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KRIPTOGRAFI RAWAK KUANTUM: SATU
PENDEKATAN BARU

ABSTRAK

Sejak 1990-an, sistem rawak dinamik digunakan secara meluas untuk mereka ben-
tuk strategi baru bagi menyulitkan maklumat dalam bidang analog dan digital. Ki-
ni, banyak kriptosistem yang berasaskan rawak digital dicadangkan dan sebilangan
daripada mereka dikriptanalisis. Fakta bahawa terdapat reka bentuk optimum dalam
konteks kriptografi rawak tidak hanya memerlukan latar belakang yang kukuh dalam
kriptografi, malahan juga melalui pengetahuan dinamik dan rawak yang tidak linear.
Namun demikian, dalam reka bentuk kriptosistem rawak digital, terdapat dua isu pen-
ting yang tidak diberi perhatian yang serius oleh kebanyakan pereka bentuk sifer rawak
digital. Pertama: mengelak pembinaan semula dinamik pada sistem rawak dan, kedua:
ketidakberkalaan orbit rawak. Dua sumbangan utama kajian ini adalah respon terhadap
permasalahan teori dan metodologi. Satu daripada penyelesaian bagi mengelak pem-
binaan semula orbit rawak adalah meningkatkan kekompleksan orbit. Dalam kajian
ini, dua sistem dinamik baru, peta rawak kuantum dan gandingan disegerak dicadang
dan diaplikasikan dalam dua bidang aplikasi utama, iaitu penjana nombor rawak pse-
udo dan medan penyulitan imej. Kedua-dua analisis teori dan eksperimen daripada
kriptosistem yang dicadangkan dilapor dan dibincangkan. Di samping itu, dalam usa-
ha mengkuantiti darjah ketidakberkalaan orbit rawak, pendekatan indeks skala sebagai

kaedah matematik dicadangkan. Kaedah ini membolehkan pemilihan konfigurasi yang
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mencukupi (pemilihan parameter optimum) daripada sistem dinamik untuk melaksa-
nakan strategi kekeliruan dan pembauran maklumat. Analisis sekuriti kriptosistem
berasaskan rawak adalah satu daripada aspek penting dalam kriptografi rawak. Begi-
tu juga dengan pengukuran kerawakan dan kekompleksan ruang daripada imej sifer
adalah dua tugas utama yang perlu diberi pertimbangan khusus. Setakat ini, pertama,
kejituan ukuran entropi yang berbeza (sebagai satu ukuran kerawakan) seperti entropi
Shannon, entropi Min dan entropi Renyi dikaji. Namun demikian, keputusan yang di-
peroleh tidak boleh dipercayai. Dalam kajian ini, pendekatan alternatif baru, entropi
Mean-block dan lengkung pertumbuhan entropi dicadangkan bagi mengkuantiti kera-
wakan yang terdapat dalam imej sifer. Tambahan pula, dua ukuran fraktal, lakunariti
dan sukolariti, dicadangkan untuk mengkuantiti kekompleksan ruang dalam ime;j sifer
berasaskan rawak. Kerana dimensi fraktal sendirian tidak mencukupi untuk menjelask-
an corak imej tersulit yang kompleks. Keputusan yang diperoleh menunjukkan bahawa
entropi Mean-block lebih tepat daripada entropi Shannon, Min dan Renyi. Ditemui ju-
ga, perlakuan asimptotik bagi lengkung pertumbuhan entropi boleh dianggap sebagai
penanda kerawakan. Tambahan pula, keputusan analisis lakunariti dan sukolariti de-
ngan jelas menunjukkan bahawa proses penyulitan boleh mengakibatkan pemusnahan
kesamaan-diri dan keterhubungan dalam kalangan piksel, masing-masing. Sebagai
kesimpulan, disarankan digunakan kaedah matematik yang dicadangkan di samping
ukuran kekompleksan bersandar skala, termasuk entropi Mean-block, lengkung per-
tumbuhan entropi dan ukuran fraktal untuk membimbing para penyelidik dalam mere-

kabentuk dan melaksanakan kriptosistem yang baru.
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QUANTUM CHAOTIC CRYPTOGRAPHY: A NEW
APPROACH

