubber compound becomes partly vulcanized before 

the product is in its final form and ready for vulcanization. It reduces the 

plastic properties of the compound so that it can no longer be processed. 
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Torquo t 90 = Cure time 
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CUring Overcuro 

Vulcanlzallon lime 

Figure 1. 1 Steps in the vulcanization process [ 75 ]. 

Scorching is the result of both the temperature reached during processing 

and the amount of time the compound is exposed to elevated temperature. 

The rate of cure is the rate at which crosslinking and the development of the 

stiffness (modulus) of the compound occur after the scorch point. As the 

compound is heated past the scorch point, the properties of the compound 

change from a soft plastic to a tough elastic material required for use. During 

the curing step crosslinks are introduced, which connect the long polymer 

chains of the rubber together. As more crosslinks are introduced, the polymer 

chains become more firmly connected and the stiffness or modulus of the 

compound increases. The rate of cure is an important vulcanization 
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parameter which determines the time the compound must be cured, i. e., the 

cure time. 'Cure time' is the time required during the vulcanization step for the 

compounded rubber to reach the desired state of cure. 

, Overcure ' is a cure which is longer than optimum. The state of cure is a 

term used to indicate the development of a property of the rubber as cure 

progresses. As tile crosslinking or vulcanization proceeds, the modulus of the 

compound increases to various state of cure . Overcure may be of three 

types. In one type known as marching cure, the rubber continues to harden, 

the modulus rises, and tensile strength and elongation fall. In another type, 

reversion of overcure, the modulus and tensile strength decreases. The third 

is plateau cure in which, the properties remain constant. 

Studies on the cure characteristics of natural rubber ( NR ) are well 

documented [ 27 - 50 ] whereas those based on epoxidized natural rubber 

(ENR ) are rather limited [ 2,8 - 12, 24,25 ]. Earlier workers [ 27 - 29 ] had 

determined that sulphenamide accelerators reacted with sulphur to form 

various polythiobenzothiazole intermediates during the cure delay period of 

vulcanization, and that these species reached a maximum concentration just 

prior to crosslinking. Coincident with the onset of crosslinking is the depletion 

of the original accelerator. Campbell and Wise [ 27,28 ] proposed that the 

cure delay period IS due to the preferential reaction of the 

polythiobenzothiazole with the original accelerator rather than with the rubber 

to form crosslinks. Coran [29,30] in his kinetic model based on the same 

analytical results, suggests that the accelerator and / or its immediate reaction 
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products with sulphur act to inhibit th~ formation of crosslinks. This inhibition 

was thought to result from a quenching of an activated form of the polymeric 

polysulphide, which would otherwi·se go on to form crosslinks. In any event, 

the length of the delay period should largely depend on the time required for 

the disappearance of the accelerator. Duchacek [ 31 ] suggested the 

probability that the inhibition effect of 2 - mercaptobenzothiazole ( MBT ) is 

attributable to the formation of a complex with zinc dimethyldithiocarbamate 

(ZDMe ) which decreases the reaction rate in the initial steps of the sulphur -

free thiuram vulcanization and thus causes scorch delay. 

The vulcanization process produces several types of crosslink structures 

including mono-, di-, and polysulphidic linkages [ 32 - 34 ]. It is well 

established that the structure varies with the time and temperature of 

vulcanization. It is anticipated that a knowledge of the mechanism of 

accelerated sulphur curing could lead to a prediction of the type of crosslinks 

which will predominate under different vulcanization conditions. The rate and 

state of cure have been reported by Juve [ 35 ]. Thompson and Watts [ 36 ] 

showed that cure time depends on the shape and size of molding, the 

molding temperature and the accelerator system. Loo [ 37 ] showed that 

decrease in crosslink density at high curing temperature was mostly due to 

decrease in polysulphidic crosslinks. The formation of intramolecular sulphidic 

group and zinc sulphide increases with temperature. A dynamic shear 

modulus was measured during the progress of vulcanization and reversion 

thus obtaining a complete curve of modulus vs. cure time on a single 

specimen by Peter and Heidmann [38 ] and by Payre [39]. Davies [ 40 ] 
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discussed the influence of cure time and temperature on the density and 

