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PE;\,GUKUHAi'i GETAH ASLI DA;\' GETAH ASLI TEREPOKSIDA DENGAN 

SILIK.\ TER'\ \V A T Al\'tINA 

ABSTRAK 

Pengkajian mengenai kesesuaian penggunaan silika terawat amma untuk 

pengukllhan getah-getah S\riR-L, E~TR. 25 dan E~'R 50 telah dilakukan. Silika terawat 

amina disediakan melalui proses perawatan amina, dimana silika normal dirawat 

didalam larutan butilamina dengan pH yang tertentu. 

Kajian yang terperinci dilakukan untuk membandingkan kesan pengukuhan 

silika terawat amina dengan kesan-kesan pengukuhan daripada silika normal dengan 

TESPT, silika normal sahaja., dan hitam karbon keatas sifat-sifat tensil,mekanikal, dan 

penuaan daripada getah-getah tersebut. Silika terawat amina didapati memberikan 

waktu pematangan yang lebih pendek jika dibandingkan dengan silika dengan TESPT, 

dan silika sahaja., dan mendekati waktu pematangan vulkanisat berpengisi hitam karbon. 

Kajian ini pula mendapati, silika terawat amina apabila disebatikan dengan getah SMR­

L, menunjukkan sifat-sifat tensil mekanikal dan penuaan yang lebih baik jika 

dibandingkan dengan pengisi-pengisi lain. Apabila disebatikan dengan getah-getah 

ENR, silika terawat amina menunjukkan sifat tensil, rintangan lelasan dan penuaan yang 

lebih baik jika dibandingkan dengan silika dengan TESPT,dan silika sahaja., dan 

didapati sifat-sifat diatas yang kurang baik berbanding dengan hitam karbon. 

Kajian mengenai keberkesanan pengukuhan pengisi-pengisi keatas getah-getah 

itu menunjukkan bahawa keberkesanan yang lebih tinggi daripada silika terawat amina 

adalah disebabkan oleh saiz partikal yang lebih kecil dan penyebaran yang lebih merata 

didalam vulkanisat getah-getah itu jika dibandingkan dengan silika normal. 
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REINFORCEMENT OF NATURAL RUBBER AND EPOXIDIZED NATURAL 

RUBBERS \VITH AMINE-TREATED SILICA 

ABSTRACT 

The feasibility study of utilising amine-treated silica on reinforcement of S~fR­

L, E~"R 25 and ENR 50 by using semi-efficient (semi-EV) system was carried out. The 

amine-treated silica was prepared by treating normal silica filler in a butylamine 

solution with a certain pH. 

An investigation was carried, out to compare the reinforcement effect of amine­

treated silica with that of normal silica with and without the addition of bis 

(triethoxysilylpropyl)tetrasulphide or TESPT, and with that of carbon black (HAF 330) 

on cure characteristics and properties of those rubbers. It was found that amine-treated 

silica gave shorter cure time than normal silica with and without the addition ofTESPT, 

and closer cure time to carbon black. . 

It was also found that amine-treated silica showed better tensile strength, mechanical 

and ageing properties than other fillers, when compounded with SMR-L. On ENRs, 

amine-treated silica caused better tensile properties, abrasion and ageing resistances 

than normal silica with and without the addition of TESPT, and a little poorer in those 

properties than carbon black. 

Investigation on reinforcing efficiencies of those fillers on the rubbers found that 

the higher reinforcing efficiency of amine-treated silica is attributed to smaller particle­

size and better dispersion of amine-treated silica in the rubbers phases when compared 

with normal silica with and without TESPT. 
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1.0. L\TRODUCTION. 

1.1. Introduction to filler reinforcement. 

Generally, the definition of filler reinforcement is the enhancement of 

mechanical properties, such as stiffi1ess, tensile strength, tear and abrasion resistances, 

of the rubber products resulting from the incorporation of a filler. 

A practical definition of reinforcement is the enhancement in service life of 

rubber articles. Rubber articles fail in numerous ways, one of the most important being 

rupture failure accelerated by fatigue processes, such as occurs during the wear of a tire 

tread. The enhancement in road wear resistance of tire tread resulting from the use of 

particulate filler in rubber is the most important example· of filler reinforcement 

(\lullins, 1963). 

