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GRAFPLANARDANPEWARNAAN 

ABSTRAK 

Objektif utama projek ini adalah untuk membincangkan pentingnya Graf 

Planar dan Pewarnaan. Dalam menyelesaikan masalah sebenar dunia, graf atau 

rangkaian yang lebih maju dan canggih diperlukan. Disini kita kemukakan konsep­

konsep graf planar dan pewarnaan untuk membolehkan pemode1an graf yang lebih 

efisien. 

Walaubagaimanapun, pada permulaan laporan projek ini, kita telah 

memperkenalkan konsep - konsep asas dan beberapa teorem berkaitan graf yang 

penting bagi membina asas dalam memahami bab-bab seterusnya. 

Dalam projek ini, selain memberikan pendedahan tentang definisi graf planar 

dan contoh-contoh berkaitan, pengenalan kepada graf planar dan juga bukan planar 

telah dinyatakan dengan contoh -contoh yang mudah. Formula Euler dan Teorem 

Kuratowski digunakan untuk menunjukkan K5 and K3,3 adalah grafbukan planar. 

Salah sejenis graf yang istimewa yang dikenali sebagai, 'pokok' juga 

dikatakan graf planar. Oleh itu, konsep-konsep , teorem - teorem dan ciri - ciri 

berkaitan pokok juga dibincangkan. Pokok juga mempunyai pelbagai aplikasi dalam 

kajian operasi, rangkaian dan sebagainya, dengan ini bab ini diakhiri dengan 

membincangkan masalah dari salah satu permodelan iaitu pokok penjana minimum. 
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Dalam pewamaa.'1 graf kita telah memberikan sejarah tentang pennasalahan 

empat - warna. Kemudian, kita juga telah memberikan teorem - teorem tentang 

pewamaan bueu dalam graf planar dan dalam akhir bab ini, aplikasi tentang 

pewarnaan graf dalam menyelesaikan masalah umum seperti mengatur jadual 

peperiksaan supaya mengelakkan konflik dan menyimpan bahan kimia untuk 

mengelakkannya daripada bertindak balas, juga telah dibineangkan. 

Pada akhir projek ini, rumusan serta eadangan projek lanjutan diberikan. 
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ABSTRACT 

The key aim of this project is to discuss the importance of Planar Graphs and 

Coloring. In modeling the real-world problems, more complex and advance 

structures are needed. Here come the notions of planar graph and the concept of 

coloring to make the modeling by graphs more efficient. 

However at the beginning of this project report we introduce some basic 

concepts and certain properties of graphs to develop the foundation in understanding 

the subsequent chapters. 

In this project, besides providing an exposure to the definition of planar 

graphs, and relevant examples, identification of planarity and nonplanarity are 

described with simple examples. Then Euler's formula and Kuratowski's theorem 

are used in showing the nonplanarity of K5 and Kv. 

Nevertheless, a special kind of graphs called, 'trees' are also planar graphs. 
,:. 

So the notions relating to trees, properties and characterizations of trees are 

discussed. Trees are known to have wide applications in operation research, 

networking and so on. We describe the problem of minimum spanning tree model to 

end this chapter. 

In graph coloring we have addressed the history behind the four - color 

problem. Then, we have included theorems on vertex coloring in planar graphs and 

in the end of this discussion, applications of graph coloring in solving common 

Xl 



problems such as examination scheduling to avoid conflicts and storage of chemicals 

to prevent adverse interactions are described. 

Finally the project ends with a simple summary of findings and suggestion 

for future work. 
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CHAPTER! 

ORIGIN AND BASIC NOTIONS OF GRAPHS 

The basic ideas of graph theory were introduced by Leonhard Euler in 1736, 

a Swiss mathematician, while he was solving the now famous K·onigsberg bridge 

problem. The city of K·onigsberg (now called Kaliningrad) was divided into four 

parts by the Pregel river, with seven bridges connecting the parts. It is said that 

residents spent their Sunday afternoons trying to find a way to walk around the city 

crossing each bridge exactly once and returning to where they started. 