distribution of crosslinks in natural rubber vulcanizates. Generally, during 

vulcanization the crosslinks formed initially are mainly unstable polysulphidic 

ones. These are transformed to di-, and monosulphidic crosslinks as cure 

progresses through optimum and into overcure. Reversion occurs when 

continued curing causes the polymers to exhibit a loss of physical and 

mechanical properties such as tensile strength, stiffness, resilience, and wear 

resistance. Generally, it is accepted that reversion occurs because 

desulphuration takes place too slowly during vulcanization [ 41- 43 ]. 

Reversion may also be caused by thermal depolymerization of the polymer 

chain [ 44 ]. Efficient vulcanization systems have been found to have better 

reversion resistance than conventional curing system [45]. Much work has 

been done on the reversion process, most of which has been concerned with 

the changes in the chemical structure of vulcanization [ 46,47 ]. Chen et al. 

[47,48 ] examined the effect of some compounding variables on the reversion 

process but they need exceptionally large dosages of sulphur , which in 

practice are quite different from those normally used in the conventional 

systems for NR. Bristow [ 49 ] examined the effect of zinc soap and stearic 

acids on the reversion of thiazole and sulphenamide accelerated 

vulcanization of natural rubber. Kok [ 50 ] showed that fast accelerators give 

higher reversion compared to that of slower accelerators. His work suggests 

that reversion appears to be typical only for the polyisoprene structure. 



1. 1. 2. VULCANIZATE PROPERTIES 

The effect of vulcanization system on the properties of natural rubber are 

well-established, but comparatively little data have been presented on ENR. 

The epoxidation of natural rubber and other unsaturated polymers has been 

reported [ 51 - 57 ]. However, there is little data available on the properties of 

the products and in some cases the results are conflicting. It has been 

claimed that epoxidation of unsaturated polymers increases wear and 

improves solvent resistance, tensile strength and other mechanical properties 

[ 57 ], whereas other workers have reported a reduction in strength properties 

[ 58,59 ]. Baker et al. [ 60 ] found that compounding with CV systems as 

normally used with NR are not suitable for ENR. The reason for this is the 

reaction of the epoxidegroups with the sulphur acids produced by the ageing 

of the polysulphide crosslinks. This ring opens the epoxide groups, leading to 

crosslink formation and subsequent increase in hardness and modulus. This 

in turn reduces properties such as tensile strength, tear strength and fatigue. 

Silica's and silicates of varying forms and particle sizes have been widely 

used as reinforcing fillers in rubbers. Their properties are usually inferior to 

those of carbon blacks. The high viscosity of a silica-filled rubber makes it 

more difficult to process [ 61,62 ]. Mechanical and dynamic properties of 

silica-filled vulcanizates, with the addition of silane based coupling agents is 

well known and has been studied by many workers such as Wagner [ 54,63 ], 

Dannenberg [ 64 ], Cameron et al. [ 65 ] Fetterman [ 66 ], and Nasir et al. 

[13,67 ]. 
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Baker et al. [ 2 ] reported that, in the CV system, ENH shows poorer 

performance characteristics, when compared with unmodified NR. Whereas, 

Gelling [ 10 ] reported that ENR shc1ws better performance with a semi-EV 

system. Nasir et al. [ 13 ] found that semi-EV system was better than either 

CV or EV systems when ENR is mixed with silica, with or without the addition 

of a silane coupling agent. High tensile properties comparable to N330 carbon 

black reinforcement could be obtained [13]. Unlike NR, ENR has the ability 

to be reinforced with silica without silane coupling agent [ 68 ]. The addition of 

a silane coupling agent into silica-filled ENR would further enhance the 

physical properties. Chemical crosslinking or chemical interaction between 

the epoxy groups and silanol groups has been cited to be the reason for the 

unusual reinforcement [ 69 ]. Recently studies on ( RHA ) rice husk ashes­

filled ENR vulcanizates have been reported by some workers such as Fuad et 

al. [ 70,71], Ishak et al. [ 72,73 ] and Hanafi et.al. [ 74 ]. Hanafi et al. also 

found that semi-EV system was better than CV or EV systems when ENR is 

reinforced with HHA, with or without the addition of silane coupling agent. 