1.2. Reinforcement concepts. 

Fillers are usually used to enhance the mechanical properties of rubber 

vulcanizates such as tensile strength (TS), resistance to abrasion, tearing and flexing or 

cheapen the cost of product. However, fillers also affect the viscoelastic properties and 

stiffuess of rubber compound. 

Based. on their reinforcing effect on rubber properties, fillers can be divided into 

three groups: reinforcing, semi, and non-reinforcing fillers. Reinforcing filler is used to 

improve tensile strength, modulus, resistance to abrasion, tearing and flexing. Carbon 

blacks and silicas are the most popular reinforcing fillers for rubbers (Bueche, 1965; 

Hom. 1971). Non-reinforcing filler is used to cheapen the cost of a product and improve 
, 



the processability. It also increases hardness, reduces tensile and tear strengths, 

resistance to abrasion, and also resilience. Clays, calcium carbonate, barium sulfate, etc. 

are classified as non-reinforcing filler for rubbers (Horn, 1971; Thorn & Robinson, 

1994). 

The most important feature of rubber reinforcement by fillers is the size of the 

filler particles (Kraus, 1965). Based on their particle-sizes, Hepburn (1984) has 

classified fillers into four group:;;, as shown in Table 1.1. 

Table 1.1. Particle-sizes for rubber reinforcement. (Hepburn, 1984). 

No. Particle-sizes Reinforcing Effects 

1 Particle> 5,000 nm Degrade rubber 
.. 

2 Particle between 1,000 - 5,000 nm Have little effect on strength hence 

large volumes can be used with little 

degradation of rubber. 

! .., 
~ Particle < 1,000 nm Reinforce 

I 

4 "Real reinforcing agents" Particle < 100 nm 

I 

Some theories of rubber reinforcement have been accepted to elucidate the 

mechanism of filler reinforcement and described as follows; 

ra). Hvdrodvnamics theories o(Smal/wood and Guth 

'One of the most obvious changes which occurs when filler is dispersed in rubber is a 

stiffening, as expressed by the equation, (Guth, 1945): 

E = Eo ( 1 ... 2.5 ~ + 1.41 ~2) (1.1) 

2 



where: 

E = Young's modulus of filled vulcanizate at low extension in the linear region. 

Eo = Young's modulus of gum vulcanizate. 

~ = Volume fraction of filler. 

Equation (1.1) is suitable for non-reinforcing filler such as calcium carbonate, or 

clays. However, for semi - reinforcing filler (fine thermal black) the equation (1.1) fitted 

the data for up to volume fraction 0.3. For high reinforcing filler, this equation is not 

suitable, therefore, the shape ~actor ( f) must be used and the equation is modified as 

follows: 

E Eo ( 1 + 0,67 f~ + l.41 r\j>2) (l.2) 

in wIDch: 

f = the shape factor, defined as the ratio oflength over diameter of shaped particles. 

For examples, with carbon black type HAF, f= 6 (Boonstra, 1971). The equation gives 

good agreement with experimental values. 

(b).Strain - amplification theorv oU'yiullins (J3oonstra, 1971). 

The modulus or stiffuess is related to crosslink density by the well-known formula of 

the kinetic theory of elasticity, in its simplest form: 

cr = vkT(a - lIa2
) (l.3) 

where: cr = the stress / modulus 

a = the extension ratio. 

v = the crosslink density of rubber vulcanizate. 

k T = the Boltzmann constant and the absolute temperature. 

3 



According to the equation, the modulus or stiffness at a certain extension ratio 

and at a given temperature can only be increased by increasing "v" the crosslink density. 

The addition of a reinforcing filler increases modulus, so its effect is the same as an 

increase in crosslink density. 

(cI.Blanchard anu' Parkinson mechanisms. 

Reinforcing fillers can cause important changes in the nahrre of the rubber network. 

These changes involve the f~nnation of weak and strong linkages between segments 

and particle surface sites. It was concluded that the strong rubber - filler linkages were 

most important in characterising reinforcing properties. Since most of the weak linkages 

were broken at low strains, their effect on reinforcing properties was considered to be 

small. Morever, the surface character of the filler will determine the number of strong 

rubber - filler bonds, both high surface area and high surface activity should lead to 

good reinforcing effect (Dannenberg, 1975). 

(d).Bueche's jnterparticf~ chain breakage mechanism. 

