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PELARUT ORGANIK KONVENSIONAL DAN CECAIR IONIK 

PERANTARA SINTESIS SEBATIAN AZOMETAN BARU BERPOTENSI 

SEBAGAI PERENCAT KOLINESTERASE YANG KUAT 

ABSTRAK 

 

      Lima siri terbitan baru azometan telah disintesis melalui kondensasi tindak balas 

antara benzaldehid tentukarganti dan terbitan amino masing-masig dalam etanol 

suatu pelarut organik konvensional dan pelarut ionik hijau, 1-butil-3-

metilimidazolium bromida ([bmim]Br). Pelarut ionik hijau, disebabkan kesan 

pemangkinan yang ketara, telah menunjukkan kelebihan yang luar biasa berbanding 

dengan  etanol dari segi meningkatkan penghasilan produk dan mengurangkan masa 

tindak balas. Tindak balas yang dijalankan dalam pelarut ionik telah menunjukkan 

peningkatan yang  ketara dar segi penghasilan produk  daripada 18 kepada 29 % dan 

6-15 kali pengurangan masa tindak balas berbanding dengan tindak balas yang 

dijalankan dalam etanol. Azometan ini telah dicirikan dengan menggunakan analisis 

unsur, teknik spektroskopi, IR, 1-D dan 2-D NMR juga X-ray kristalografi. Sebatian 

yang disintesiskan turut diuji aktivitinya terhadap penyakit Alzheimer’s 

menggunakan asas kolorimetrik Ellman’s. Dalam asas ini, aktiviti perencat 

kolinesterase bagi sebatian tesebut telah disaring secara ‘in vitro’ terhadap enzim 

asetilkolinesterase (AChE) yang diesktrak daripada belut elektrik dan enzim 

butirilkolinesterase (BChE) yang diperoleh daripada serum kuda, yang mana kedua-

dua enzim ini memainkan peranan utama dalam manifestasi dan perkembangan 

penyakit Alzheimer’s. Keputusan siasatan telah menunjukkan bahawa  azometan 

dalam siri 9 memaparkan aktiviti perencatan yang baik  secara  relatifnya berbanding  

dengan aktiviti perencatan bagi sebatian dalam siri 3, 5, 7 dan 11. Kesan ini mungkin 
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disebabkan oleh kehadiran tiga pusat aromatik dalam struktur sebatian dalam siri 9, 

yang memudahkan kemasukan dan penempatan perencat ini di dalam gaung tapak 

aktif AChE. Walaupun, sebatian dalam siri 5 juga terdiri daripada tiga pusat 

aromatik, tetapi kehadiran kumpalan karbonil dalam struktur molekul ini 

menghalang kemasukan dan penempatan sebatian tesebut dalam tapak aktif  enzim 

AChE. Selain itu, sebatian 3g, 3j, 5j, 7f, 7g, 7j, 9f, 9h, 11h telah menunjukkan 

aktiviti perencatan yang  setara dengan aktiviti perecatan ubat piawai, galantamin. 

Kelakuan yang sama turut diperhatikan bagi sebatian 3j, 5j, 7j, 9h dan 11j dalam 

perencatan BChE. Suatu analisis permodelan molekul, ‘in silico’ dengan  

menggunakan struktur  kristal  Torpedo californica AChE (TcAChE) dan BChE 

(hBChE) manusia telah digunakan untuk mendedahkan orentasi dan mekanisma 

interaksi pengikatan bagi sebatian aktif masing-masing dalam gaung tapak aktif 

reseptor AChE dan BChE. Simulasi dinamik molekul terhadap siliko telah digunakan 

untuk mendapatkan maklumat bagi mencirikan interaksi antara sebatian aktif AChE 

dan BChE masing masing. Kestabilan kompleks ligan-protein telah dinilai 

berdasarkan dasar sisihan min persegi RMSD. Dalam kajian ini, nilai RMSD bagi 

sebatian aktif yang telah dikompleks  masing masing  dengan AChE dan BChE, 

adalah kurang daripada nilai RMSD bagi enzim kolinesterase tak kompleks. 