While the few studies conducted so far on the cure characteristics of 

accelerated - sulphur vulcanization of ENR are limited to scorch and 

reversion behaviour [ 2,8,9,24,25 ], studies on the cure kinetics and 

characteristics are yet to be reported in literature. Cure characteristics 

depends on the type of elastomers, accelerator system, temperature, cure 

kinetics, cure rate and also filler types. In view of the importance of curing 

characteristics and its effect on the properties of epoxidized natural rubber 



vulcanizates, it is the aim of this study to describe further some of the findings 

in this area of research. 

1.2. LITERATURE REVIEW 

1.2.1. HISTORY OF SULPHUR VULCANIZATION 

INTRODUCTION 

Tires and mechanical goods which are very useful rubber articles cannot be 

made without vUlcanization. Unvulcanized rubber is generally not very strong. 

does not maintain its shape after a large deformation and can be very sticky. 

Charles Goodyear has been accredited with the first commercially recognized 

method of vulcanization [ 75 ]. In 1841 his process of heating natural rubber 

Witll sulphur was first successfully used. In addition to natural rubber. many 

synthetic rubbers have been introduced. Also, in addition to sulphur, many 

other substances have been introduced as components of curing 

(vulcanization) systems. Emphasis is p!aced on the vulcanization of general 

purpose "high-diene" rubbers ( e.g., natural rubber (NR), styrene-butadiene 

rubber (SBR) and butadiene rubber (BR)) by sulphur in the presence of 

organic accelerators. The accelerated-sulphur vulcanization of these rubbers 

along with the vulcanization of other rubbers which are vulcanized by closely 

related technology ( e.g., ethylene-propylene-diene monomer rubber (EPDM), 

butyl rubber (II R), halobutyl rubber and nitrile rubber (NBR) comprise more 

than 90% of all vulcanization [ 75 ]. 
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DEFINITION OF VULCANIZATION 

Vulcanization is a chemical process by which plastic rubber is converted into 

the elastic rubber or hard rubber state. During vulcanization: 

( I). the long chains of polymer molecules become crosslinked by 

reactions with the vulcanization agents to form three dimensional 

structures. This transforms the soft plastic-like material into a strong 

elastic product. 

( II ). the rubber looses its tackiness and becomes insoluble in 

solvents and it is more resistant to deterioration caused by heat, light 

and ageing process [ 76 ]. 

Un vulcanized 

~r 
(

RUbber Molecules .-r - . --...... -- ~ 
~ 

Figure 1. 2: Crosslinked molecular network formation [ 75 ]. 
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The vUlcanization of ENR by sulphur alone is significantly faster than that of 

NR and a much higher degree of crosslinking is achieved. Experiments with 

model compounds [ 11 ] have shown that the olefinic groups and not the 

epoxides are the site of crosslin king and that the presence of epoxide groups 

has little effect on the distribution of mono- and di-sulphides. Sulphur reacts 

with olefins by a chain mechanism and the slower rate of reaction of 

compounds such as A has been stated [ 77 ] to be due to cyclization of a 

chain propagating species. In randomly epoxidized ENR-50 the majority of 

olefin groups are adjacent to an epoxide and thus the cyclization is blocked. 

This may not be the only cause as compounds 8 and C exhibited a greater 

extent of reaction than a mixture of 0 and E, indicating an additional 

activation when epoxide and olefin moieties are in the same molecule. 