ABSTRACT

Since 1990s chaotic dynamical systems have been widely used to design new
strategies to encrypt information in analog and digital areas. Recently, many digital
chaos-based cryptosystems are proposed and a number of them have been cryptana-
lyzed. The fact that an optimum designs in the context of chaotic cryptography not
only demands a solid background in cryptography, but also a thorough knowledge of
nonlinear dynamics and chaos. However, in the design of digital chaotic cryptosys-
tems, there are two important issues that have not been seriously considered by most
designers of digital chaotic ciphers. First, avoiding the reconstruction of the dynamics
of the underlying chaotic systems and the second, non-periodicity of chaotic orbits.
The two main contributions of this work are its responses to these two theoretical and
methodological problems. In this way, one possible solution for avoiding the recon-
struction of chaotic orbits is increasing the complexity of orbits. In this work, two new
dynamical systems, quantum and synchronized coupled chaotic maps are proposed and
applied in two main application fields, which are pseudo random number generator and
image encryption fields. Both theoretical and experimental analysis of proposed cryp-
tosystems are reported and discussed. In addition, in this work in order to quantify the
degree of non-periodicity of chaotic orbits, the scale index approach as a mathematical

tool is proposed. This method allows the selection of the adequate configurations (op-
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timal parameter selection) of a dynamical system to implement strategies of confusion
and diffusion of information. The security analysis of the chaos-based cryptosystems
is one of the most important aspects in chaotic cryptography. In this sense, measuring
the randomness and spatial complexity of cipher images are two important tasks that
should be considered. To this end, first the accuracy of different entropy (as a measure
of randomness) measures such as Shannon entropy, Min-entropy and Renyi entropy
is examined. However, the results obtained are not reliable. In this work, new alter-
native approaches, the Mean-block entropy and entropy growth curve, are proposed
for quantifying the presence randomness in the cipher images. Moreover, in this work
two fractal measures, lacunarity and succolarity, are proposed to quantify spatial com-
plexity in the chaos-based cipher images since the fractal dimension alone could not
sufficiently explain the complex patterns of the encrypted images. The results obtained
indicate that the mean-block entropy is more accurate than Shannon, Min and Renyi
entropies. Also, the asymptotic behavior of entropy growth curve can be considered as
a signature of randomness. Moreover, the results of lacunarity and succolarity analyses
clearly show that the encryption process could lead to the destruction of self-similarity
and connectivity among the pixels, respectively. As a conclusion, it can be strongly
recommended to use the proposed mathematical tool and scale-dependent complexity
measures including mean-block entropy, entropy growth curve and fractal measures,

to guide researchers through designing and implementing of new cryptosystems.
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CHAPTER 1

INTRODUCTION

1.1 Motivation of the Research

The Internet and communication systems have become an important component of
information technology to provide connectivity at global and local scales, for the shar-
ing of the different information. This leads to an explosive increase in transmission
of messages containing useful information through different ways. It is no surprise
then, in such transmission, implementing and keeping security and secrecy is a pre-
requisite to protect the information as well as the systems involved in transmission.
Cryptography becomes necessary when higher security and privacy are specially re-
quired, especially when the message is transmitted over any untrusted medium, which
includes any network, particularly, the Internet. The main objective of cryptography
is to develop a cryptosystem, which keeps the transmission information secret and
tamper-proof; protects information from unauthorized parties; prevents fraud; and en-
sures personal privacy. Therefore, in light of their important role, cryptosystems have

become an indispensable part of modern information technology.

Beginning with the pioneer contribution of Lorenz [1]], chaos theory has captured
the interest of the scientific community. Chaos theory has been applied to model com-
plex systems in the real world using rather simple mathematical models. In fact, chaos
theory can be considered as a method to explain the complex processes in the real

world.



Chaotic systems have several interesting features such as the ergodicity, random-
ness, non-periodicity and sensitive dependence on initial conditions [2} 3], which make
them very attractive to the cryptographist. In fact, some researchers have pointed out
that such significant properties can be connected with several cryptographic primitive
characters such as "diffusion" and "confusion" required by modern cryptography ([4~
6l]. Interestingly, the idea of using chaos in cryptography is not novel and can be traced
back to Shannon’s classic paper titled "Communication Theory of Secrecy Systems"
published in 1949 [7]]. Of course, he could not use the phrase chaos; he just pointed out
that the good mixing transformations, used in a good secrecy system, depend on their
arguments in a "sensitive" way. The good mixing transformations can be considered
as chaotic maps or equations bounded in limited phase space with positive Lyapunov
exponents. In fact, from an algorithmic point of view, any good cryptosystem can be
regarded as a chaotic or "pseudo-chaotic" system [8]], since perfect cryptographic prop-
erties are ensured by pseudo-random disorder, generated from deterministic encryption
operations, which is just like chaos generated from chaotic dynamical systems [9]]. In
Ref. [10], it has been shown that some conventional cryptosystems can present chaotic
behavior. This definitely reveals that there exists a strong connection between chaos
and cryptography, that’s why it’s a natural idea to make use of chaos and chaotic dy-