Keputusan ini menunjukkan bahawa konformasi kompleks ligan-protein telah 

mencapai keseimbangan dan mengurangkan perubahan disebabkan oleh ikatan yang 

kuat untuk mengikat protein dan sekaligus menyebabkan perencatan enzim 

kolinesterase. Semua keputusan ini adalah konsisten dengan permerhatian assai 

biologi. 
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CONVENTIONAL ORGANIC SOLVENTS AND IONIC LIQUID 

MEDIATED SYNTHESIS OF NEW AZOMETHINE COMPOUNDS AS 

POTENT CHOLINESTERASE INHIBITORS 

 

ABSTRACT 

 

      Five new series of azomethine derivatives were synthesized by condensation of 

substituted benzaldehydes and amino derivatives in ethanol a conventional organic 

solvents and a green ionic solvent, 1-butyl-3-methylimidazolium bromide       

([bmim]Br), respectively.  The green ionic solvent [bmim]Br, due to its remarkable 

catalytic effect has several remarkable advantages over ethanol in terms of high 

product yields and short reaction time. Condensation reactions performed in an ionic 

solvent had resulted in a significant increase in product yields ranging from             

18 to 29 % and 6-15 times decrease in reaction time as compared to similar reactions 

performed in ethanol.  The azomethines were characterized using elemental analysis, 

FT-IR, 1-D and 2-D NMR spectroscopy as well as X-Ray crystallography. The 

synthesized compounds were also evaluated for their potency against Alzheimer’s 

disease using the Ellman’s colorimetric assay. In this assay, the cholinesterase 

inhibitory activities of the aforementioned compounds were screened in vitro against 

acetylcholinesterase (AChE) of electric eel and butyrylcholinesterase (BChE) 

extracted  from equine serum, both of which play a major role in the manifestation 

and progression of Alzheimer’s disease. The results revealed that azomethine 

derivatives in series 9 displayed relatively better AChE inhibitory activities than 

those in series 3, 5, 7 and 11. This observation   is presumably due to the presence of 

three aromatic cores in compounds series 9, which may facilitate the insertion and 
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accommodation of these compounds in the AChE active site gorge. However, 

compounds of series 5 are also composed of three aromatic cores, but the presence of 

a carbonyl moiety in the structure of these molecules plausibly hinders their insertion 

and positioning in the active site gorge of the AChE enzyme. Besides, in term of 

AChE inhibition compounds 3g, 3j, 5j, 7f, 7g, 7j, 9f, 9h, and 11h showed high 

inhibitory activities which are comparable to the inhibitory activity of the standard 

drug, galanthamine. A similar observation was seen for compounds 3j, 5j, 7j, 9h and 

11j in BChE inhibition. An in-silico molecular modeling analysis was also employed 

by using the crystal structure of Torpedo californica AChE (TcAChE) and human 

BChE (hBChE) to disclose the orientation and binding interaction mechanism of the 

active compounds inside the active site gorge of AChE and BChE receptors, 

respectively.  Molecular dynamics (MD) simulation on silicon were used to obtain 

information in order to characterize the interactions between the active compounds 

and the related protein AChE and BChE, respectively. The stability of the ligand-

protein complexes was evaluated based on their root mean square deviation (RMSD). 

In this study, the RMSD values of the active compounds, which complexed with 

AChE and BChE, respectively are less than those of the uncomplexed cholinesterase 

enzymes. This result indicates that the conformations of the ligand-protein 

complexes had achieved equilibrium and exhibit low fluctuation due to strongly tied 

up and binding with related proteins, thus leading to the inhibition of the 

cholinesterase enzymes.  All these results are consistent with the observation in the 

biological assays. 
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                                                    CHAPTER ONE 

 

INTRODUCTION 

 

1.1.  Ionic liquids  

Currently, solvent-free reactions are the subject of considerable interest because of 

its advantages such as ease of the experimental procedure as well as workup, low 

cost, possibility of using acid or base sensitive substrates and environmentally benign 

processes [1, 2]. 