Euler was able to solve this problem by constructing a graph of the city and 

investigating the features of this graph. (Dickson. A., 2006a). 

Figure 1.1 Leonhard Euler (1707-1783). 
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1.1 Introduction 

1.1.1 Motivation and Background 

In the past 50 years, graph theory has had many practical applications in 

various disciplines, including operational research, biology, chemistry, computer 

science, economics, engineering, informatics, linguistics, mathematics, medicine, 

social science and etc. Graphs are excellent modeling tools and mathematical 

abstraction that is useful for solving many kinds of problems. (Agnarsson, G. & 

Greenlaw, R., 2007). 

In the school of Mathematical Sciences· only a few projects related to graph 

theory have been done in the past 3 years (2006 - 2009). In fact, the topics that were 

dealt with in those projects are bipartite graphs, dominations in graphs, Euler and 

Hamilton graphs. Motivated by these reasons, the current project is on an important 

area of graph theory. 

In this project we discuss certain special kind of graphs, called planar graphs 

and in particular trees and application of the concept of coloring of graphs to certain 

real-life problem. 

1.1.2 Objectives 

The objectives ofthis project are as follows: 

• To develop an understanding in basic concepts and certain properties of 

graph. 

• I thank the School of Mathematical Sciences who allowed me to peruse the MGM5<)9 project 
reports for the years 2006 - 2009. 
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• To introduce planar graphs and identify pianarity and nonplanarity. 

• To show the use of Euler's fonnula and Kuratowski's theorem to test the 

planarity of graphs. 

• To discuss definitions, properties, characterizations and applications of trees. 

• To reveal the origin ofthe four color problem. 

• To elaborate theorems of chromatic number with the reference to Brooks' 

theorem. 

• To provide several examples in the applications of graph coloring. 

1.1.3 ()vervieJV 

In chapter one, we first describe the meaning of graph. We then introduce 

some basic definitions and theorems of graphs. Then, we end this chapter by 

describing certain common families of graphs. 

Chapter two presents the main part of the project which is about the planar 

graphs, one of the important subclasses of graphs. This chapter discusses the notion 

of a planar graph with brief examples of planarity and nonplanarity. Some properties 

related with number of vertices, edges and faces of plane graph are introduced with 

reference to Euler's fonnula and Kuratowski's theorem to test the planarity of a 

graph. Finally this chapter ends with concept of duality. 

Chapter three discusses the 'trees' which are also a special kind of planar 

graphs. Some definitions of trees which are useful in understanding the concepts are 

also published. Then, the properties and characterizations of trees are explained. 

Finally, we reveal the application of trees with one of the models, minimal spanning 

tree. 
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Chapter four is the most attractive chapter with colorings of graphs. In this 

chapter we will see the origin of four - color problem with some flying letters, the 

theorems of chromatic number with the supporting proof of Brooks' theorem and 

lastly with some examples of applications of graph coloring in real world problems. 

Chapter five is concerned with overall conclusion of this project and it also 

discusses suggestions for future study. 

1.2 Basic Definition of Graphs 

A graph is a collection, or set of very simple objects, namely a set of line 

segments terminated by dots as depicted by Figure 1.2(a) and 1.2(b). These line 

segments and dots are the sole objects of concern in the graph and have no 

properties other than their visual objectivity. No line length, or curvature, or point 

content or position of line segments is considered significant. The graphs of Figure 

1.2 , have the same dot and line segment content and so are the same graph. 

h 
!al 

aO>-------Ob 

c d 

!b) 

Figure 1.2 Illustration- of graphs. 
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These objects of graph theory are so simple that on the basis presented here 

they seem to have no properties of their own. It is a study of the manner in which 

these line segments and dots can be inter-related which constitutes graph theory. 

(Maxwell, L.M. & Reed, M.B., 1971). 

The Graph, Its Elements (or Edges) and Vertices 

The words element or edge and vertex are used to denote line segment and 

dot, based on the work of Maxwell, L.M. & Reed, M.B. (1971). 