namical systems to enrich the design of new cryptosystems.

In the last few decades, the construction of chaos-based cryptosystems has attracted
a great deal of attention, and plenty of chaotic cryptosystems have been developed,
among which two main design paradigms for two different purposes can be found in
literature: the discrete-time chaotic cryptosystem and the continuous time chaotic cryp-

tosystem. Discrete-time chaotic cryptosystems, as the name suggest, is used to encrypt



the digital information by employing discrete-time chaotic dynamical systems. In this
application, discrete-time chaotic systems are usually used as the pseudo-random bit
generators, which serve as a one-time pad for encrypting the information. The use of
discrete-time chaotic systems for the encryption purpose has been done for the first
time by Matthews [[11]. In his approach, a one-dimensional chaotic map, exhibiting
chaotic behavior for a range of initial conditions and control parameters, has been
utilized to generate a sequence of "pseudo-random numbers" in order to encrypt and
decrypt the message. Shortly thereafter, in 1990, a cryptosystem based on a piecewise
linear chaotic Tent map was developed by Habutsu with his colleague [12], where the
parameter of the Tent map was used as a secret key, and the encryption and decryption
were achieved by performing the inverse and forward iterations of the chaotic Tent
map, respectively. A great number of discrete chaotic cryptographic algorithms have
also been proposed in the recent years. However, a number of them are effectively

attacked.

Continuous-time chaotic cryptosystems, on the other hand, aim mainly to use
continuous-time chaotic dynamical systems to generate the broadband, non-periodic
and noise-like chaotic signals for secure communications, where message signals, usu-
ally continuous signals, are hidden into the chaotic signal at the transmitter side, and
recovered at the receiver side through the chaos synchronization technique. The idea of
utilizing synchronous chaotic systems for secure communications was first discovered
by Pecora and Carroll [13]. Although being demonstrated successfully in computer
simulations and hardware implementation, the preliminary application of chaotic sys-
tems for the secure communications has a low level of security because an intruder

can extract the hidden message signal from the transmission signal by using different



unmasking techniques [[14, [15]].

No doubt, there exists a strong relationship between the degree of randomness and
quality of the cryptosystem. From the seminal contribution of Shannon [7, [16], Shan-
non entropy is employed as an indicator of randomness in cryptosystems. However,
the results obtained are not completely true at least in chaos-based image encryption
since the Shannon entropy measures the average information contents of the whole
event source. In addition, the statistical complexity of the chaos-based encrypted im-
ages was studied, but spatial complexity has not been fully explored. Therefore, from
the viewpoint of security, new dynamical systems and new approaches need to be ex-

plored.

1.2 Problem Statement

Security is the main problem of chaos-based cryptography. During last decade,
according to data from ISI Web of Knowledge and Scopus more than 900 papers have
been published. However, more than 30% of these papers are based on showing the
weaknesses of other cryptosystems. Technically, the main problems are low key space
and low performance. However, technical fixes to security problems typically have
failed to address the root of the problems [17-22].

The fact that, fundamentally, cryptosystem designers are expert in cryptography and
algorithms. But there is no solid knowledge about nonlinear dynamics and chaos. This
lack of knowledge causes a few difficulties and problems such as: (i) extraction of dy-
namical properties of chaotic maps, (ii) selection of the proper chaotic map for cryp-

tography, (iii) the design of new dynamical systems for chaotic cryptography purposes



and (iv) the suggestion of new methods for security analysis. The main contributions

of this work are its responses to these four theoretical and methodological problems.

1.3 Objectives

The main objectives of this work were (i) to propose a mathematical tool to quan-
tify the degree of non-periodicity of chaotic systems (scale index), (ii) to introduce
new method and new dynamical system to enhance the security level of chaos-based
cryptosystems and pseudo random number generators, (iii) to present new approaches

to evaluate the security of chaos-based image cryptosystems more accurately.