Bueche (1965) has proposed a mechanism of stress softening and reinforcement based 

on the simple concept of the breakage of network chains, or their attachments to 

adjacent filler particles during extension. Firstly, at small elongations, the shorter chains 

",ill rupture. Since the stress on a chain before rupture is large, it contributes greatly to 

the stiffness (modulus). Chain broken on the first stretch 'will not be able to affect 

stiffness on the second stretch and softening ( Mullins effect) will occur. The breakage 

of a single chain between particles causes the stiffness/the stress to be distributed which 

is attached to the filler particles, in another word, filler particles act as a load distributor. 



eel. .\;folecular slippage mechanism. 

Hom\'ink (1965) has proposed a mechanism of reinforcement which explains the 

complex mechanical properties of reinforced vulcanizates. Under stress, the surface­

adsorbed network segments move relative to the surface, accommodating the imposed 

stress and preventing molecular rupture. Because of this slippage process, the stress is 

redistributed to neighbouring molecules. The stress redistribution results in molecular 

alignment and increased strength. Firstly, tIlls process absorbs strain energy and then 

dissipates it by slippage a frictional heat, in this way, acts as a source of hysteresis. 

1.2.1. Degree of reinforcement. 

The degree of reinforcement provided by fillers depends on a number of 

variables, the most important of which is the development of a large rubber - filler 

interaction. The interaction is dependent on the following factors (Boonstra, 1973); 

1. The surface area of the filler particles. This is directly related to the particle size. 

The lower the particle-size, the higher the surface area, the higher is the degree of 

reinforcement. The effect of filler particle-size on rubber properties is shown in 

Table 1.2. 

2. The chemical and physical natures of the particle surface and of the rubber. 

Elastomer of a polar nature such as neoprene, nitrile rubber, etc. will interact 

strongly with filler surface having dipole such as OH and COOH groups or chlorine 

atoms (Boonstra, 1973) 

3. Geometrical factors, are 

a The "structure" or shape of the filler. The particles are bound together in 

aggregates. This aggregation is called primary structure. Secondary structure is 

5 



the agglomeration of aggregates due to Van der Waals forces. The effect of 

structure on rubber properties is shown in Table 1.2. 

b. The porosity of the filler. Silicas are generally more porous than carbon blacks, 

thus silicas give higher viscosity compounds at equal volume loading, and also 

Vvill absorb accelerators, and make them less effective than a nonporous filler 

would (Barlow, 1988). 

Table 1.2. Effect of filler particle-size and structure on rubber properties. 

(Bhakuni, et aI., 1989). 

Properties 

Hardness 

Tensile strength 

~[odulus 

Elongation 

Resilience 

DispersJ. oility 

Green strength 

Extrusion shrinkage and 

Die swell 

Decreasing particle-size 

constant structure 

Increasing structure 

constant particle-size 

--------,-----------------------
Increases Increases 

Increases Variable 

Unaffected Increases 

Unaffected Decreases 

Decreases Unaffected 

Decreases Increases 

Unaffected Increases 

Unaffected Decreases 

------------------------
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The degree of reinforcement provided by a filler relatively can be measured 

through its reinforcing efficiency, which in its simplest fonn is given by equation 

(Hashim, et al., 1998): 

Reinforcing efficiency 

in which: 

( MlOOf - MlOOg)/ M]Oog 

M 1001' modulus at elongation 100% of filled vulcanizate 

;\f lOCg modulus at elongation 100% of glUn vulcanizate 

(1.4.) . 

The reinforcing efficiency also can be calculated by using the equation (1.2.) in terms of 

(E - Eo)/Eo. 

Based on the cure characteristics data of a rubber vuIcanizate, which is provided 

by rheograph, reinforcing efficiency can also be calculated by using equation: 

Reinforcing efficiency = (Ml' - ivlg) / Mg (1.5.) 

in which: 

~lt value of ~lma'( - Nlmin of filled vuIcanizate 

:'lg : value of ~lma'( - Mmin of gum vuIcanizate 

High reinforcing efficiency means high rubber - filler interaction, which is 

influenced by the degree of filler dispersion. Better filler dispersion would provide 

greater surface area for rubber - filler interaction. 

The degree of dispersion of filler in the rubber phase is expressed by the equation (1.6.) 