Definition 1.2.1 Vertex. A vertex is called a dot, a point or a node. A vertex is the 

only significant joining ofline segments (elements). Vertices are illustrated either as 

small circles or solid dots (Figure 1.3). The intersections of line segments at (h) and 

(i), in Figure 1.3(c), are not vertices. 

alb 

·.~----O 
(a) 

(b) 

(e) 

Figure 1.3 Illustration olvertices and elements (or edges). 
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Definition 1.2.2 Element. An element is a line segment and its vertices, always one 

on each end of the line segment. For example, Figure 1.3(a) is a correct illustration 

of an element. Notice that vertices a and b are included as part of the element. 

Figure l.3(b) is not a correct illustration of an element because a line segment may 

not be disassociated from its vertices. Elements 1 and 2, in Figure 1.3(c), have a 

common vertex, a, while elements 2 and 3 do not. We also call an element as a line, 

a link, an arc or more commonly an edge. A graph is thus defined as follows: 

Definition 1.2.3 Graph. A graph G is a pair (V(G), E(G)), where V(G) is a finite 

non-empty set of vertices or (nodes or points) and E(G) is a finite set of distinct 

unordered pairs distinct elements of V(G) called edges (lines). We call V(G) the 

vertex-set of G and E(G) the edge-set of G; when there is no possibility of 

confusion, these are sometimes abbreviated to V and E, respectively. Figure 1.4 

represents the simple graph G whose vertex-set V(G) is the set {u, v, w, z} and 

whose edge-set E(G) consists of the pairs {u, v}, {v, w}, {u, w} and {w, z}. The 

edge {v, w} is said to join the vertices v and w, and will usually be abbreviated to 

vw. 

u 

w 

Figure 1.4 The simple graph G. 

Various vertex and edge connection features are given by next eight definitions: 
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Definition 1.2.4 Incidence. An edge is incident to a vertex, and a vertex is incident 

to an edge if the vertex is a vertex of the edge. In Figure l.S(a) edge 1,2 and 3 are 

incident to vertex a and vertex a is incident to edges 1,2 and 3. 

b c 
a 

}-_______ ~jb 

aLk------~~-+------~Ud 

d~-----------ue 

e 

(a) G, 

a b a~----------~b 

c c u------------[ d 

e n-----~--........ _n 5 
e 0----------0 f 

Figure 1.5 Four graphs G1, G2, G3and G4. 

Definition 1.2.5 Degree of vertex. The degree of a vertex is the number of edges 

incident to the vertex. Vertices a, b, d and e of Figure l.5( a) are of degree three. All 

vertices of Figure l.S(b) are of degree four. 
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Definition 1.2.6 Adjacent (incident) edges. Two edges are adjacent (incident) if 

the edges are incident to the same vertex. 

Definition 1.2.7 Adjacent vertices. Two vertices are adjacent if the vertices are 

incident to the same edge. Edges 2 and 3 in Figure 1.5(c) are adjacent. In the same 

graph vertices a and c are adjacent. In Figure 1.5(b) each vertex is adjacent to every 

other vertex in the graph. 

Definition 1.2.8 End vertex. An end vertex is a vertex of a degree one. Vertices b, 

e, and f of Figure 1.5( d) are end vertices. 

Definition 1.2.9 End edge. An end edge is an edge, incident to at least one end 

vertex. Edge 2 and 5 in Figure l.5( d) are end edges. 

Definition 1.2.10 Interior vertex. A vertex of degree greater than unity is an 

interior vertex. All vertices of the graph of Figure l.5(b) are interior vertices. 

Definition 1.2.11 Interior edge. If both vertices of an edge are of degree greater 

than unity, the edge is an interior edge. Edges l, 3 and 4 of the graph of Figure 

l.5( d) are interior edges. 
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1.3 Basic Theorems of Graphs 

There are some properties of graphs which are dependent only on the 

definitions of this chapter. We can consider the following theorems, interesting 

graph properties. (Maxwell, L.M. & Reed, M.B., 1971). 