The specific objectives of this study were:
1- To use the scale index for parameter selection and choosing the optimal values for
keys and introducing the degree of non-periodicity as a fundamental concept in chaotic
cryptography.
2- To propose two pseudo random number generators based on complete synchroniza-
tion process and quantum map.
3- To propose an image encryption scheme based on quantum map.
4- To introduce the mean-block entropy and entropy growth curve to quantify the ran-
domness of the chaos-based image encryption cryptosystems.
5- To introduce the lacunarity analysis to quantify the degree of heterogeneity and self-
similarity of chaos-based encrypted images.
6- To introduce the succolarity analysis to characterize the degree of connectivity

chaos-based cipher images.



1.4 Organization of the Thesis

This research was multidisciplinary and involved several different fields of re-
search: nonlinear dynamics, chaos theory, quantum maps, cryptography, wavelets and
complexity. The first portion of this dissertation provides a comprehensive overview
of those fields of research. The second portion provides a detailed description of this
research contribution:
Introducing mathematical tool for analyzing chaotic dynamical systems. As new per-
spectives on chaotic cryptography, designing two new cryptosystems, which are based
on the synchronization scheme and quantum map. Introducing alternative approaches
for security analysis of chaos-based cryptosystems.
A more comprehensive survey of dynamical systems and chaos by describing the def-
inition, classification and characteristics of chaos and chaotic systems is presented in
Chapter 2.
In Chapter 3, some basic principles of cryptography are introduced and the relation-
ship between chaotic systems and modern cryptography is presented and two different
kinds of chaotic cryptosystems are described. Also, the efficiency and applications of
chaos-based cryptosystems are presented. A short introduction to wavelet analysis is
provided in Chapter 4.
Non-periodicity analysis of discrete-time and continuous-time dynamical systems based
on the Scale Index technique is presented in Chapter 5. In Chapter 6, two novel
pseudo random number generators based on synchronized coupled chaotic map and
quantum map are proposed. In Chapter 7, a novel image encryption algorithms based
on quantum chaotic map is presented. In Chapter 8, the Mean — block entropy and

entropy growth curve as two new entropy measures are introduced. Also, different en-



tropy measures such as mutual information, Kullback-Leibler divergence and Jensen-
Shannon divergence are proposed for security analysis of chaos-based cryptosystems.
In addition, comprehensive analysis of chaos-based image encryption algorithms based
on different entropy measures is presented. In Chapter 9, Lacunarity and Succolarity,
two relatively new measures from fractal geometry, are used for the analysis of chaos-
based cipher images. Finally, conclusions are summarized in Chapter 10, and the future

work is also described.



CHAPTER 2

DYNAMICAL SYSTEMS: FOUNDATIONS AND
BASIC CONCEPTS

2.1 Functions
In mathematics, it is important to think of a function as an action or a process; a
function takes a number as input, does something to it, and outputs a new number. This

is illustrated in Figure [2.1] Here, the function is called f. There are a number of ways

Figure 2.1: Function.

that to denote this symbolically. One way is as follows:

202160 and 275216,

Also, the function can be specified by algebra:



In fact, the letter x (or m or s) is just a placeholder. A mathematical function is
a rule that assigns an output value f(x) to every input x. Another way to describe or
specify a function is via a graph. A function is also sometimes referred to as a map.
This terminology is common in mathematics, but less so in physics and other scientific

fields.

2.1.1 Iterating a function
Iteration entails doing the same thing again and again using the previous step’s
output as the next step’s input. This process is illustrated schematically in Figure 2.2]

The output of the function is used as input for the next step. This can also be thought

X f(x)

Figure 2.2: A schematic view of an iterated function.

of as a feedback process, in which output is used as input. Suppose the function is
f(x) =4x. Let us use 3 as an input. Then the function is applied and the result is
f(3) =4 x 3 =12. Then take 12, which is output, and use it as an input for the func-

tion to get f(12) =4 x 12 = 48. Then repeat the process:

3100548 05 192,



The number I start with, 3 in this particular case, is known as the initial condition

or the seed.