(Lee, 1979; Pal & De, 1982), 

L = T]r - mr ......... (1.6.) 
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in which: 

Tlr M min,f I M min,g 

mr i\ 1 ma'X,f I i\1 ma'X,g 

M min,f the minimum torque of the filled vuicanizate 

i\1 min,g the minimum torque ofthe gumlunfiUed vulcanizate 

M ma'X,f the ma'Ximum torque of the filled vu1canizate 

M ma'X,g : the maximum torque of the gumlunfilled vulcanizate. 

The lower the value of L at particular loading, the better is the dispersion of the filler in 

the rubber vulcanizate. 

1.3. Silica as a reinforcing fIller. 

Silica can be classified, according to its nature, as natural or synthetic (Nunes, et 

al., 2000). Natural silica is not reinfotcing and has been used only to cheapen cost. The 

synthetic ones are reinforcing and nowadays have comparable particle-sizes to carbon 

blacks. 

At the surface, synthetic silicas end in siloxane groups ( Si - 0 - Si ) and one of 

the several fonTIS of silanol groups (Si-OH). All synthetic silicas are amorphous and 

have a SiOH type chemical composition. Silicas can also be cl~sified, according to the 

production method, into three groups; pyrogenic silica, obtained by high temperature 

processes (thermal or electric), silica gel, and precipitated silica. Silica obtained by high 

temperature process is costly whereas silica obtained by precipitation process is cheaper 

and has been more frequently used as reinforcing filler. 
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Each panicle of synthetic silica is composed of four different layers (Boonstra, 

et al., 1975; Wason, 1987). The first one is a random polymer formed by Si02 units 

completely involved by silanol groups (second layer). Water molecules strongly 

hydrogen-bonded to the silanol groups fonn the third layer. At the outer part of the 

fourth layer, ,vater physically adsorbed is found and can be removed by heating at 105 

0c. Water hydrogen-bonded to silanol groups can be eliminated at temperatures in the 

range 105 - 200°C. The hydrogen-bonded silanol can be progressively removed by 

heating at temperature in the. range 200 - 600°C. The isolated silanol groups are 

thermally very stable, their loss coinciding with slow silica sintering after several hours 

of heat treatment at 1000 0c. 
-

Addition of synthetic silica to some polymers results in changes. in ,their 

mechanical and rheological properties, which are related to particle-size and density of 

silanol groups at its surface (Boonstra, et al., 1975). 

1.3.1. Introduction to silica reinforCement. 

Besides carbon blacks, silicas of varying fonns and particles-sizes have been 

widely used as reinforcing fillers in rubber industry today. In general, the properties of 

silica-reinforced rubbers are usually inferior to those of carbon blacks, even when they 

are of comparable size (Pinter & Me. Gill, 1978). This is attributed to apparent 

dissimilarity of surface chemistry of both of them. Each type of filler produces useful 

rubber properties as a result of its specific surface chemistry. However, due to the polar 

, nature and relatively inert nature of its surface, silica provides a unique combination of 

tear strength. abrasion and ageing resistances, and also adhesion properties (Wagner, 

1981; Fetterman, 1986). 
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The mam application of silica is in products where black colour is not a 

requirement e.g. shoe soles (Davies, 1994). It is also used, in combination with carbon 

black, in chipping and cut-resistance tyres for earthmovers and mining vehicles. 

In order to use silica as a reinforcing agent effectively in the mbber industry, 

two basic feanrres associated with silica in mbber must first be well understood. Those 

features are the influence of silica on mbber vulcanization, and the silica - mbber 

interaction. 

l.3.1.1. The influence of silica on rubber vulcanization. 

Due to the presence of numerous silanol groups on its surface, silica is· ,a highly 

polar material and can readily interact with zinc oxide during curing. Figure 1.1. 

illustrates how silica interacts with stearic acid solubilized zinc. The silica bound zinc 

unable to activate the accelerator. Consequently, zinc activity is reduced and the sulphur 

reaction is retarded. 
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Zinc oxide 

o 
I 

-O-Si-OH 

I 
o 
I 

-O-Si-OH 

I 

Stearic acid 

o + n Zn(OCOCJ7H35n 

I 
-O-Si-OH 

I 
o 
I 

-O-Si-OH 

I 
o 
I 

Silica 

Stearic acid solubilized zinc 

o 
I 

-O-Si-OZnOCOC J7H35 

I 
o 
I 

-O-Si-OH 

I 

Water 

~ 0 + 3 C17H35COOH + (n-2) Zn(OCOR)2 

I 
-O-Si .......... 