Theorem 1.3.1. In any graph G (e,v) there are an even number of vertices of odd 

degree. 

Proof: Let mi be the number of vertices of degree i in G for i = 1,2, .... d, where d is 

the vertex of highest degree in G. Counting the number of edges incident to each 

vertex and summing over all vertices of G each edge of G is counted twice thus: 

2e = 1m1 + 2m2 + 3m3 + ..... + dmd. Solving for the total number of vertices of odd 

degree, m1 + m3 + ........ = 2e - 2m2 - 2m3 - 4m4 - 4m5 - .... , which is an even 

number. 

Theorem 1.3.1. If a graph, G(e,v), contains no end edges then e = v. 

Proof: Let the number of vertices of degree i in G be denoted mi. By the argument 

in the proof of Theorem 1.2.1, 

2e = 2m2 + 3m3 + .. , ..... + dmd , 

where, m2 + m3 + ...... + md = v, 

then, e = m2 + (3/2)m3 + (4/2)m4 + ...... + (d/2m)md = v 
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1.4 Additional Definitions 

Before we look into the families of graphs we need to know additional 

definitions in graph theory which are useful subsequently. The descriptions are 

based on the work of Trudeau, RJ. (1976), White, A.T. (1973) and Wilson, RJ. 

(1985). 

If in the definition of a graph, we remove the restriction that the edge must 

be distinct, and then the resulting object is called a multigraph, see Figure 1.6(a) 

two or more edges joining the same pair of vertices are then called multiple edges. If 

M is a multigraph, its underlying graph is the graph obtained by replacing each set 

of multiple edges by a single edge; for example the underlying graph of the 

multi graph in Figure 1.6( a) is the graph in Figure 1.4. 

Figure 1.6(a) A multigraph. Figure 1.6(b) A general graph. 

If we also remove the restriction that the edges must join distinct vertices, 

and allow the existence of loops, which means edges joining vertices to themselves 

then the resulting object is called a general graph, or pseudograph in Figure 1.6(b). 

A graph in which one vertex is distinguished from the rest is called a rooted 

graph. The distinguished vertex is called the root-vertex, or simply the root and is 

often indicated by a small square which is shown in Figure 1.6( c). A labeled graph 

of order p is a graph whose vertices have been assigned the numbers 1,2, ... p in such 
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a way that no two vertices are assigned the same number, this is shown in Figure 

1.6(d). 

3 

4 

Figure 1.6(c) A rooted graph. Figure 1.6(d) A labeled graph. 

A subgraph of a graph G = (V(G), E(G)) is a graph H = (V(H), E(H)) such 

that V(H) C V(G) and E(H) C E(G). If V(H) = V(G), then H is called a spanning 

subgraph of G. 

Two graphs Gl and G2 are isomorphic if there is a one-one correspondence 

between the vertices of Gl and those G2 with the property that the number of edges 

joining any two vertices of Gl is equal to the number of edges joining the 

corresponding vertices of G2. 

Thus the two graphs shown in Figure 1.7 are isomorphic under the 

correspondence u~l, v~m, w~--m, x~p, y~q, z~r. (There are only six vertices -

the other points at which edges cross are not vertices). 

Q---~,...----Dm 

x y z 
n q 

Figure 1.7 Two isomorphic graphs. 
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The street or roads in a town caTl be modeled by a graph with the street -

corners being vertices and streets as edges. The directed graph or digraph arises out 

of a question, "What happens if all of the roads are one-way streets?" An example of 

a digraph is given in Figure 1.8, the directions of the one-way streets being indicated 

by arrows. 

Q 

p~----tl-~ R 

s 

Figure 1.8 A directed graph. 

Much of graph theory involves the study of walks of various kinds, a walk is 

sequence of vertices and edges of graph, G of the form : {VI, (VI, V2), V2, (V2, V3), V3, 

(V3, w), W, ... , Vn-I, (Vn-I, Vn), Vn} • The sequence begins and ends with the vertices 

immediately preceding and succeeding it. A walk is termed closed if VI = Vn, and 

open otherwise. A walk is termed a trail if all the edges are distinct. 