The process of iterating can be demonstrated by making use of functional notation.
When iterating, the first step is to apply the function, f, to the seed or initial condition
Xo to obtain xj: x; = f(xp). The next step is apply f to x;: xp = f(x1). Also these
two equations can be combined as follows: x; = f(x1) = f(f(x0)). In general, for n
application of f:

n—times
7\

FUFCf) = F ().

It should be noted that, the expression f () (x) means f applied to x a total of n
times. It does not mean f(x) times itself n times. Iterating a function produces a
sequence of numbers. A sequence is simply a list with an order to it. This sequence is

often called the orbit or trajectory.

2.1.2 Phase space

A phase space is a geometric representation of the state variables of a system. The
phase space is completely filled with trajectories, since each point can serve as an
initial condition. Depending on the system, there can be any number of state variables.
Thus, the phase space could consist of a line, a plane, three-dimensional space, or a
higher-dimensional space. A phase space, for both discrete and continuous systems, is
a set of all known possible states of that system, along with a rule for updating all of

the states at each instant.
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2.2 Dynamical Systems

A dynamical system is a function with an attitude. In principle, every dynamical
system consists of two components: (i) a rule, which allows us to find a state at any

positive time given an initial state; (ii) the space of states.

There are two main types of dynamical systems: Flow and Map. Flows are spec-
ified by differential equations. Similarly, maps are specified by difference equations.
Dynamical systems generated by the iterative formulae belong to the category of dy-
namical systems with discrete-time. In contrast, the physical systems governed by
differential equations are labeled as dynamical systems with continuous-time. In fact,
time here either may be a continuous variable, or else it may be a discrete integer-

valued variable.

An example of a dynamical system in which time (denoted ¢) is a continuous vari-

able is a system of N first-order, ordinary differential equations (Flow):

dfi(tl) =93 (x(l),x(2)7x(3), .7x(N))
b2 = B 2D 10, )
d)cgl(:') :F3(x(1),x(2)7x(3)’ ..,X(N)> (21)
\d);(;\/) :FN(X(l),x(Z),XB),,,,,x(N)).
which can be written in vector form as:
ax(t)
a ~FXOL 2.2)



where X is an N-dimensional vector. This is a dynamical system because, for any
initial state of the system x(0), I can in principle solve the equations to obtain the

future system state x(¢) for r > 0.

2.2.1 Fixed point
By considering an example: the function f(x) = x?. Let’s choose a seed, 3, and

find what happens under iteration:

3—-9— 81— 6561 — 43046721 — ....

Obviously, the numbers are getting bigger. Indeed, this is the case for just about
any seed greater than 1. So any seed larger than 1 will get bigger and bigger and the
iterates go to infinity. This indicates that the iterates grow without bound; there is no
restriction to how large the orbits become. If I square a number between 0 and 1, the

number gets smaller. E.g.,

0.3 — 0.09 — 0.0081 — 0.00006561 — 0.0000000043046721 — ....

So, numbers between 0 and 1 get smaller and smaller, closer to zero. Zero squared

is definitely zero. Therefore, if 1 iterate zero I do not go anywhere:

0—0—-0—-20—-0—...

It is clear that O is a fixed point since it is unchanged by the function. Symbolically,

12



f(0) =0. Also initial condition xo = 1 is a fixed point because 1 squaredis 1: f(1)=1.
A fixed point of a function f is an input x that yields the same output. Then, the equa-

tion for a fixed point is:

f(x*) =x". (2.3)

Note that, the symbol x* is used to remind that Eq. (2.3)) is not true in general. It is

only true for some special values of x-namely, fixed points.

2.2.1.1 Classification of fixed point

In more general terms, understanding the fixed points of a dynamical system can
tell us much about the global behavior of the system. Typically, a fixed point can
be classified into one of the three categories: stable, marginally stable (neutral) and

unstable.

1- Unstable fixed point: If x is somehow moved away from the fixed point, even
a small perturbation, the orbit of this new x will move away from the fixed point and
nearby orbits are repelled by it. So this type of fixed point is called a repeller (or
repellor) and there are orbits (trajectories) which start near x* and move far away from

x*.

2- Stable fixed point: If x is somehow moved away from the fixed point, a small
perturbation will cause the orbit of new x to move back toward the fixed point. This
type of a fixed point is also known as an attractor and all orbits (trajectories), which

begin near x* remain near, and converge to, x*. Stable fixed points give excellent

13



Figure 2.3: A schematic illustration of an unstable fixed point.

information about the fate of a dynamical system.