 

Ionic liquids are a class of novel solvents with very interesting properties including 

non-volatility, non-flammability, high thermal stability, high polarity because of their 

ionic nature, recyclability, non-contaminating nature and ability to dissolve a wide 

range of polar and non-polar materials [3]. The interesting behaviour of ionic liquids 

lies in the fact that they can be re--used after simple washing with a suitable solvent, 

thus rendering the process more economical. 

 

The principle application of ionic liquids has been used as alternative solvents for 

synthesis and catalysis [4] and these solvents are found to be promising solvents in 

many of the organic reaction such as Diels-Alder, Bails-Hillman, Heck Reaction, 

esterification, isomerization reactions and many coupling reaction [5]. 

 

Researchers have demonstrated that there have been few other data on quantitative 

studies of nucleophilic substitutions in ionic liquids [4]. These data are compared to 

related reactions in molecular solvents, and used to show, where ionic liquids do 
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offer advantages over molecular solvents for nucleophilic substitutions. Although 

many experimental results were obtained with better yields in nucleophilic 

substitution reactions from other groups, there has been a controversy regarding the 

enhancement of nucleophilicity in ionic liquid [6]. 

 

1.2 Azomethine 

Azomethine compounds as a bimolecular condensation products of primary amines 

with aldehydes-represent valuable intermediates in organic synthesis and at the same 

time, compounds with various applications [7]. They are important class of 

compounds due to their flexibility, structural similarities with natural biological 

substances and due to presence of imine (-N=CH-) which imports in elucidating the 

mechanism of transformation and rasemination reaction in biological system. These 

compounds could also act as valuable ligands whose biological activity has been 

shown to increase on complexation. Thousands of compounds have been synthesized 

and tested as cholinesterase inhibitors. They belong to different types of organic and 

organometallic classes such as alkaloids, physostigmine, and organophosphorus [8]. 

 

1.3. Definition of Alzheimer’s disease (AD) 

According to the World Alzheimer’s Report, more than 35 million people worldwide 

are affected by Alzheimer’s disease (AD) an irreversible neurodegenerative disorder 

[9]. AD is clinically characterized by vast cognitive impairments, memory loss as 

well as neuropsychiatric symptoms and pathologically characterized by the  presence 

of extracellular β-amyloid plaques and intracellular neurofibrillary tangles [10,11].  
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A cholinergic hypothesis is proposed  in order to clarify how the loss of cholinergic 

cells in the forebrain, cortex and hippocampus of AD patients’ brain causes a severe 

memory loss and cognitive impairments due to dysfunctions in the cholinergic 

neurotransmission system [12]. Acetylcholinesterase (AChE) hydrolase acetylcholine  

in  central and peripheral nervous systems terminates the impulse transmissions from 

the nerve cells to postsynaptic membrane or skeletal muscles and 

butyrylcholinesterase (BChE) is believed to protect AChE by hydrolyzing harmful 

toxins, which may damage or deactivate  the AChE [13]. 

 

Active sites of the two previously mentioned enzymes are positioned at the bottom of 

a 20 Å long, narrow gorge from the enzyme surface with five major regions, which 

can accommodate and hydrolyze a substrate or inhibitor. The structure of BChE is 

very similar to that of AChE, except that  the channel-lining aromatic residues  in are 

BChE mostly replaced by aliphatic ones, such as leucine (Leu) and valine (Val), thus 

making the gorge in  BChE’s more spacious which can accommodate bulkier 

substrates [14].  

 

1.4. Medicinal chemistry 

Medicinal chemistry is the science of discovery and investigation of novel 

therapeutic agents and to develop them into useful drugs [15]. This science includes 

natural product chemistry or isolation of compounds from natural origins, organic 

synthesis chemistry, which involves the  design and synthesis of new drug molecules 

and computational chemistry that relates the structures of molecules to their 

biological activities [16].  
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It is worth to know that modern history of medicinal chemistry began in 1785 with 

the application of foxglove plant in the treatment of dropsy (congestive heart failure) 

in 1785 by Withering [17,18].  