I C\. 
o / Zn (R = alkyl) 

-O-~i~ 
I 
o 
I 

Silica bound zinc 

Figure 1.1. Soluble zinc/silica reaction (:Nlukbopadbyay & De, 1979). 

Studying the influence of silica on cure characteristics of rubbers, Fetterman 

(1973, 1984, 1986) concluded that the effect upon cure retardation is directly 

proportional to the total surface area of silica present and the functionality of sulfur is 

dependent on both the particle-size and the total content of silica. Other workers 

(Dannenberg, 1981 ; Wagner, 1981) have reported similar observations. 
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In order to understand better the practical aspects of using silica in rubber 

reinforcement, it is important to review some basic features that are associated with 

silica in rubber as illustrated in Table 1.3. 

Table 1.3. Effect of Hi - Sils (silicas) on rubber properties without Adjustments. 

(Wagner, 1981). 

Hi-SilR EP (HS-400), phr. 20 40 60 80 

Hi-Sil233 (HS-200), phr. 20 40 60 

----- ------------------------
ill-4 (100°C) 14 17 20 27 16 32 91 

ODR at 150°C 

Scorch, min. 2.5 2.5 3.5 9.0 3.0 4.5 5.5 

90% Cure, min. 8.0 9.0 10.0 15.0 9.0 19.0 41.0 

300% Modulus, psi 590 840 1100 1310 580 610 710 

Tensile strength, psi 3350 3260 3000 2840 3640 3480 3200 

Elongation, % 590 . 570 540 500 640 680 600 

Hardness (A) 50 60 65 70 55 65 78 

Tear (Die A), ppi 260 360 460 500 330 510 480 

Goodrich Heat Build-up, °c 1 i 12 18 52 13 43 57 

----------
Formulation - SMR-L, 100; Hi-Sil as indicated; lnO, 5; stearic acid, 1; oil, 10; 

antioxidant, 3; wax, 1.5; sulphur, 2.5; NfBTS, 0.8; DPG, 1.25. 

----------------------------------------

From the data shown, it can be observed that cure rime increases as the loading 

increases. The trend becomes more pronounced with Hi-Sil 233, which IS more 

reinforcing and greater available surface than Hi-Si1R EP (Wagner, 1981). 
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According to Bachmann et al. (1959), the higher the surface area of the filler, the 

greater is the power in absorbing accelerator. This absorption may be due to the 

existence of pores in the individual particles, or even of inter-particle capillaries. 

Generally, the pores are too small to allow rubber molecules to penetrate, and 

consequently do not contribute to reinforcement. 

In order to use silica in a rubber recipe, the cure retardation phenomenon must 

be recognized and overcome. Adjustment of the curative system is a requirement, 

because besides the type of rubbers, curative system also affects the cure characteristics. 

This can be done either by increasing accelerator, addition of glycol or amine, or both 

(Fetterman, 1986). Amine, being one of accelerator activators is an alkaline substance, 

which will increase the pH of rubber compound and increase the cure rate (Long, 1985), 

while one slight disadvantage of using glycol is a reduction in the scorch time 

(Stephens, 1973). 

1.3.1.2. The silica - rubber interaction. 

Carbon black will react with sulfur during vulcanization and form sulfur bonds 

that link the rubber chains and also tie the carbon black on the rubber. This is filler -

rubber crosslinking, another type of crosslink to rubber system, and defined as coupling 

bonds (Fetterman, 1984, 1986). 

In marked contrast to the hydrocarbon functionality of carbon black, silica does 

not react with sulfur, and due to its hydrophilic silanol groups that are relatively 

incompatible with hydrocarbon rubbers, such as NR, thus, coupling bonds will not be 

formed. 

13 



13.2. Silica reinforcement on Natural Rubber (NR). 

The surface properties of silica cause several difficulties in usmg it as 

reinforcing filler, particularly in hydrocarbon rubbers such as NR SBR The surface of 

silica is highly polar and hydrophilic due to the presence of numerous silanol groups. 

These silanol groups are relatively incompatible with NR, and interaction !:>etween them 

is weak. On the other hand, the silica particles tend to interact with each other to fonn 

aggregates. Since the silica - ~m. interaction is weaker than the silica-silica interaction; 

the results are the fOImation of large agglomerates, poor dispersion of silica. 

