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ABSTRACT 

CAGD is the abbreviation for Computer Aided Geometric Design. In CAGD, the 

subdivision scheme is gaining popularity among the computer graphics and geometric 

modeling community and has achieved considerable success. 

The objectives of this dissertation are to study and to understand the subdivision 

schemes of Chaikin's algorithm and Catmull & Clark's algorithm. Then, these 

subdivision schemes is applied to obtain refmed curve and surface by using the software, 

Mathematica. 

The Chaikin's algorithm is used to refme a curve from an arbitrary control 

polygon, formed by a set of control points. 

By repeating the application of Catmull & Clark's algorithm, the limit of a 

sequence successfully refmed the polyhedral meshes created. Therefore, a visually 

pleasing refmed surface can be generated. 
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LENGKUNG DAN PERMUKAAN SPLIN-B SUBBAHAGIAN ATAU 

KEHALUSAN 

ABSTRAK 

CAGD ialah singkatan bagi " Computer Aided Geometric Design" atau da~am bahasa 

Malaysia sebagai " Rekabentuk Geometri Berbantukan Komputer " . Dalam CAGD, 

kaedah subbahagian semakin terkenal di kalangan komuniti komputer grafik dan 

pemodelan geometri. 

Objektif disertasi ini ialah membaca dan memahami skema subbahagian 

algoritma Chaikin dan algoritma Catmull & Clark. Kemudian, kita mengaplikasikan 

skema subbahagian ini untuk memperoleh satu lengkung dan permukaan yang halus 

dengan menggunakan perisian " Mathematica ". 

Bagi lengkung, kita menggunakan algoritma Chaikin untuk membina satu 

lengkung yang halus daripada pelbagai poligon kawalan yang dibentukkan daripada 

satu set titik kawalan. 

Dengan mengulangi aplikasi algoritma Catmull & Clark, batas jujukan dapat 

menghaluskan lagi polyhedral yang dihasilkan. Maka, suatu permukaan yang lebih 

halus, dari segi visual, dapat dihasilkan. 
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CHAPTER 1 

REVIEW ON B-SPLINE CURVES AND SURFACES 

1.0 Introduction 

Bezier representations of curves and surfaces used in computer graphics, were 

indepently discovered by Pierre Bezier about 1962, an engineer for Renault, and Paul de 

Casteljau about 1959, an engineer for Citroen. Both worked for automobile companies 

in year 1970, in France, these engineers initially developed a curve representation 

scheme that is geometrical in construction, and the mathematical theory is based on the 

concept of Bernstein polynomials. They extended it to a surface patch that has become 

the de-facto standard for surface generation in computer graphics (Mortenson, 1997). 

BMsplines are piecewise polynomial functions with minimal support. The proper 

B-spline blending functions are used to construct a basis of B-spline vector space 

functions. B-spline functions are important tools in computer aided geometric design 

(CAGD) and computer graphics. B-splines were introduced by I. J. Schoenberg in 1946. 

Schoenberg introduced these B-spline functions in the study of approximation of 

equidistant data by analytic functions, while parametric spline curves were used in 

CAGD by Ferguson, de Boor, and Gordon to design freeform curves and surfaces 

(Mortenson, 1997). 

B-splines of degree n are piecewise polynomial functions with minimal support 

and C n-l continuous. There are many methods to generate curves and surfaces using 

spline functions and the most efficient is to make use of B-splines. A spline function is 
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simply a piecewise polynomial having a certain level of smoothness. A spline curve is 

an affme blending of points using piecewise polynomial blending functions (Marsh, 

1999) 

The purpose of this chapter is to review methods on generating B-spline curves 

and surfaces. B-spline curves and surfaces are briefly introduced in section 1.1. The 

uniform B-spline in terms of truncated power function is defined in section 1.1.1. 

1.1 B-Spline Curves and Surfaces 

1.1.1 Uniform B-splines curves 

The truncated power function or one sided power function is used to show the B-spline 

basis function j. 