A 8 C 

o E 

In the presence of sulphenamide accelerators the model olefin 0, alone and 

in the presence of epoxide E, yields qualitatively similar sulphides, but the 

epoxide affected the ,relative amounts of the sulphides [ 11 ]. 
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1. 2. 2. COMPONENTS OF A RUBBER COMPOUND 

Compounding ingredients can be ~Iassified into ten major categories. 

a. Elastomers (rubbers) 

b. Vulcanizing agents 

c. Accelerators 

d. Activators and retarders 

e. Antidegradants (antioxidants, antiozonats, protective waxes) 

f. Processing aids (peptizers, lubricants, release agents) 

g. Fillers (carbon blacks, non-black materials) 

h. Plasticizers, softeners, and tackifiers 

I. Colour pigments 

j. Special purpose materials (blowing agents, deodorants, etc. ) 

1. 2. 2. a. ELASTOMERS (RUBBERS) 

The most important and the first step in compounding is the selection of a 

base elastomer or elastomers. The common basic characteristics of all 

elastomers are, their elasticity, flexibility, toughness, and relative 

impermeability to both water and air. Beyond these common characteristics, 

each elastomer has its own unique properties [ 78 ]. 

1. 2. 2. b. VULCANIZING AGENTS 

Vulcanizing agents are the second most important chemicals in 

compounding. They are used to cause chemical reactions, resulting in 

crosslinking of elastomer molecules which transforms a soft, tacky 
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thermoplastic to a strong temperature-stable thermoset. Sulphur is by far the 

most widely used vulcanizing agent. Sulphur-bearing materials such as 

thiuram disulphides (TMTD ) and dithiodimorpholine ( DTDM ) are sometimes 

used as complete or partial replacements of elemental sulphur in a low 

sulphur or sulphur-less cure system to improve the heat resistance of a 

compound [ 78 ]. 

1. 2. 2. c. ACCELERATORS 

Accelerators are the second most important chemicals in compounding. They 

are used to reduce the vulcanization time, or cure time, by increasing the 

speed of vulcanization. Most accelerators in used today are organic 

substances containing both nitrogen and sulphur. The thiazoles are by far the 

most widely used accelerators [ 79 ]. Accelerator has a profound influence on 

the nature of crosslinking, which largely determines the physical properties 

(tensile strength, modulus, resilience, etc. ) the resistance to ageing, and the 

processing characteristics ( scorchiness and cure rate) [ 78 ]. 

1.2.2. d. ACTIVATORS AND RETARDERS 

Activators are used to activate the accelerator and improve its effectiveness. 

The most widely used activators are zinc oxide ( ZnO ), and steariG acid (or 

fatty acid). A cure system consisting of sulphur and organic accelerators 

usually requires the presence of adequate zinc oxide and stearic acid to attain 

good crosslinking efficiency [ 80 ]. 
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The retarders are used to reduce the scorchiness of a compound. The most 

widely used true retarder is cyclohexyl-N-thiophthalimide. It makes a 

sulphenamide or thiazole accelerated compound much less scorchy and 

gives it more processing safety without affecting its cure rate or vulcanization 

properties. Sodium acetate, phthalic anhydride, and salicylic acid, are not true 

retarders because they reduce both scorchiness and cure rate [ 78 ]. 

1. 2. 2. e. ANTIDEGRADANTS 

Antidegradants are used to retard the deterioration of rubber compounds 

initiated by oxygen, ozone, heat, light, metal catalysis, and mechanical 

flexing. An antidegradant is needed to impart good ageing properties to a 

compound and extend its useful life. Its relative effectiveness is in various 

areas of protection. Waxes are often used with antidegradants to provide a 

protective coating which shields the rubber vulcanizate from the effect of 

ozone [ 78 ]. 