A path is a sequence of links that are traveled in the same direction. It is a 

connected sequence of edges (connecting vertices) in a graph, that does not contain 

repeated edges and the length of the path is the number of edges traversed. Example 

in Figure 1.8, P ~ Q ~ R is a path of length two. A circuit or a cycle is a path 

which ends at the vertex, where it begins. For this reason, a path of length three, in 

Figure 1.8, where Q ~ R ~ S ~ Q is a circuit. 
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A graph is said to be connected if every pair of vertices is joined by a walk. 

Otherwise a graph is said to be disconnected. 

A contraction of a graph can be defined to be any graph which results from 

G after a succession of such edge contraction. Figure 1.9(a) is the original graph. 

Figure 1.9(b) is a graph denote G\e the graph obtained by taking an edge e, and 

"contracting" it or in other word, removing e and identifying its ends v and w in 

such a way that the resulting vertex is incident to those edges (other than e) which 

were originally incident to v or w. From here we can say that G is contractible to 

G\e. 

v w vw 

Figure 1.9(a) Graph, G. Figure 1.9(b) Graph, G\e. 

Any graph which can be redrawn in a way without edge crossings is called a 

planar graph. We shall discuss briefly about planar graph in our next chapter, which 

will be our most important discussion to provide useful information not only for that 

chapter itself but also in developing the subsequent chapters. 

1.5 Common Families of Graphs 

In this section we shall define some important types of graphs. Sometimes, 

simple graphs are adequate; other times, non-simple graphs are needed. The 
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knowledge of understanding the families of graphs might be useful in modeling the 

real world problems 

Complete Graphs 

A complete graph is a simple graph such that every pair of vertices is 

joined by an edge. Any complete graph on n vertices is denoted Kn. Examples of 

complete graphs on one, two, three, four and five vertices are shown in Figure 1.10 

(Gross, J.L. & Yellen, J., 2006). 

Figure 1.10 The first five complete graphs. 

Null graphs 

A graph whose edge-set is empty is called a null graph (or totally 

disconnected graph). We shall denote the null graph on n vertices by Nn, N4is shown 

in Figure 1.11. In a null graph, every vertex is isolated. Null graphs are not very 

interesting. (Muhammad, R.B., 2005a). 

o 0 

o 0 

Figure 1.11 The null graph. 
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Bipartite Graphs 

Suppose that the vertex-set of a graph G can be divided into two disjoint sets 

VI and V2, in such a way that every edge of G joins a vertex of VI to a vertex of V2 , 

this is shown in Figure 1.12(a). 

Figure 1. 12 (a) A bipartite graph. 

G is the said to be a bipartite graph [sometimes denoted by G( Vi, V2), if we 

wish to specify the two sets involved]. An alternative way of thinking of a bipartite 

graph is in terms of coloring its vertices with two colors, say red and blue - a graph 

is bipartite if we can color each vertex red or blue in such a way that every edge has 

red end and a blue end. 

It is worth emphasizing that in a bipartite graph G(VI,V2), it is not necessarily 

true that every vertex of Vi is joined to every vertex of V2; if however this happens, 

and if G is simple, then G is called a complete bipartite graph, usually denoted by 

Km,n where m and n are the numbers of vertices in VI and V2 respectively. For an 

example, Figure 1.12(b) represents K4,3 . This is from the work of Wilson, R.1. 

(1985). 
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Figure 1. 12 (b) K4,3. A bipartite graph. Figure 1. 12(c) The star graph. 

We have to take note that Km,n has m + n vertices and mn edges. A complete 

bipartite graph of the fonn Kl,n is called a star graph,KJ,5 shown in Figure 1. 12(c). 

Regular Graphs 

A regular graph whose vertices all have equal degree. A k-regular graph is a 

regular graph whose common degree is k. Of our special interest among the regular 

graphs are so-called Platonic graphs, the graphs fonned by vertices and edges of the 

five regular (platonic) solids - the Tetrahedron, Cube, Octahedron, Dodecahedron 

and Icosahedron shown in Figure 1.13(a). 