1 n+l (n + IJ 
Mn(t)= n! ~(-lr 1 (i-t): 

where 

,Vt ~O 

,Vt<O 

,for n = 0, 1, 2, ... , and t E iR 

We should know that t: E C n-l (iR ) and the nth order derivative of t: is continuous at 

all t except t = O. Let us study a few examples with different n to clarify the equation 

above. (Marsh, 1999) 
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For n = 0, 

N 

[ 
11 

[ 
0.8 r 

f 
O. 6 ~ 

I 
0.4 l-

0.2 f 

[ 

For n = 1, 

= 

,t < ° 
,0::; t < 1 

,t ~ 1 

A Unifonn 

1 2 3 

B-spline at n=O 

4 5 6 

Figure 1.1 A unifonn B-spline of degree 0, M 0 (t) 

0 ,( < 0 

( ,O:s; ( < 1 

2-( ,1:S; ( < 2 

0 ,2 :s; ( 

3 

u 
7 



N A Uniform B-spline at n=l 

1 f 

0.8 ~ 

O. 6 ~ 
0.4 ~ 

L 
I 
~ 

0.2 ~ 
~ 
f 

t u 
1 2 3 4 5 6 7 

Figure 1.2 A uniform B-spline of degree 1, MI (t) 

Forn= 2, 

M2 (t) = ~ (t: - 3 (t-1): + 3 (t-2): - (t-3): ) 

0 ,I <0 
1 2 

,0:::; 1 < 1 -I 
2 

1 2 
,1:::;/<2 = -(-21 + 61 - 3) 

2 
1 2 

,2:::;1 <3 -(I - 61 +9) 
2 

0 ,I ~ 3 
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N A Unifonn B - spline at n = 2 
0.8 ' 

0.6 -

0.4 c 

0.2 -

u 
1 2 3 4 5 6 7 

Figure 1.3 A unifonn B-spline of degree 2, M 2 (t) 

Forn = 3, 

M 3 (t) = ~ (( t: - 4 (t -1): + 6 (t -2): - 4 (t -3): + (t -4 ) : 

0 ,t< 0 
1 3 

,0 ~ t < 1 -t 
6 

1 
-(-3t 3 + 12t 2 -12t + 4) ,1 ~ t < 2 

= 6 
1 
-(3t 3 

- 24t 2 + 60t - 44) ,2 ~t <3 
6 
1 
-( _t 3 + 12t 2 

- 48t + 64) ,3 ~t < 4 
6 

0 ,t ~ 4 
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N A Uniform B - spline at n = 3 

0.6 

0.5 

O. 4 ~ 
0.3 ~ 
0.2 t 

f 
0.1 F 

r~~~~~~ _____ ~~~~~ 
1 2 3 4 5 6 7 

Figure 1.4 A uniform B-spline of degree 3, M 3 (t) 

The properties ofM3 (t) are given below: 

(i) , V i = 0,1,2,3,4. 

(ii) M 3 (t) vanishes outside (0,4). 

(iii) M3 (t) > ° , V ° <t < 4. 

(iv) M 3 (t) consists of 4 polynomial segments. (Marsh, 1999) 

u 

On the other hands, M3 (t) in terms of 4 polynomial segments with t E [0,1] can also be 

written as follow, 
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1 3 2 
b l (t)= "6(-3t +3t -3t+4) 

1 3 2 
b 3 (t) = 6 (-t + 3t - 3t + 1) 

verifY that 

, V t E [0,1]. 

Generally, 

(i) Mn (t) E C n-I (91) as (t-1): E C n-I (91) , V i = 0,1,2, ... ,n. 

(ii) Mn (t) = ° , V t e (O,n+ 1) 

(iii) Mn (t) > ° , V t E (O,n+ 1) . 