 

1.4.1. Organic synthesis and drug discovery 

There was a rapid advancement in organic synthesis, separation methods and 

biochemical techniques since the late 1940s and a rational approach toward the 

design, synthesis and chemical modifications of organic in order was adopted in 

order to improve their medicinal properties. The lead compounds that are discovered 

is a prototype compound, which has attractive pharmacological specifications along 

with some undesirable properties such as high toxicity, absorption difficulties, and 

insolubility or metabolism difficulties.  

 

A lead compound is methodologically identified via screening techniques or from 

clinical investigations. However, rational approaches to drug design become a major 

route towards the discovery of lead compounds. In this method, firstly, the cause of 

the disease and its relevant biochemical pathways are identified. The natural receptor 

ligands or enzyme substrates are selected as initial lead compounds and their main 

functional groups, which are responsible for the activity of the lead compounds, such 

as pharmacophores and auxophores, which can be identified using 

pharmacodynamics. Eventually, with the aid of organic synthesis, the functional 

groups  of the ligands or enzyme substrates are modified in order to synthesize the 

most appropriate  drugs [19], the ones with optimal biological activities [15]. 
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1.5. Problem statement 

The elimination of volatile organic solvents in organic synthesis is the most 

important goal in green chemistry. One of the most efficient protocols to reach this 

aim is the substitution of volatile solvents with ionic liquids [20]. In recent years, 

ionic liquids have received increasing attention as benign reaction media in organic 

synthesis due to their unique properties. Work has tended to focus on using ionic 

liquids to synthesize various compounds and investigate their potential therapeutics 

properties for different diseases such as Alzheimer’s disease. 

 

Treatments of AD suffers from a shortage of clinically approved drugs, which are 

limited to a few cholinesterase inhibitors such as donepezil, galanthamine, 

rivastigmine and  huperzine A, all of which with  low to moderate clinical efficacy, 

and one N-methyl-D-aspartate receptor antagonists (e.g. memantine), which its 

efficacy is not approved [21]. These severe limitations of potent cholinesterase 

inhibitors, has prompted scientists worldwide to design / search for new inhibitors. 

It’s clearly known that organic synthesis is a great tool to prepare a library of drug 

and their further modifications to amplify desired activities and minimize their 

inappropriate characteristics using for medicinal properties [15,22]. In the present 

study, new azomethines derivative were synthesized and evaluated for their 

cholinesterase enzymes inhibitory activities, Their molecular interactions and 

orientation with cholinesterase were studied using an in silico molecular docking and 

molecular dynamics simulation.  
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1.6. Objectives: 

Objectives of this work are as follows: 

1. To compare the solvent efficiency using ethanol and an ionic solvent in the 

synthesis of five series of new azomethine derivatives. 

2. To elucidate and characterize the structures of the newly synthetic 

compounds using elemental analysis as well as FT-IR, 1D, 2D NMR 

spectroscopy and  determine  the exact configuration of some derivatives by 

X-ray crystallography. 

3. To evaluate the in-vitro inhibitory activities of the synthesized azomethine 

derivatives against acetylcholinesterase and butyrylcholinesterase enzymes.  

4. To investigate the conformations of selective synthetic compounds and 

binding mechanism of these compounds with cholinesterase enzymes using 

molecular docking studies. 

5.  To study the microscopic interaction between selective synthetic compounds 

and cholinesterase enzymes using molecular dynamics simulation (MD). 
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CHAPTER TWO 

Literature review 

 

2.1.  Formation of azomethines  

 Structurally, an azomethine  is a nitrogen analog of an aldehyde or a ketone where in 

the carbonyl group (C=O) is replaced by  azomethine or imine moiety [23]. This 

class of compounds are usually prepared by condensation of an aldehyde or ketone 

with a primary amine (R-NH2) as depicted in Scheme 2.1. Azomethine is an 

important subset of aldimines, in which the substituent on the nitrogen atom (R') is 

an alkyl or aryl group. 

 

Scheme 2.1. Condensation of a primary amine (1) with an aldehyde (2) or ketone (3) to form 

an azomethine (4) 

 

In the case of reacting a primary amine (1) with an aldehyde  (2), wherein R1 and R2 

can be alkyl or aryl moieties and R3 is H however,  by using a  ketone (3) as a 

reactant, all R1, R2 and R3 can be alkyl or aryl moieties.  