Tetrahedron Cube Octahedron 

Dodecahedron Icosahedron 

Figure 1.13(a) The five platonic graphs. 
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The Petersen graph is the 3-regular graph represented by the line drawing in 

Figure 1.13(b). It possesses a number of interesting graph-theoretic properties; the 

Petersen graph is frequently used both to illustrate established theorems and to test 

conjectures. (Gross, J.L. & Yellen, J., 2006). 

Figure 1.13 (b) The Petersen graph. 

We hope that this introductory chapter has provided some useful information 

and knowledge about graph theory such as preliminary definitions, interpretation 

and examples which will be useful in setting the stage and describing some of the 

things which lie ahead and might be very useful in understanding the subsequent 

chapters. 
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CHAPTER 2 

PLANAR GRAPHS 

The objective of this chapter is to provide in detail one of the important 

components from graph theory, namely, planar graphs. Here in this chapter we will 

introduce the notion of a planar graph with examples of planar and nonplanar 

graphs. Euler's formula and a theorem related with number of vertices, edges and 

faces of a plane graph, Kuratowski's theorem of planarity and we end this chapter 

with a study of duality. 

2.1 Introduction 

A planar drawing of a graph is a drawing of the graph in the plane without 

edges-crossing. A graph is said to be planar if there exists a planar drawing of it. 

(Gross, J.L. & Yellen, J., 2006). 

Four drawings of the complete graph K4 are shown in Figure 2.I(a) and 

2.1(b). The drawing on Figure 2.1 (a) shows a graph drawn in the plane with edge­

crossing. In redrawing the graph, we move the edges or the vertices in three different 

ways to eliminate the edges-crossing to form three plane drawings of K4. 
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Figure 2.1 (b) shows three plane drawings ofK4. From this, we can clearly state that 

K4 is planar graph, since it can be drawn in plane without edges- crossing. 

(Muhammad, R. B., 2005b). 

Figure 2.1 (a) A nonplanar drawing of K4. 

Figure 2.1 (b) Three planar drawings of K4. 

The definition of planar graph can be defined more clearly with these two examples: 

2.1.1 Example of Planar Graph 

Example of bulletin board (Buckley, F. & Lewinter, M., 2003) in Figure 

2.2(a). The diagram was posted on a bulletin board by using rubber bands and 

thumbtacks. Based on the arrangement the rubber bands are crossing each other and 

look messy. The president of the bulletin board is required to rearrange the rubber 
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bands and thumbtacks in such a way to make the diagram neat without any rubber 

bands overlapping each other. 

a b 

f ~---?f------~ C 

e d 

Figure 2.2(a) Diagram posted on a bulletin board. 

We can model this problem in graph theoretic terms by representing vertices (V) are 

thumbtacks and the edges (E) are the rubber bands joining the thumbtacks. 

V= [a, b, c, d, e, f ] 

E= [ab, ad, of, bc, be, bf, cf, de, ef] 

Now, we have to think of a way in remodeling the diagram, where there is no 

intersection between any of the rubber bands. Is this possible? The suggestion given 

was to stretch a rubber band while leaving the pair of the thumbtacks joined by the 

rubber band in place or to move a thumbtack to a different location on the bulletin 

board while remaining the joined rubber band. It can be clearly shown that all the 

rubber bands can be arranged in such a way that no one rubber band intersect with 

any other. This is shown in Figure 2.2(b). 

a b 

Figure 2.2(b) Two planar drawings o/Figure 2.2(a). 
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From the graph theoretic terms, Figure 2.2(b) is the planar drawings of 

Figure 2.2(a). Hence, we can conclude that Figure 2.2(a) is a planar graph. 

2.1.2 Example of Nonplanar Graph 

Example of Utilities Problem (Foulds, L.R., 1992), suppose there are three 

houses: hI, ill, and h3, each of which connected by cables to the centre of three 

companies which supply television, telephone service and electricity; TV, TS and 

TE. A schematic diagram indicating the cable service required is given in Figure 

2.3(a). 