(iv) Mn (t) consists of (n+l) polynomial segments. (Catmull & Clark, 1978) 

M n (t) is known as a uniform B-spline of degree n. If n=3, M n (t) is called as a 

uniform cubic B-spline. Furthermore, we can translate B-spline M3(t) from M3(t-V), 

V E Z. 
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M3(t-l) M3(t) M3(t+l) 

N \ ~ I 
o. 6 ~ 

L 
0.5 r 

0.4 ~ 

O. 3 ~ 

0.2 ~ 

0.1 r 
u 

1 2 3 4 5 6 7 

Figure 1.5 Translation of uniform B-spline of degree 3, M 3 (t) 

In addition, we can use the equation below to generate a curve with a set of 

control points, ViE 91 2 or 91 3, where i = 1,2,3, ... ,m 

m 

P (t) = L ViMn(t - i) 
i=O 

Letn= 3, 

3 

P (t) = L V; M 3 (t - i) 
i=O 

The curve which be generated is known as a uniform B-spline curve. The 

control polygon of the curve is formed by joining consecutive points, Vi' V i+! , 

V i+2' ... ,and so on. 

Figure 1.8 shows that the closed curve is formed by 4 pieces B-spline curves. 

Observe that 
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With 

Finally, the curve which be formed is shown in the matrix form below, 

-1 3 -3 1 Vj 

1 
t 2 3 -6 3 0 V j +! 

M3 (t) = "6 [ t 3 t 1 ] (Marsh, 1999) 
-3 0 3 0 V j +2 

1 4 1 0 V j +3 

Generally, in order to form the closed curve the matrix form is as follows, 

-1 3 -3 1 Vjrnod(n+!) 

1 
t 2 3 -6 3 0 Vj+!rnod(n+!) 

M. (t) = - [ t 3 t 1 ] (Marsh, 1999) 
J 6 -3 0 3 0 V j +2rnod(n+!) 

1 4 1 0 V j +3rnod(n+!) 
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Figure 1.6 A cubic B-spline curve which is formed by 4 control points. 

20 

15 

10 

5 

10 20 30 40 

-5 

Figure 1.7 A quartic B-spline curve which is formed by 5 control points. 
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Figure 1.8 

1.1.2 B-spline surfaces 

r 
• 

A closed B-spline curve fonned by 4 pieces 
B-spline curve with 4 control points. 

Let Ni,d(u)be the B-spline basis functions of degree d with knot vector uo,up ... ,um , 

and let N j,e (v) be the B-spline basis functions of degree e with knot vector vo' VI' ••• , v q . 

A B-spline surface with control points pi,J (0 ~ i ~ n = m - d -1, 0 ~ j ~ p = q - e -1) 

is defined by 

n p 

s(u, v) = LLPi,jNi,Au)Nj,e(v) 
i=O j=O 

11 
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"'.~. 

1.1.1.1 Properties of B-spline Surfaces 

A B-spline surface satisfies the following properties. 

• Local Control 

Each segment is determined by a (d + 1) x (e + 1) mesh of control points. If 

a r 

s(u, v) = I I P;,jNi,d (u)Nj,e (v), for (u, v) E [Ud,Um_d] x [ve, vq_e]. (Marsh, 
i=a-d j=r-e 

1999) 

• Convex Hull 

s(U,v) lies in the convex hull defined by its control net. Since s(u,v) is the linear 

combination of all its control points with positive coefficients whose sum is 1 

(partition of unity), the surface lies in the convex hull of its control points. 

(Marsh, 1999) 
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CHAPTER 2 

SUBDIVISION CURVES 

2.0 Introduction 

First of all, let us study about subdivision schemes, Catmull and Clark described a 

simple generalization of the subdivision rules for bicubic B-splines to arbitrary 

quadrilateral surface meshes. This subdivision scheme has become a main scheme of 

surface modeling systems. Unfortunately, little is known about the smoothness and 

regularity of this scheme due to the complexity of the subdivision rules. The scheme 

automatically produces reasonable rules for topology and can easily be extended to 

incorporate boundaries and embedded creases expressed as Catmull-Clark surfaces and 

B-spline curves. (Catmull & Clark, 1978) 

This curve generation methods refines the control polygon into a sequence of 

new control polygons that converge to the curve. While the freeform from a closed form 

mathematical expression is achieved, a wide variety of curve types can be expressed. 