Figure 2.4: A schematic view of a stable fixed point.

3- Neutral fixed point: One could have a fixed point for which it is the case that if
one moves away from the fixed point the resulting orbits neither move away from the
fixed point (as a repeller) nor back toward the fixed point (as an attractor). The orbits
which begin near x* stay nearby but never converge to x*. Such a fixed point is called
neutral. The distinction between stable and unstable fixed points is an important one.
In real systems or computer simulations, one does not expect to observe unstable fixed

point, for the simple reason that unstable fixed points do not hang in there for long.

Figure 2.5: A schematic view of a neutral fixed point.
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2.2.1.2 Finding fixed points and stability classification

1- Discrete-time dynamical systems:
Let x* be a fixed point of the discrete-time dynamical system, x(n+ 1) = f(x(n)). If
|f/(x*)| < 1, then x* is a stable fixed point. If | f'(x*)| > 1, then x* is an unstable fixed

point.

Example: f(x) = x?

To find the fixed points, f(x*) =x* and solve for x*. Thus x} =0and x5 = 1. f’(x) =2x.
Then
f'(x]) =0and f'(x5) = 2. Thus x] = 0 is stable fixed point and x} = 1 is an unstable

fixed point.

2- Continuous-time dynamical systems:
Let x* be a fixed point of the continuous-time dynamical system, x = f(x). If f'(x*) <

0, then x* is a stable fixed point. If f’(x*) > 0, then x* is an unstable fixed point.

Example: x = x> — 1
To find the fixed points, f(x*) = 0 and solve for x*. Thus x* = +1. In order to de-
termine the stability of f(x) = x*> — I, the function was plotted and vector field was
sketched. The flow is to right where x> — 1 > 0 and the flow is to the left where

x*>—1<0. Thus x] = —1 is stable fixed point and x5 = 1 is an unstable fixed point.

2.3 Determinism and Randomness

An important distinction between dynamical systems surrounds whether the dy-

namics is completely deterministic, or whether the evolution proceeds as a result of

15



fx)=x*-1

Figure 2.6: Fixed points of f(x) = x> — 1.

stochastic effects. A mathematical function is a rule that assigns an output value f(x)
to every input x. So the output depends on the input and the output is determined en-
tirely by the input. Such a function is said to be deterministic, because the output is

completely determined by the input.

A dynamical system is one whose state changes in time. If the changes are deter-
mined by specific rules, rather than being random, I say that the system is deterministic;
otherwise it is stochastic. Dynamical systems can be stochastic, if there is a probabil-
ity associated with the evolution of the movement between state spaces. For example,
perhaps /(x) = 2x with probability 1/2, and h(x) = x with probability 1/2. So, if one
used x = 5 as input, approximately half of the time one would get 10 as output, and
approximately half of the time one would get 5. Clearly, the input does not completely

determine the output.

For deterministic systems, for a given initial state x;, then the state at some later
time X, g;, is uniquely determined via the rule. This property implies that for deter-
ministic systems, trajectories in phase space may never cross at finite time. But for
stochastic systems only the probability P(x, ;) may be determined from the knowl-

edge of x;, and trajectories in phase space may cross.
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2.4 Invertible and Non-invertible Dynamical Systems

The map F, is invertible if for a given state x,,1 | there exists a unique x, in such
a way that x, = F~!(x,; 1), where F~! is the inverse of F. Obviously, a map with an
inverse is called invertible and a map without an inverse is called non-invertible. For

example, consider the one-dimensional (N = 1) map:
Xn1 = rxp(1—xy,). 2.4)

which is commonly called the logistic map.

As shown in Figure (2.7), this map is not invertible since for a given x,| there

exist two possible values of x;, (expect for the critical point at x=0.5).

SN .

2r

Xn:

Xn+l A

Figure 2.7: Non-invertibility of the logistic map.

If the map is invertible, then there can be no chaos unless N > 2. If the map is non-

invertible, chaos is possible even in one-dimensional maps. Indeed, the logistic map as

17



a one-dimensional map (Eq. (2.4))) exhibits chaos for large enough control parameter
(r). Note that, most of the maps I will deal with are non-invertible, meaning that their

inverses are not existing.