 

It is  worth mentioning that azomethine containing aryl substituents are basically 

more stable as well as more convenient to synthesize than those having alkyl 

substituents, which are also relatively unstable [24]. 
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2.2. Synthesis of azomethines 

The first synthetic methodology reported by Hugo Schiff involved the condensation 

of a carbonyl compound with a primary amine under distillation. In general, the 

formation of azomethines  is a reversible reaction and it is acid or base catalyzed, or 

with heating. The reaction can be accelerated by constant separation of the product or 

by removal of water. Molecular sieves and in situ methods using dehydrating 

solvents such as tetramethyl ortho-silicate or trimethyl ortho-formate, are then used 

to completely remove water formed in the system [25]. 

The mechanism of azomethine formation is a nucleophilic addition of a primary 

amine (1) to the carbonyl group of an aldehyde (2) or a ketone (3). An unstable 

alcohol, carbinolamine (4a), is formed as an intermediate subsequently 4a, undergoes 

dehydration to give the final product (4). 

 

Scheme 2.2. Acid catalyzed formation of an azomethine 
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The dehydration of the carbinolamine at neutral pH is the slowest and therefore, the                

rate-determining step of azomethine formation. However, under mild acidic 

conditions, amine attack is the rate-determination step as shown in Scheme 2.2. [26]. 

 

2.3. Biological importance of azomethine 

Azomethines exhibit a wide range of biological activities, such as antifungal, 

antibacterial, antimalarial, anti-proliferative, anti-inflammatory, antiviral as well as 

cholinesterase (enzyme) inhibition.  

 

2.3.1. Antifungal activity  

Some promising antifungal azomethines are shown in (Figure 2.1(.                          

N-(Salicylidene)-2-hydroxyaniline 5 at 500 ppm was found to inhibit the growth of  

Alternaria brassicae and Alternaria brassicicola by 67-68%. These fungi severely 

affect cruciferous crops (e.g. broccoli, cauliflower, mustard, cabbage and radish) 

[27]. Chitosan-derived azomethine such as 6 and 7, could inhibit the growth of 

Botrytis cinerea and Colletotrichum lagenarium by 26–33% and 35–38%,  

respectively when used at  1000 ppm [28].   

 

Azomethines with a 2,4-dichloro-5-fluorophenyl moiety, such as 8 and 9 could 

inhibit the growth of fungi of clinical interest, such as Aspergillus fumigatus, 

Aspergillus flavus, Trichophyton entagrophytes and Penicillium marneffei. The MIC 

values for these compounds were in the range of 6.3-12.5 µg/mL, and they are  as 

potent as the referenced drug  fluconazole [29].  
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Figure 2.1. Antifungal azomethines 

 

2.3.2. Anti-bacterial activity 

Azomethines are also reported to show potent antibacterial activities (Figure 2.2).                  

N-(Salicylidene)-2-hydroxyaniline 5 showed good inhibition against Mycobacterium 

tuberculosis H37RV, with a MIC value of 8 µg/mL [30]. The 5-chloro-

salicylaldidene azomethines 10–13 obtained from condensation of 5-chloro-

salicylaldehyde and primary amines, showed significant inhibitory activities against 

Pseudomonas fluorescence, with MIC values ranging from 2.5 to 5.2 µg/mL. The 

MIC value for the standard drug, kanamycin, is  3.9 µg/mL [31].  
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Figure 2.2. Antibacterial azomethines 

 

An antibacterial study performed by Pandeya and colleagues 1999 on 28 bacteria of 

clinical importance had disclosed that azomethine  14 had remarkable inhibition 

against E. coli, Vibrio cholerae, Enterococcus faecalis and Proteus shigelloides with 

a MIC value of 2.4, 0.3, 1.2, and 4.9 µg/mL, respectively. The MIC values for 

sulphamethoxazole as standard drug against the same bacterial strains were only 312-

5000 µg/mL. Thus, compound 14 was significantly more potent than 

sulphamethoxazole [32]. 
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2.3.3. Antiviral activities 

2[1-[(3'-Allyl-2'-hydroxybenzylidene)amino]-3-hydroxyguanidine] is a substituted 

salicylaldehyde azomethine derived  from 1-amino-3-hydroxyguanidine tosylate are 

good substrates to design new antiviral agents. From this family, compound 15      

(Figure 2.3) showed very good inhibitory activity against mouse hepatitis virus 

(MHV) with an IC50 value of 3.2 µM [33]. 