The curves are known as subdivision curves as the methods are based upon the binary 

subdision of the uniform B-spline curves. (Chaikin, 1974) 

What's the subdivision algorithm for uniform B-spline curves? Recall that the 

control points which is formed the control polygon with Vi' i = 0, 1, 2, ... ,m , to 

m 

generate the curve by P (t) = L ViM n (t). The importance of this subdivision algorithm 
i=O 

is to obtain at each step, a fmer control polygon to approximate the curve. The final 

control polygon which is fine enough it would be the time the curve is formed. 
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This chapter purposely to discuss on methods of subdivision curves. After 

introduction of subdivision curves, we talk on constructing curve segments. In details, 

section 2.1.1 is discussed about linear blend, quadratic blend in section 2.1.2. and cubic 

blend in section 2.1.3. The Chaikin's algorithm, well-known as an algorithm for high 

speed curve generation, which be introduced in section 2.2. A few examples on this 

curve generation method on the subsection of 2.2. The comer-cutting algorithm which 

generates a new control polygon by cutting the comers off the original one is introduced 

in section 2.2.1. 

2.1 Constructing Curve Segments 

2.1.1 Linear blend 

We have to study the method of constructing curve segments. Basically, linear blend of 

line segment is formed from an affine combination of points. 

P~ (t)=(I-t)Po +tP I 

/--- t --/---- (l-t) -----/ 

pi 
o 

•• • 
Figure 2.1 Linear blend 
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2.1.2 Quadratic blend 

Let us discuss on quadratic blend which 3 control points are needed to form a control 

polygon. Quadratic blend is a quadratic segment which is formed from an affine 

combination of line segments. 

2.1.3 Cubic Blend 

P ~ (t) = (1-t) Po + t PI 

P: (t) = (l-t) PI + t P 2 

P~ (t) = (l-t) P~ (t) + t P: (t) 

Po 

Figure 2.2 Quadratic Blend 

=1 

=2 

We see how is the cubic blend done. The cubic segment can be formed from an affine 

combination of quadratic segments. 4 control points are needed to form the control 

polygon of this cubic blend. 

P ~ (t) = (1-t) Po + t PI 

P: (t) = (1-t) PI + t P 2 

P ~ (t) = (1-t) P ~ (t) + t P: (t) 

15 

=1 

=2 



P~ (t) = (1-t) P~ (t) + t P~ (t) 

Figure 2.3 Cubic blend. 

2.2 Chaikin's Algorithm 

Chaikin's algorithm which is known as an algorithm for high speed curve generation is 

verified by George Merrill Chaikin ,year 1974. Chaikin's algorithm was the first corner 

cutting (refinement algorithms) used to generate a curve from a set of control points. 

(Chaikin, 1974) 
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The algorithm is recursIve, using only integer addition, one-bit right shifts, 

complementation and comparisons, and produces a sequential list of raster points which 

constitute the curve. The curve consists of concatenated segments, where each segment 

is smooth and open. When the segment is smooth enough, it would be the time the 

curve is formed. (Chaikin, 1974) 

2.2.1 The Corner-cutting Algorithm 

Researchers since Bezier had been working with curves generated by control polygons 

but had focused their analysis on the underlying analytical representation, frequently 

based upon Bernstein polynomials. Chaikin had different idea and had decided to 

develop algorithm that directly worked with the control polygon, called as geometric 

algorithm. 

Chaikin's curve generation scheme is mostly based upon comer-cutting where 

the algorithm generates a new control polygon by cutting the comers off the original 

one. Figure 2.4 shows the idea where an initial control polygon has been refmed into a 

second polygon which is slightly offset by cutting off the comers of the first sequence. 

Clearly, we could then take the second control polygon to cut the comers off it in order 

to produce a third sequence. Finally, a curve would be formed. 
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Second polygon 

Initial polygon 

I 

\ 
\ 

\ , 
\ , 

\ , 
\ , 

\ , 
\ , 
\ ' 

'.' 

~ " \ , \ , \ , 

, 
\ ' 
\ ' .' 