1. 2. 2. f. PROCESSING AIDS 

Processing aids are used to facilitate processing operations, such as mixing, 

calendering, extrusion, and moulding. These include peptising agents, 

softeners (oil and waxes) and plasticizers. Peptizers help greatly in the 

breakdown of natural rubber during mastication [ 76,81 ]. They act as 

catalysts for oxidative breakdown during milling and internal mixer 

mastication. SBR, CR or EPDM do not generally require peptizers [ 82 ]. 
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1. 2. 2. g. FILLERS 

Fillers are the third most important materials in compounding. These are used 

to reinforce physical properties, to i'mpart certain processing characteristics or 

to reduce cost. A reinforcing filler enhances hardness, tensile strength, 

modulus, tear strength and abrasion resistance of a compound. It is usually 

either a carbon black or a fine-particle mineral pigment [ 78 ]. A reinforcing 

filler has a profound influence on a processing characteristics and vulcanizate 

properties. The properties and processibility of a carbon black reinforced 

compound is greatly affected by the particle size and structure of the type of 

black [ 83 ]. The degree of reinforcement increases with a decrease in particle· 

size. The finer fillers require more energy for their dispersion into the 

elastomer and are therefore more difficult to process. The particle size of a 

filler plays a major role in the tensile strength of rubber vulcanizates. 

Vulcanizates containing sm·all particle size blacks produce the high tensile 

strength at optimum loading. Carbon blacks activate cure [ 84 ]. 

Mooney viscosity is dependent on carbon black structure and loading. High 

structure blacks contribute the highes.t Mooney viscosity with particle size 

having a lesser effect. Mooney viscosity rises rapidly with increase in loading 

except for thermal blacks where loading does not seem to have much effect 

[78]. Mooney scorch also varies with particle size. The largest particle blacks 

give the greatest scorch resistance, while high structure, small particle-size 

blacks usually reduce scorch resistance. 
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Non-black reinforcement is obtained through the use of pure silica type 

materials which are capable of very good physical properties. These are 

specially used with synthetic rubbers [ 85 ]. Extending with non-black 

materials such as china clay, talc and / or whiting help to keep the cost down 

as well as "smooth" out the compound to help its processability, especially in 

extending calendering operations. The choice of fillers should also be based 

on suitability in the service environment of the product e.g. if acid resistance 

is required, whiting calcium carbonate is unsuitable [ 83 ]. 

The effect of a particulate filler on a rubber depends on the following factors: 

1. The surface area of the filler particles. This is directly related to the particle 

size; the lower the particle size, the higher the surface area. 

2. The chemical nature of the particle surface. It can vary among different 

fillers. 

3. Geometrical characteristics. Under an electron microscope, the primary 

particles of carbon black are fused into larger aggregates. The size, shape 

and number of voids in this ' aggregate ' determine the ' structure' of the 

carbon black, and this structure can influence the physical and processing 

properties obtained. 

Porosity of the filler particle is a factor that influences the properties obtained. 

Silicas are generally more porous than carbon black, and thus silica fillers 

give higher viscosity compounds at equal volume loading. 
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1.2.2. h. PLASTICIZERS, SOFTENERS AND TACKIFIERS 

Plasticizers, softeners and tackifiers are used to either aid mixing, modify 

viscosity, produce tack, provide flexibility at low temperatures, or replace a 

portion of the base polymer without substantial loss in physical properties 

[76]. The important criteria of plasticizers are elastomer compatibility, 

efficiency, stain resistance, and cost. Insoluble plasticizers will bleed out and 

cause poor physical properties and surface stickiness. Aromatic type oil is not 

compatible with natural rubber, Isoprene, Butyl rubber and EPDM. Paraffinic 

type oil is not compatible with SBR, Butadiene, Nitrile, and Neoprene rubbers 

[ 82 ]. 

The most effective plasticizers are also good solvents for the elastomers, they 

impart softness to the compound but do not reduce its: "nerve". They also give 

good resilience and reduce the hardness of the vulcanizates. Low boiling 

plasticizers would lose their effectiveness during processing and thus lose 

their effectiveness. The viscosity of the plasticizer influences the hardness of 

the vulcanizates [ 78 ]. 