 

Sriram and colleagues in 2006 have recently reported the synthesis and antiviral 

activities of abacavir-derived azomethines 16-19. Abacavir is an analogue of 

nucleoside, which is capable of inhibiting the activity of reverse transcriptase, and 

used to treat human immunodeficiency syndrome (AIDS). These compounds were 

significantly effective against the human immunodeficiency virus-type 1 (HIV-1). 

The effective concentration (EC50) necessary to achieve 50% protection of human 

leukemic cells (CEM) against the cytopathic effect of HIV-1 of these abacavir-

derived azomethine was lower than 6 µM. Notably, compound 18 was the most 

potent azomethine, with an  EC50  value of 50 nM. Compound 18 is toxic to CEM 

cells at concentrations higher than 100 µM, indicating its potential as a lead 

compound in the  design of new anti-HIV drugs [34]. 
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Figure 2.3. Azomethines with potent antiviral activities 

 
2.3.4. Cholinesterase inhibitory activities 
 
Chan et al., 2012 reported the cholinesterase inhibitory activities of Cu(II) complexes 

derived from 2-(diphenylmethylene) hydrazinecarbothioamide azomethines. Were  

These complexes  showed potent inhibition with IC50 values  lower than 10 µM, 

where in  complex 20, exhibited  the highest AChE and BChE inhibition with an  

IC50 value of 2.15 μmol/L and 2.16 μmol/L, respectively [35]. 
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Figure 2.4.  Metal coordinated azomethine as a cholinesterase inhibitor 

 

 

2.4. Ionic liquid mediated organic synthesis 

Ionic liquids (ILs)  are solvents of interest in synthetic organic chemistry due to their 

non-volatile nature, potential for recycling, ability to dissolve a variety of organic, 

inorganic, and metal complex materials, and especially due to their ability to activate 

various reactions [36]. Several commercially available ILs are shown in            

(Figure 2.5). 

 

One of the main advantages of ionic liquids is their low, almost negligible, vapor 

pressure as compared to volatile and hence hazardous organic solvents. The strong 

ionic (Coulombic-) interactions in these substances result in the formation a 

negligible vapor pressure (unless decomposition occurs), a non-flammable, and a 

thermally, mechanically as well as electrochemically stable product. In addition to 

this very interesting combination of properties, and immiscibility with water or 

organic solvents that result in biphasic systems. This has prompted the claim that 

ionic liquids are environmentally benign, “green” solvents. The possibility to 

conduct chemical, biochemical, and analytical processes in an ionic, low 

coordinating, and highly solvating environment over a wide temperature range has 



15 
 

contributed to the enormous growth and expansion of the field of ionic liquids for 

use primarily as alternative solvents in organic reactions. Unlike conventional 

molecular solvents, the structures of ionic liquids can be modulated with ease. Thus, 

application of “task-specific” ionic liquids can provide additional benefits to  a 

variety of processes [37]. 

 

 

Figure 2.5. Commercially available ionic liquids  

 

The choice of the cations has a strong impact on the properties of ionic liquids, 

which often determine their stability. The chemistry and functionality of an ionic 

liquid is generally controlled by the choice of the anions. The combination of a broad 

variety of cations and anions has led to a theoretically possible number of 1018 ionic 
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liquids. However, a realistic number will be smaller. Today, about 1000 ionic liquids 

have been reported in the literature, and approximately 300 are commercially 

available. It is worth mentioning that cation and inorganic anions such as [AlCl4]−, 

[BF4]− or [PF6]− exist in  a liquid state at room temperature. Ionic liquids based on 

imidazolium cation are especially favorable in  various industrial applications [38].  