Figure 2.4 An initial polygon has beed refmed into a second polygon which is offset 
by cutting off the corners of the ftrst sequence. 

2.2.2 Chaikin's Algorithm for B-spline 

Given V 0' VI' V 2' '" , V N as control points to fonn a control polygon. There are two 

steps of Chaikin's algorithm on generating a B-spline curve. This is a high speed 

algorithm of curve generation which is done starting from a given polygon, constructed 

a sequence of new control polygons converging to a new curve. (Chaikin, 1974) 

Step I 

where, for v = 0, j = 0, 1, 2, ... , N 

for v = l,j =0,1,2, ... ,N-l 

18 



Step II 

1 1 
V j = 2 (B j + B j+l ) 

where, forj = 0,1,2, ... ,2N-l (N;;:: 2) 

An initial control polygon is formed by these initial control points, 

after that, a new control polygon be evaluated by the control points, 

V~, V:, vL ... ,V;N_l' 

Note that Boas a control polygon which is denoted by the control points or 

called first iteration of Chaikin's algorithm. Step I and step II are repeated and B i' a 

new control polygon be formed in second iteration. 

Subsequently, a refmed curve would be generated after a few iterations are done 

on the particular control polygons. 

For instance, 

we form a quadratic curve, N = 2, where N is called as number of control points, 

v 0' V 1 and V 2 • Assign that, n = 2, where n is refered to degree. 

19 



Step I, 

Figure 2.5 Step I on constructing the points ofB 0' B l' B 2' B 3 and B 4 • 

In Figure 2.5, 

For u = 0, j = 0, 1,2. 

B = ~+~ =v'l 
2 2 

B = V2 + V2 =V
2 4 2 

For u = 1, j = 0, 1 

B = ~ + V2 

3 2 

20 



Step II, 

Figure 2.6 4 points are constructed 

For j = 0, 1,2,3. 

! _ 1 
V j - 2 ( B j + B j+! ) 

Figure 2.7 New control polygon 

In step II, a procedure of constructing a new control polygon which is shown in 

Figure 2.7. Repeat step I and step II until a refined curve is generated. 
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2.2.3 Subdivision Algorithm for Uniform B-spline 

Given any control points with a; E 9{2 or 9{3 . A unifonn B-spline curve can be 

generated as follows, 

N 

P (t) = LaiMn(x-i) , where n ~ x ~ N+ 1 
;=0 

In order to generate the curve more efficiently, the subdivision algorithm is 

suitable to apply on it. Let us go through step by step. (Chaikin, 1974) 

Step I, 

Fork=O, 1,2, ... , where k is number of iteration. 

bl = ~( k + k ) 
2)+v 2 a) a )+v ,For v =O,j =0,1, ... ,m k 

,For v = 1,j = 0, 1, ... ,m k -1 

,k=O, 1,2, ... 

Step II, 

For p = 2, 3, ... , n , where p is degree. 

b p = ~ (b (p-I) + b (p-I) ) 
J 2 J J+I 

,j = 0, 1, ... , 2m k -p+ 1 

next, set the points as 

a (hI) = b n 
J J 

,j = 0, 1, 2, ... , 2m k -n+ 1 

The following steps are keep on repeating both step I and step II until a refined 

curve is achieved. 
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For example, 

we form a cubic curve, N = 3, where N is number of control points, with 4 

contro l po ints, a 0' aI' a 2 and a 3. Assign that, n = 3, where n is degree, and k is 

number of iteration. 

Step I, 

For k= 0, 

When u =0, 

For j=0,1,2,3 

a =ao 
° 0 

bl =.!..( k+ k ) 
2j+v 2 a j a j+u 

a = a O 
2 2 

Figure 2.8 Control polygon. 
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To obtain bL b;, b~, b~ , 

When v = 1, 

For j=O,1,2 

1 =.!. k+ k b 2j+v 2 ( a j a j+v ) 

A new control polygon is formed by the new control points, b ~, b; , b ~ , b ~, b:, 

b;, b ~ is shown in Figure 2.9. 
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