Due to the nature of its surface properties, silica has a low level of surface 

activity for rubber bonding which results in small amounts of effectively immobilized 

rubber. Because of this factor, a silica reinforced NR has a poorer modulus than a 

carbon black-reinforced one. 

Table 1.4. Comparison of black and silica-filled vulcanizates* of Natural Rubber. 

(Gelling, 1986). 

~! I Properties ! Black 
Silica 

: 
i 
i 

Hardness (IRHD) 
I 

65 69 

I ~:lodulus at 300% (~fPa) 11.9 5.8 I 
I 

Tensile strength (~a) 
I 

29.4 23.2 

I Elongation at break (%) 495 720 

Akron abrasion (mm3/500 rev.) I 21 63 

I Compression set (%) 18 32 
I 
I 

Ring fatigue (0-100%)Kcs. I 70 51 

* 50 phr. silica or N330 black in semi-EV formulation (S 1.5 phr. / ivlliS 1.5 

phr.) cured to optimum at 150°C. 
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Studying the effect of carbon black and silica on the properties of NR as 

illustrated in Table 1.4. Gelling (1986) fOlmd that due to the dissimilarity of the surface 

chemistry of silica and carbon black, marked differences in NR vulcanizate properties, 

such as modulus and mechanical properties were observed. Poorer modulus and 

abrasion resistance of the silica-reinforced N'R seem to be ascribed to a factor of poorer 

surface activity. 

Modulus is a well-recognized criterion of filler reinforcement. High modulus 

performance of filled vulcanizates results in high rupture energy. Compared to carbon 

black, generally, silica reinforced rubbers have poorer modulus, even when they are of 

comparable size (Pmter & Mc. Gill ... 1978). This means that silica has lower reinforcing 

efficiency than carbon black. Puspa (1999), as illustrated in Table 1.5 found that due to 

its lower reinforcing efficiency, silica-filled SBR vulcanizate gives· poorer tensile and 

mechanical properties than carbon black. She concluded that due to the dissimilarity of 

their surface chemistry, silica has different reinforcing effect· than carbon black. The 

lower reinforcing effect of silica is attributed to the weaker bonds and interaction of 

silica with SBR, which resulted in difficult and poorer dispersion of silica in the SBR 

phases. 
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Table 1.5. T ensile properties of filled-vulcanizates* of Styrene Butadiene Rubber. 

Puspa (1999). 

~ 
Silica Carbon black 

I Properties (Vulcasil S) (HAF 330) 
I 

I I Tensile properties 

0.61 0.84 MIOO, iYfPa 
I 

T ensile strength, MPa 5.46 13.33 

Elongation at break, % 942 686 

Mechanical QroQerties 

T ear strength, N/mm 42 48 

Hardness, Shore A 42 65 

, Abrasion, cm3/1000 rev. 0.72 0.55 
I Reinforcing efficiency, RE 0.36 0.87 

Degree of dispersion, L 2.245 0.155 

*Recipe: 100.0 phr. SBR, 4.0 phr. linc oxide, 2.0 phr. Stearic acid, 1.5 phr. 

IPPD, 1.0 phr. CBS, 2.0 phr. Sulfur, 30.0 phr. Filler. 

In order to overcome these deficiencies of silica, coupling agents are used with 

silica in the reinforcement of hydrocarbon rubbers. The most efficient one presently 

kno",n is organosilane (Plueddemann, 1982). 

1.3.2.1.0rganosilanes as coupling agents. 

Organosilanes are utilized to improve silica - rubber interaction of the silica-

filled rubbers and consequently enhance the reinforcing effect of the silica (Gelling & 

Porter, 1988). Organosilanes are reactive additives, and usually utilized in a small 

quantity, less than 2 phr. (Dannenberg, 1981; Hewitt, 1981; Ismail, 2000). The 

organosilanes will modify the surface of silica (Lautenschlaenger & Edward, 1980). The 
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modified silica provides a chemically active surface that can participate ill 

vulcanization, providing coupling bonds between organosilane and both the silica and 

the rubber phases (Ranney & Pagano, 1971; Wagner, 1974). There is much evidence 

confinning the existence of such bonds (Gent, 1974; Goer!, 1997). In all these cases 

marked improvement in rubber properties was noted, as illustrated in Table 1.6 

(Wagner, 1971; Fetterman, 1973; Wagner, 1976; Dannenberg, 1981; Nasir et aI., 1988; 

Nasir et ai., 1989). 