 

 

2.4.1. The role of medicinal chemistry in Alzheimer’s disease 

The drug discovery for AD is complicated due to unclear origin and cause of the 

disease. However, based on the cholinergic hypothesis of AD, it was the first theory 

proposed to explain this disease. Thus, many commercially available drugs, which 

improve the symptomatic effects of this disease are cholinesterase inhibitors [15]. 

Donepezil the most common example, incorporates indene’s core structure that 

effectively inhibits the enzyme and has been used to treat patient with  mild to 

moderate AD [39]. Recent works have showed that monoamine oxidase (MAO) 

inhibitors may also be useful in the treatment of AD. An example of which is indene 

ladostigil. This compound includes a carbamate group associated with AChE 

inhibitory activity and a propargyl moiety, which is the active functional group in 

MAO inhibitors [40]. 
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2.5. Alzheimer’s disease 

2.5.1.   Fact and figures 

There are an estimate of 35.6 million people worldwide living with dementia, based 

on the World Alzheimer report in 2012 [9]. This number is estimated to reach 65.7 

million by 2030 and 115.4 million by 2050 [41].  Alzheimer’s disease (AD) is the 

most prevalent form of dementia. It accounts for 60 to 80 % of dementia cases in the 

old population [42]. Researches showed that men are less affected by AD and other 

dementias than women are. According to findings, 16% of women at the  age of 71 

and older suffer from AD or other dementias as compared to 11% of men [43]. This 

phenomenon is probably due to the fact that women live longer than men [44]. 

Researchers also revealed that people with higher years of education seem to be at a 

lower risk for AD and other dementias [45].  

 

2.5.2. Clinical symptoms of Alzheimer’s disease 

Severe impairments of cognitive abilities ensue AD, such as short-term and long-

term memory losses, difficulty in planning for routine life and solving problems, 

confusion with time or disorientation in spaces as well as withdrawal from work and 

common social activities. However, at advanced stages of AD, patients also show 

abnormal behavioural activities including agitation, anxiety, delusion and depression 

that finally result in morbidity and mortality [46]. 

 

2.5.3. Pathology of Alzheimer’s disease 

The hippocampus is the area of the human brain, where it is mostly affected             

in patients with AD (Figure 2.6). The main and dominant pathological changes of the 



18 
 

brain, is the accumulation of β-amyloid (Aβ) plaques outside the neurons and 

neurofibrillary tangles, inside the neurons can be mostly found in this region.  

 

 
Figure 2.6. Schematic representation of healthy brain and severely affected AD brain  

 

The β-amyloid plaques first appear in the frontal cortex, and then spread over the 

entire cortical region, while insoluble tangles initially appear in the limbic system 

and then progresses to the cortical region [10]. Atrophy and shrinkage of the parietal 

and temporal lobes of the brain are also observed in-patients with AD. Pathogenesis 

of AD can be explained by the amyloid, tau and cholinergic hypotheses. 

 

2.5.3.1. Amyloid hypothesis 

Accumulation of hydrophobic amyloid-β peptides outside the neurons in the basal 

forebrain due to an over expressed cleavage of amyloid precursor protein (APP) has  

resulted in the aggregation and deposition of insoluble plaques (senile plaques), 

which trigger a cascade of changes inside the brain, thus  causing neuronal death and 

domination  of  AD [47]. 
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Figure 2.7. Formation of β-amyloid plaques from an over-expressed cleavage of 

APP [48] 

 

Cholinergic neurotransmission in the basal forebrain is plausibly impaired by these 

neurotoxic plaques [49] a causal factor for cognitive symptoms of AD [50]. 

However, this plaque load may not correlate with the degree of dementia in humans. 

Studies revealed that many AD patients with severely impaired memory had no 

plaques at post-mortem analysis [51]. On the other hand using MRI techniques, huge 

plaque loads had been  traced in cognitively normal people [52].  