2.5 Linear and Non-linear Systems

Linear models are preferable from a scientist’s point of view as typically they are
much more amenable to mathematical analysis. Nonlinear systems, in contrast, are
much more difficult to analyze mathematically. A nonlinear system is a system whose
time evolution equations are nonlinear; that is, the dynamical variables describing the
properties of the system (for example, position, velocity, acceleration, pressure, etc.)
appear in the equations in a nonlinear form. Typical nonlinear terms are products,
powers, and functions of the x;, such as xxy, x{’ or cos x. The essential difference
between linear and nonlinear systems is that linear systems can be broken down into
parts. Then each part can be solved separately and finally recombined to get the answer.
This idea allows a fantastic simplification of complex problems, and underlies such
methods as normal modes, Laplace transforms, superposition arguments, and Fourier
analysis. In this sense, a linear system is precisely equal to the sum of its parts. But
many things in nature do not act this way. Whenever parts of a system interfere, or

cooperate, or compete, there are nonlinear interactions going on.

2.6 Chaos

The nonscientific concept of chaos’ is very old and is often associated with a physi-
cal state or human behavior without pattern and out of control. Chaos is a phenomenon

encountered in science and mathematics wherein a deterministic (rule-based) system
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behaves unpredictably. Some sudden and dramatic changes in nonlinear systems may
give rise to the complex behavior called chaos. Chaos per se is really only one type of
behavior exhibited by nonlinear systems. The phenomenon of chaos is usually consid-
ered to be part of the field of study known as nonlinear dynamics, an interdisciplinary
area that lies mainly at the intersection of physics and mathematics, but also includes
researchers from biology, economics, and elsewhere. It should be noted that nonlin-
earity is a necessary, but not a sufficient condition for the generation of chaotic motion.

In fact, all chaotic systems are nonlinear but not all nonlinear systems are chaotic.

2.6.1 Definition of chaos

A dynamical system is chaotic if it possesses all of the following properties:
(1) The dynamical rule is deterministic.
In this case, the rule is just the function that iterates. A deterministic function is one
where the input determines the output. The logistic map, along with all the other func-
tions which have been working with, is deterministic, as discussed in Section @
(2) The orbits are aperiodic.
An orbit is aperiodic if it never repeats.
(3) The orbits are bounded.
In any event, for an orbit to be chaotic it must be bounded. This means that, the iterates
usually do not fly off to infinity; they remain between an upper limit and a lower limit.
For instance, these limits for logistic map are 1 and O, respectively.
(4) The dynamical system has sensitive dependence on initial conditions.
This implies that even though chaotic systems are deterministic even the smallest dif-

ference in initial state can cause a huge difference in the end state. This is famously
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described as the butterfly effect whereby the flapping of a butterfly’s wings in one part

of the world can eventually lead to a radical change in weather in another part.

In fact, once the systems have sensitive dependence on initial conditions, impos-
sible to accurately predict for anything other than the short-term. In particular, the
evolution of a chaotic system is utterly unpredictable in long-term. Note that, this un-
predictability happens despite the fact that the equation governing the orbit is totally
deterministic. For this reason, chaotic systems certainly are a deterministic source of

randomness.

2.7 The Source of the Chaotic Behavior

Let me suppose that a system with random-like, complex behavior. One might try
to explain this behavior by either an argument based on complexity or an argument
based on noise. According to the complexity argument, the most of real systems are
made of billions of molecules and atoms and since the behavior of all these molecules
and atoms are not possible to be controlled precisely. Hence, these lack of control
leads to fluctuations and randomness in the overall behavior of the system. On the
other hand, the noise argument is that the complex behavior might be due to the influ-
ence of uncontrolled outside effects such as temperature fluctuations, electrical pickup
or mechanical vibrations. From a more technical point of view, these complex systems
have many degrees of freedom, and it is the activity of these many degrees of freedom
that leads to the apparently random behavior. But the observed random-like behavior is
neither due to external sources of noise nor to an infinite number of degrees of freedom

nor to the uncertainty associated with quantum mechanics.
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Considering the Lorenz system:

X=0(Y—X)
Y=-XZ+rX-Y (2.6)
7Z=XY —-bZ

As it can be seen, in this system, there isn’t any noise, there are only three degrees
of freedom and the system considered is purely classical. In fact, the actual source of
irregularity is the property of the nonlinear system of separating initially close trajecto-
ries exponentially fast in a bounded region of phase space which is, three-dimensional
for the Lorenz model. The crucial importance of chaos is that it provides an alternative
explanation for this pseudo-randomness. It should be noted that, stochastic systems
mimic many of the features of chaos, but they are not chaotic because chaos is a prop-

erty of deterministic systems.