Table 1.6. Effect of coupling agent A189* addition on properties of silica-filled 

Natural Rubber compound (50 phr.) (Dannenberg, 1981) 

. Precipitated PreCipitated Carbon 

silica silica black 

( control) (1.0 phr A189) (N285) 

--------------------

t90 (min.) 22 16.5 13.3 

300% modulus (MPa) 4.6 9.7 23.1 

Tensile strength (!\tlPa) 28.2 33.2 28.8 

Elongation (%) 700 640 400 

Shore hardness (A) 65 65 73 

Tear, Die C (N/mm) 69 96 71 

Set at break (%) 50 50 30 

Goodrich flexometer, /1 T (C) 36.1 19.4 21.7 

Pennanent set (%) 23 8.4 6.2 

* A189 - Union Carbide, Inc., ( (5 - mercaptopropyltrimethoxysilane) 

------------
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Observing the data in Table 1.4, there is a significant improvement in tensile, 

tear and modulus by the addition of mercaptosilane (A189). Compared to N285 carbon 

black compound, the silica with A189 compound had higher tensile and tear strengths, 

but with a substantially lower modulus value. According to Dannenberg (1981), this 

remarkable improvement in properties can be attributed to the ability of the 

organosilane to correct a mnnber of inherent deficiencies of silica including, 

1. the cure retarding effect of acidic silanol groups by converting them to 

mercaptopropylsiloxy .groups 

2. the difficult dispersion of hydrophilic silica by providing a more hydrophobic 

silica which is more compatiple with hydrocarbon rubber 

3. . the low interaction and weak bonding by providing a chemically active surface 

that readily forms silica-silane-rubber coupling bonds. Any enhancement in silica­

rubber interaction consequently reduces secondary filler structures, a characteristic 

phenomenon of silica· rubber systems. 

One of the most widely used organosilanes is Bis(3-triethoxysilypropyl) 

tetrasulfide or TESPT or Si 69. According to Goerl, et al. (1997), the triethoxysily1 

groups of TESPT can react with silanol groups on the silica surface during 

compounding with loss of ethanol, as illustrated in Figure 1.2. 
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Si OH CZHSO\ jOC1HS -CZH50H 

Si OH + C,H,O lSi -(CH,),- S,- (CH,h - Si\ OC,H, ) 

Si OH CzHsO OC2Hs 

SILICA TESPT 

Si 

Si 

Si 

Si 

MODIFIED SILICAJTETRA SULFAL~E 

Figure 1.2. Modification reaction of silica with TESPT (Wolff, 1982). 
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During vulcanization, the rubber-reactive group of the TESPT (e.g. tetrasulfane) tends 

to form silica - TESPT - rubber networkS/bonds. 

Si-O~ / 

Si_/S~ 

TESPT -MODIFIED SILICA 

Si-O~ / 

Si_/S~ 

+ 

SILICA - TESPT - RUBBER COUPLING BONTI 

Sulphur + 

( Accelerator + heat 

RUBBER 

Figure 1.3. The formation of silica-TESPT-rubber coupling bond. (Ismail, 2000). 
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Observing the reaction between tetrasulfane and rubber in Figure 1.3, it is 

clearly seen that the sulfur bridge of TESPT reacts with the a11ylic hydrogens or the 

double bonds of the rubber to fonn sulfur crosslinks. This reaction mechanism is similar 

to the sulfur crosslinking mechanism. So TESPT can be considered as a part of cure 

system, and since it contains sulfur, therefore, it should also be treated as a co-curing or 

curative agent when sulfur cure systems are used. 

Table 1.7. Recipes and properties of SBR mixes and gum vulcanizates. 

(Hashim, et aI., 1998). 

-----------------------

Sample code .Fl F2 F3 F4 

---------------------

Ingredients, phr. 