1. 2. 2. i. COLOUR PIGMENTS 

Colour pigments are used to impart specific colouring to a non-black rubber 

compound. Colour pigments are divided into two groups, inorganic and 

organic [ 83 ]. Most widely used inorganic pigments are oxides of iron, 

chromium, and titanium and the sulphides of cadmium, antimony, and 

mercuric, nickel titanate, and ultramarine blue. Organic dyes are much more 

expensive than inorganic pigments. Their advantages are high efficiency, 
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brilliancy in colour and much lower specific gravity. Organic dyes can provide 

many delicate shades which are not possible to obtain with inorganic 

pigments. Most organic dyes are hot stable to steam, light, and acid or alkali 

solution. Some of them have a tendency to migrate to the surface. A 

combination of inorganic and organic pigments usually produce a better 

overall result in terms of brilliancy and stability [ 78 ]. 

1. 2. 2. j. SPECIAL PURPOSE MATERIALS 

Special purpose materials are used for specific purposes which are not 

normally required in the majority of rubber compounds. Blowing agents, 

deodorants, adhesion promoters, flame retardants,. fungicide, and UV light 

absorbers are some of the ingredients which can be added as required [ 78 ]. 

Since this research is focused on the type of rubber i.e. ENR , 

sulphur/accelerator ratio, and the effect of various accelerators among others, 

these are discussed in detail, further in the text. 

1. 2. 3. Epoxidized Natural Rubber (ENR) 

Epoxidized natural rubber (ENR) is a chemically modified form of natural 

rubber (cis-1,4-polyisoprene) in which some of the unsaturation is converted 

into epoxide groups which are randomly distributed along the polymer chain. 

The epoxidization of natural rubber has been investigated since the 1922's 

[86]. Earlier natural rubber latex was reacted with peracids to produce 
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epoxidized natural rubber ( Fig. 1. 3 ), which contains secondary ring-opened 

products that were neither useful nor reproducible [ 4,10,11 ]. 

( Natural Rubber) 

H20 
RCOOH ---------------> 

( Epoxidized NR ) 

Figure 1. 3 Mechanism of epoxidation of NR with a peracid and subsequent 
secondary ring-opening reaction [ 87 ]. 

But the commercial viability and the potential application of epoxidized NR 

were fully realised only in the last decade or so. Gelling [ 87 ] showed that any 

desired degree of clean epoxidation was possible under controlled conditions. 

Under controlled conditions, epoxidized NR (Fig. 1. 4 ) were prepared from 
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Malaysian LA -TZ latex concentrate either by reaction with peroxyethanoic 

acid solution [ 10 1 or by generating peroxymethanoic acid in situ from 

hydrogen peroxide and formic acid'[ 87 ], 

k 1 

HCOOH + HCOOOH + 

HCOOOH 

( Natural Rubber) ( Epoxidized NR ) 

Figure 1. 4 In situ epoxidation of natural rubber employing hydrogen 
peroxide and methanoic acid [ 87 ], 

1H and 13C nuclear magnetic resonance (NMR) spectroscopy shows that 

these materials are free from any other chemical modification, The later 

technique was also employed [ 10] to study the distribution of epoxide groups 

along the NR back bone, . Up to 90 mole % epoxidation is possible by 

changing parameters such as dry rubber content of the latex, hydrogen 

peroxide/acid ratio, reaction temperature and duration. 

Epoxidation is a stereospecific and random reaction, which retains some of 

the typical properties of natural rubber. Controlled epoxidation of NR gives a 

systematic increase in the polarity and glass transition temperature (Tg) of 

ENR produced [ 4,10,87 ]. As a result ENR has increased resistance to 
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hydrocarbon oils and higher hysterises, low air permeability, increased 

damping and better bonding to polar elastomers, and retains a great deal of 

the strain crystallization of natural' rubber and hence has superior tensile and 

fatigue properties [14 ]. 