In the following, deterministic chaos denotes the irregular or chaotic motion that is
generated by nonlinear systems:
Forced pendulum [23]], Fluids near the onset of turbulence [24]], Lasers [25]], Nonlinear
optical devices [26], Josephson junctions [27], Chemical reactions [28], Plasmas with

interacting nonlinear waves [29] and Stimulated heart cells [30].

2.8 Quantifying Chaos
Two different, but related, types of description are used for quantitative character-
ization of chaos. The first type of quantifier emphasizes the dynamics (time depen-

dence) of chaotic behavior. The Lyapunov exponent and various kinds of entropy,
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are two examples of this type of descriptor. These quantifiers tell us how the system

evolves in time and what happens to nearby trajectories as time goes on [3]].

The second type of quantifier emphasizes the geometric nature of the trajectories in
state space. The dynamical system is allowed to evolve for a reasonably long time, and
then the geometry of the resulting trajectories in state space is examined. In this partic-
ular geometric method I will meet the important and interesting concept of fractals.

These two types of description are complementary.

2.8.1 Bifurcation diagram

Bifurcation means a sudden qualitative change in the nature of a fixed point or orbit
of a dynamical system, as a control parameter is varied. Obviously, the bifurcational
phenomena play constructive role in the investigation of nonlinear dynamical systems.
As a result of the qualitative content analysis of a dynamical system, it would be de-
sirable to obtain the bifurcation diagram. A bifurcation diagram is a representation of
an attractor on the vertical axis and plots a control parameter on the horizontal axis.
The bifurcation diagram is able to classify all possible modes of behavior of the sys-
tem and transitions between them as control parameter is varied continuously. There
are actually three types of bifurcations in one-dimensional maps: the period doubling
bifurcation, the tangent bifurcation, and the inverse period doubling bifurcation. These
bifurcations are illustrated in Figure [2.8] where the control parameter (r) is taken as
increasing to the right. Dashed lines are used for unstable orbits and solid lines for

stable orbits.

The diagram in Figure [2.9]is bifurcation diagram of the logistic map as a period
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Figure 2.8: Generic bifurcations of one-dimensional maps.

doubling bifurcation. The figure is obtained by plotting, for various control parameter
(r) values between r = 3 and r = 4 with high resolution. There appears to be some
interesting structure in this region. It should be noted that, the diagram is obtained by
discarding the first 1000 iterates to screen out transient effects. Since transients are of-
ten difficult to handle both computationally and experimentally, so that the discussion
shall be confined to long-term behavior of the dynamical system. However, transients

can give very useful information about the dynamics of the system.

0.8}
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0.4}
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r

Figure 2.9: Bifurcation diagram of the logistic map.
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2.8.2 Lyapunov exponent

Lyapunov was one of the first to explore dynamic stability and the Lyapunov ex-
ponent is named in honor of him as well. The main defining feature of chaos is the
sensitive dependence on initial conditions. If a dynamical system has sensitive depen-
dence on initial conditions, so that two orbits will eventually get far apart. However,
there is no information about how fast they diverge. Let xp and yo denote two initial
conditions that start off close together. So dy = |xo — yo| at t =t is very small. Then
for increasing time ¢ (after t iterations) the orbits (trajectories) that start at these initial

conditions diverge exponentially. It is schematically illustrated in Figure [2.10]

The dependence of the distance d between two trajectories at t, and their initial

separation d at t = ¢ as well, is assumed to be governed by the exponential function
d(1) = do(to)e™. 2.7)

Exponent denoted A is an indicator of the sensitivity to initial conditions, and is re-
ferred to as Lyapunov exponent. It may be expressed in the form:

1. d
A =1lim—In—. 2.8
fim 7 In o (2.8)

If the Lyapunov exponent (1) is positive, on average the orbits are pushed apart, and
the system has sensitive dependence on initial conditions (as shown in Figure [2.10).
The larger A is, the faster the orbits are pushed apart, and also the orbits are more

unpredictable. If the Lyapunov exponent is negative, it means that the trajectories con-
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