SBR 100.0 

Zinc oxide 5.0 

Stearic acid 1.5 

~fSAa 0.5 

Sulfur 0.5 

TESPT' 

Properties 

(~fmax-Mmin), kgfcm 2.46 

t9(), min 43 

Kapp, kgf.cmlmin 0.11 

~11 00, r-..Wa 0.51 

Tensile strength, MPa 2.03 

Elongation at break, % 1240 

a },;"-oxydiethy1ene-2-benzothiazolyl sulfenarnide. 

o Bis(3-triethoxysilylpropyl)tetrasulfide. 
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100.0 100.0 100.0 

5.0 5.0 5.0 

1.5 1.5 1.5 

1.0 0.5 1.0 

1.0 0.5 1.0 

5.0 5.0 

5.46 5.75 8.25 

35 40 32 

0.58 0.26 0.74 

0.69 0.74 0.90 

2.05 3.34 2.32 

615 725 420 



Hashim, el al. (1998), reported the use of TESPT as a co-curing agent on SBR 

compounds. They compared the recipes without TESPT with the recipes with TESPT 

and found that TESPT affects the cure characteristics and the tensile properties of SBR 

gum rubber. As illustrated in Table 1.7, recipes Fl and F2 are \l;ithout "I:ESPT, while 

recipes F3 and F4 are with TESPT. By comparing recipes Fl with F3 and F2 with F4, it 

can be observed that TESPT -contained recipes have shorter t90 and significantly higher 

Kapp and value of (Mma'{-~1min). It is obviously attributed to the acting ofTESPT as a 

co-curing agent during curing process which subsequently increases the degree of cure, 

the tensile moduli, and the tensile strength. 

Their firrther study on the effect of TESPT on silica-filled vulcanizates of SBR, as 

illustrated in Table 1.8, also found thatTESPT is a co curing agent, which obviously 

affects the cure characteristics and mechanical and tensile properties of the· silica-filled 

SBR vulcanizates. Except for t90, the scorch time and the torque are reduced and 

increased, by about a factor of two. TESPT produced a stiffer and stronger vulcanizate 

Vtith slightly reduced tear strength but a much better abrasion resistance. 
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Table 1.8. Recipes for conventional silica-filled vulcanizates with TESPT. 

(Hashim, et af., 1998). 

Sample code RSI RS2 

---------------------------------------------------------------------------------------------------------

Ingredients, phr. 

SBR 

linc oxide 

Stearic acid 

IPPDJ 

wIBTSb 

Sulfur 

TESpr 

Silica (VN-3) 

Properties 

Scorch time, min 

~1max-i\ifmin), dNm 

t9(), min 

Kapp. d~p.lImin 

MI00, MPa 

Tensile strength, MPa 

Elongation at break, % 

Relative tear strength 

Abrasion, gll25 rev 

a N-phenyl-N"-isopropyl-p-phenylenediamine. 

b dibenzothiazyldisulfide 

c Bis(3-triethoxysilylpropyl)tetrasulfide. 
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100.C 

5.0 

2.0 

2.0 

1.5 

1.5 

30.0 

16.5 

7.0 

50 

0.14 

0.97 

9.4 

860 

1.0 

0.36 

100.0 

5.0 

2.0 

2.0 

1.5 

1.5 

5.0 

30.0 

8.1 

16.7 

50 

5.32 

2.37 

12.7 

410 

0.81 

0.19 
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1.3.3. Silica reinforcement of Epoxidized NR 

Epoxidized NR (EN'R) is a chemically modified fonn of ?'IR (cis-l.4-

polyisoprene), in which some of the unsaturation is converted into epoxJde groups, 

which are randomly distributed along the N'R chains. ENR can be crosslinked through 

residual unsaturation using standard sulphur fonnulation or by a peroxide. It was found 

that vulcanization characteristics of EN'R 25 and E0."'R 50 are similar to those of NR 

(Gelling & r-.forrisoIl, 1985; Baker, et al., 1985) with an exception that the onset 

crosslinking occurs earlier i.e. shorter scorch delay. ENR 25 and E~TR. 50 can strain 

crystallize (Gelling, 1988), which is .reflected by their gum vulcanizates properties. The 

tensile strengths ofENR 25 and ENR 50 are comparable to that ofNR. 

However, unlike NR Epoxidized NR has the ability to be reinforced with silica 

in the absence of organosilane. High tensile properties comparable to N330 carbon 

black reinforcement could be obtained (Gelling, 1986). This is clearly the unique ability 

of E0.'R that may be due to the interaction of the epoxy groups of ENRs with the silanol 

groups of silica, as illustrated in Figure 1.4. 

= Si-OH + 
I 

(silanol group) (epoxy group) (silanol-epoxy bond) 

Figure 1.4. Chemical reaction of silanol group with epoxy group. 

(Hashim & Kohjiya, 1993). 
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