ENR can be crosslinked by any system used to cure unsaturated polymers 

but a sulphur based semi-efficient vulcanization (Semi-EV) or efficient 

vulcanization ( EV) type formulation is preferred [ 2,4,88 ]. Conventional high­

sulphur vulcanization (CV) systems are not recommended for ENR because 

of their poor ageing characteristics [ 11 ]. ENR has high degree of 

reinforcement with silica fillers in the absence of coupling agents [ 2 ]. High 

tensile properties comparable to carbon black reinforcement could be 

obtained [13 ]. ENR is an elastic and polar material. So it is quite unique and 

a versatile material suitable for various applications especially in the realm of 

thermoplastic elastomers [5,13). 

Many studies on the physi~al and mechanical properties of ENR have been 

reported [ 2,5,8,10,13 -15 ]. Epoxidation is a stereospecific reaction, i.e., cis­

olefin undergoes cis-epoxidation [ 87 ]. An x-ray study [ 14 ] of ENR gum 

vulcanizates has confirmed that ENR undergoes strain-induced crystallization. 

Ageing behaviour [ 11,12,16 ], and blending [ 17 - 19 ], of epoxidized natural 

rubber were also reported. Investigation of other properties for the purpose of 

application favours 50 mole % of epoxidation of natural rubber [ 2,4,10,11,87]. 

Recently stUdies on the scorch [ 9 ] and reversion [ 25 ] behaviour of 

epoxidized NR have been reported. 
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1.2.4. TYPES OF ACCELERATORS AND THEIR APPLICATIONS 

Accelerators can be classified by their chemical type. 

a. Guanidine's. 

b. o ith ioca rbamates. 

c. Thiuramsulphides. 

d. Thiazoles. 

e. Sulphenamides. 

1. 2. 4. a. GUANIDINES 

The guanidines are used as primary accelerators because of their slow 

curing. Diphenylguanidine ( DPG ) and diorthotolylguanidine ( DOTG ) are the 

two main guanidine accelerators [ 79 ]. Their main use is being a secondary 

accelerator in thiazole- or sulphenamide-accelerated natural rubber or SBR 

stocks. Both are white powders, guanidines can stain to some extent so they 

are not used in the best white or light-coloured stocks [ 89 ]. 

1. 2. 4. b. DITHIOCARBAMATES 

Dithiocarbamates are made from the metal and amine salts of dithiocarbamic 

acids. They are called ultra-accelerators because of their quick curing 

characteristics. Very common members of this class are the zinc methyi and 

ethyl dithiocarbamates [ 79 ]. Dithiocarbamates are so powerful that they are 

used alone, and cured in air at room temperature or slightly elevated 

temperatures [ 90 ]. Usually they are paired with thiazole or sulphenamide 

accelerators to adjust the cure rate of a stock. Usually nonstaining, the 
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thiocarbamates are versatile accelerators and are used in butyl rubber ( IIR ) 

and ethylene-propylene-diene monomer ( EPDM ) as well as NR and SBR. 

Table 1.1 Accelerators for Sulphur VUlcanization [ 75 ]. 

Compound Abhreviation 
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2·2'·Dithiohishcnwthiawlc Mf3TS 

BCIIZO//r;O;:O/C511/fCII(II/I;'/"S 

N·Cyciohcxvlhenzothiawk· 2,,,,lk narnitle CBS 

.v ·t· Illllvlhe 111.01 h ia70ic· 2 ,slIl k 11:1 mide TnBS 

2· ivl or!, hnl i III 11 h i, ,he nz, It h i a Zlllc ivins 

.V. DIl'\T",hewlbcn'''1 hiall)le· ~"lIlk '''' III Ille D(nS 

Telramclhvllhillrall1ll1lll1ll,lIlJide 1:-'I'1i\1 

Tel r;II"clh\'1I h,llr;II" tli'lIllido: T:-'ITD 

Zinc tlkthyidilhipearhalllall' ZIJEC 

Am;III',,' 

Diphcl1yl!!lIal1idine DI'G 

Di ·(}·lolyl!!lIanitiinc D(HG 
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