It is a requirement of all companies that the cables be laid underground in 

such a way that no cable crosses over the top of any other. The rational is to find a 

layout of the cables so that each house can be supplied with the three services from 

the three centers in such a way that no two cables intersect. 

We can model this problem in graph theoretic terms by representing the six 

locations as the vertices (V) of a graph and the cables as the edges (E) of a graph 

directly joining the two vertices representing the locations which the cable directly 

connects. 

V= [hI, ill, h3, TV, TS and TE] 

E = [hlTV, hiTS, hITE, illTV, illTS, illTE, h3TV, h3TS, h3TE] 

From the partial cable layout in Figure 2.3(b), it is impossible to supply h3 

with TV without cable intersection. Indeed, it can be easily shown that any eight of 

the nine required cables can be laid out without intersection, but it is impossible to 

layout all the nine cables without intersection. Here we failed to draw the planar 
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drawing of it. From the graph theoretic terms, we can conclude that Figure 2.3(a) is 

a nonplanar graph. 

Figure 2.3(a) A schematic diagram indicating the cable service required. 

h, 

Figure 2.3(b) A partial cable layout. 

2.2 Basic Theorem to the Nonplanarity of Ks andK3,3 

K5 is a complete graph on five vertices and K3.3 is a complete bipartite graph 

on six vertices. K5 is a unique nonplanar graph with the smallest number of vertices 

and K3.3 is a unique nonplanar graph with the smallest number of edges. We are now 

interested in proving both of these unique graphs are nonplanar. (Gross, J.L. & 

Yellen, J., 2006). 
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Theorem 2.2.1 Every drawing of the complete graph K5 in the plane (or sphere) 

contains at least one edge-crossing. 

Proof: Label the vertices 0, 1,2, 3, 4. By the Jordan Curve Theorem, any drawing 

of the cycle (1, 2, 3, 4,1) separates the plane into two regions. Consider the region 

with vertex 0 in its interior as the "inside" of the cycle. By the Jordan Curve 

Theorem, the edges joining vertex 0 to each of the vertices 1, 2, 3 and 4 must also lie 

entirely inside the cycle, as illustrated in Figure 2.4. 

Figure 2.4 Drawing most of K5 in the plane. 

Moreover, each ofthe 3-cycles {O, 1,2, O}, {O, 2, 3, O}, {O, 3, 4, O} and {0,4, 1, O} 

also separates the plane and hence the edge (2, 4) must also lie to the exterior of the 

cycle {I, 2, 3, 4, I}, as shown. It follows that the cycle formed by edges (2, 4), (4, 0) 

and (0, 2) separates vertices 1 and 3, again by the Jordan Curve Theorem. Thus, it is 

impossible to draw edge (1, 3) without crossing an edge of that cycle. So it is proven 

that the drawing of the K5 in the plane contains at least one edge- crossing. 
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Theorem 2.2.2 Every drawing of the complete bipartite graph K3,3 in the plane (or 

sphere) contains at least one edge-crossing. 

Proof: Label the vertices of one partite set 0, 2, 4 and of the other 1, 3, 5. By the 

Jordan Curve Theorem, cycle {2, 3, 4, 5, 2} separates the plane into two regions, 

and as in the previous proof, we regard the region containing vertex ° as the "inside" 

of the cycle. By the Jordan Curve Theorem, the edges joining vertex ° to each of the 

vertices 3 and 5 lie entirely inside that cycle, and each of the cycle {a, 3, 2, 5, o} 

and {a, 3,4,5, o} separates the plane, as illustrated in Figure 2.5. 

2 __ ---_3 

5------4 

Figure 2.5 Drawing most of K3,3 in the plane. 

Thus, there are three regions: the exterior of cycles {2, 3, 4, 5, 2} and the 

inside of each of the other two cycles. It follows that no matter which region 

contains vertex 1, there must be some even-numbered vertex that is not in that 

region, and hence the edge from vertex 1 to that even-numbered vertex would have 

to cross some cycle edge. 
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