 

2.5.3.2. Tau hypothesis  

High level of mutated tau proteins inside the neurons, will cause the build-up of 

insoluble neurofibrillary tangles, which impair nutrients transportation throughout 

the cell [53]. Tau proteins are structural components that support microtubules in 

addition to transporting nutrients, vesicles and other substantial compositions within 
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this cell. They also stabilize the growth of which is axons, a critical for neurons 

development and growth [54]. In AD patients, these proteins are abnormally hyper-

phosphorylated and generate insoluble deposits within the cell thus contributing to 

cell death. Patients in advanced staged AD suffer from dramatic brain shrinkage due 

to extensive cell losses. This phenomenon begins to show up much longer before 

cognitive symptoms starts to develop and a dementia stage is reached [55].  

  
Figure 2.8. The role of Tau proteins in the formation of fibrillary tangles [48] 

 

2.5.3.3. Cholinergic hypothesis 

Based on the cholinergic hypothesis,  in AD patients’ brain, the activity of the 

enzyme responsible for the synthesis of acetylcholine neurotransmitter (ACh) 

significantly decreases [56, 57]. This phenomenon results in a  decrease in ACh 

levels in hippocampus and basal forebrain of these patients, which leads to 

substantial memory loss and severe cognitive symptoms of AD [12].  
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Figure 2.9. A Comparison of  ACh concentration in a normal and AD afflicted 

human brain [58]  

 

 

 
2.5.4. Cholinesterase enzymes 
 
Cholinesterases (ChE’s) catalyse the hydrolysis of ACh into choline and acetic acid, 

which is an essential process to regulate cholinergic transmission inside the human 

brain. Acetylcholinesterase (AChE; EC 3.1.1.7) and butyrylcholinesterase (BChE; 

EC 3.1.1.8) (Figure 1.10 ) are the two ChE enzymes which exist in mammalian 

bodies [59].  
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Figure 2.10. Representation of Torpedo california AChE (left) and human BChE 

(right) [60]  

 

2.5.4.1. Physiological functions of cholinesterase enzymes.  

Acetylcholinesterase (AChE) plays an important role in the central and peripheral 

nervous systems. AChE terminates cell to cell nerve impulses transmissions through 

synaptic clefts and even nerve to skeletal muscles messages through fast hydrolysis 

of ACh [61].  

Butyrylcholinesterase (BChE) is a non-specific enzyme, of which its physiological 

functions is still unclear. It has been supposed to hydrolyze herbal toxicants [62].  
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Figure 2.11. Mechanism of action of acetylcholinesterase 

 

2.5.4.2. Structural specifications of AChE and BChE  

The active sites of AChE and BChE enzymes are located at the bottom of a 20 Å 

cavity named as “aromatic gorge”. Substrate or inhibitor transportation inside the 

aromatic gorge of AChE is facilitated by hydrophobic interactions with residues 

having aromatic side chains such as phenylalanine (Phe), tryptophan (Trp) and 

tyrosine (Tyr) [63]. However, in the active site of BChE, these aromatic residues are 

replaced with residues bearing hydrophobic side chains such as leucine (Leu) and 

valine (Val). Thus, active site of BChE is more spacious and non-specific to 

accommodate bulkier substrates [14].  
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2.5.4.3. Active sites of AChE and BChE enzymes 

Active sites of AChE and BChE are classified into five regions, namely (i) catalytic 

triad, (ii) oxyanion hole, (iii) acyl pocket, (iv) choline binding site, and (v) peripheral 

anionic site.  

 

Catalytic triad (CT) is the major site of both enzymes and it catalyses the 

acetylcholine hydrolysis. CT is composed of Ser200, His440 and Glu327 amino 

acids in TcAChE and His438, Ser198 and Glu325 in hBChE [64]. Its mechanism of 

action is probably via nucleophilic addition of the hydroxyl group in serine to the 

carbonyl moiety of acetylcholine, thus resulting in an acyl-enzyme intermediate that 

is further hydrolysed to choline and acetic acid (Figure 2.12).  

 

 

Figure 2.12. Acetylcholine hydrolysis in AChE active site [65] 

 

 

2.5.5. Cholinesterase inhibitors for symptomatic treatment of Alzheimer’s        

           disease  

Currently, cholinesterase inhibitors (ChEI’s) are mainly prescribed for symptomatic 

treatment of AD patients. This method is the most promising and widely used to 

ameliorate cognitive impairments in these patients.  
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