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1-'t:.Nt:.N 1 UAN 1~11-'AUU PERMUKAAN-PERMUKAAN LICIN DENGAN 
MENGGUNAKAN KAEDAH PENCAHAYAAN BERSTRUKTUR DAN 

PENGUKURAN KESAMAANNYA 

ABSTRAK 

Tesis ini membentangkan hasil penyiasatan kaedah tak menyentuh yang 

dipanggil pencahayaan berstruktur untuk menentukan isipadu permukaan-permukaan 

licin. Kaedah ini menggunakan kamera yang merakam corak cahaya terubah bentuk 

yang diunjurkan ke atas suatu permukaan. Sistem tersebut disahkan dengan 

menggunakan objek-objek yang mempunyai permukaan licin. Pada awalnya, suatu 

kajian simulasi telah dijalankan untuk menentukan suatu kaedah yang sesuai untuk 

menentukan isipadu. Suatu kaedah yang sesuai ialah dengan pengamiran lengkung 

yang dipadan merintangi titik-titik koordinat dan mendarabkan dengan kedalaman 

sepanjang arah-x. Kesan pic pinggir yang berbeza ke atas isipadu telah dikaji. 

Kemudian, suatu eksperimen telah dijalankan untuk menentukan isipadu enam tukup 

sfera. Suatu projektor telah dibina untuk mengunjurkan corak pinggir terkolimat. 

Sebuah kamera digital telah dikalibrasi untuk menukarkan nilai-nilai piksel kepada 

milimeter. Ralat dalam 26 pengukuran didapati kurang daripada 8.52%. Suatu kaedah 

peruasan telah dibangunkan untuk menyari permukaan daripada latarbelakang. 

Kaedah peruasan tersebut terdiri daripada tiga langkah: (i) jejaring segitiga dijana 

untuk titik-titik permukaan yang diketahui, (ii) luas setiap segitiga dikira dan (iii) sisihan 

piawai luas-luas segitiga sekeliling setiap titik permukaan dikira. Semua titik 

permukaan yang mempunyai sisihan piawai yang sama diruaskan kepada satu 

kumpulan. Pada akhirnya, kesamaan bentuk antara bentuk-bentuk 3-dimensi dikira. 

Setiap model 3-D dibawa kepada kedudukan 'canonical' untuk memastikan invarians 

dalam putaran dan translasi. Pada kedudukan ini, suatu set ciri disari daripada model 

3-D tersebut. Jarak kesamaan antara ciri-ciri tersebut dikira dengan menggunakan 

fungsi Minkowisky. Ciri-ciri yang digunakan menunjukkan keputusan yang lebih baik 

dalam pengukuran kesamaan apabila digunakan pada bentuk yang mempunyai 
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Keull~~~drr udrr y<:mspusar yang Kecrl berbandrng dengan bentuk yang lebih besar. 

Hasil penyelidikan ini boleh digunakan untuk membangunkan suatu sistem tak invasif 

untuk mengukur tumor kulit. 
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vvLu1v1c c~ I IlVlA IIUN Ut- t;URVED SURFACES USING STRUCTURED 
LIGHTING AND THEIR SIMILARITY MEASURE 

ABSTRACT 

This thesis presents the investigation of a non-contact method called structured 

lighting to determine volumes of smooth surfaces. This method uses a camera that 

captures a deformed pattern of light projected upon a surface. The system was verified 

using objects having a smooth surface. Firstly, a simulation study was carried out to 

determine a suitable method to determine the volume. A suitable method was found by 

integration of a fitted curve across coordinate points and multiplied by its depth along x-

direction. The effect of different fringe pitches on volume calculation was studied. 

Secondly, an experiment was carried out to determine the volume of six different 

spherical caps. A projector was developed to project a collimated fringe pattern. A 

digital camera was calibrated to convert the pixel values into millimetres. The error in 

volume of 26 measurements was found to be less than 8.52%. A segmentation method 

was developed to extract the surface from the background. The segmentation method 

consists of three steps: (i) a triangular mesh is generated for the known surface points, 

(ii) the area of each triangle is calculated and (iii) the standard deviation of triangle 

areas that surround each surface point is calculated. All surface points that have similar 

standard deviation value are segmented into one patch. Finally, the shape similarity 

among the measured 3-0 shape is calculated. Each 3-0 model was brought into its 

canonical position to ensure its rotation and translation invariance. At this position, a 

set of features is extracted from the 3-0 model and the similarity between all models 

are measured. This set of features is the core length of the bounding box. The new 

features show better accuracy (43.75%) in sir,;!arity measure when applied to shapes 

with smaller height and diameter as compared to the slightly larger shapes. The work 

of this thesis can be used to develop a non-invasive system to measure skin tumours. 
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1.1 Overview 

CHAPTER ONE 
INTRODUCTION 

Human skin is an organ that protects human muscles and other organs. The 

skin is responsible for many vital functions. It regulates the body temperature by 

evaporating water, shields the organism from the environment, protect muscles, 

produces vitamin D and sensation. The skin is subjected to constant attack such as 

skin cancer, acnes, tumours, etc. causing pain, malfunction or death in some cases. 

For example, the tumour malignant melanoma (skin cancer) is affecting 10-12 per 

100,000 persons in Europe, 18-20 per 100,000 in the USA and 30-40 per 100,000 in 

Australia (Schmid-Saugeon et al. 2003). Several medications and treatment strategies 

were used to heal this ailment. Due to the varieties of existing medications, clinicians 

measure the volume and area of tumours to investigate the effect of the medication. 

Schmid-Saugeon et al. (2003) stated the measurement purposes as follows: (i) To 

document progress of an individual tumour as part of treatment and assessments, (ii) 

to assess the efficacy of a therapy, (iii) to predict healing time and (iv) to create a 

database of different disorders or tumours. 

The volume and area of skin tumours were previously measured using contact 

and non-contact methods. A sequence of such measurements allows changes in the 

shape and volume over a given time period to be monitored. Contact methods were 

used in a relevant application of measuring the volume of female breasts and wounds. 

The contact methods for wound measurement used plastic templates, simple ruler or 

Kundin rreasuring tool (Krouskop et al. 2002). The disadvantages of contact methods 

are: (i) t'le: a·e painful for the patient, (ii) high risk for additional infection and (iii) there 

is a potent al for disrupting the skin tissue when contact is made. On the other hand, 

non-contact systems overcome these problems with precise measurements. Non-

contact systems were used to measure tumour volumes and were applied in other 



rneurGar af.JfJIIGauon::>. r-or exarnpre, reras m a1. ~LUU-') used mo1re topography in the 

diagnosis of corporal asymmetries. Lilley et al. (2000) used Fourier fringe analysis to 

measure the human body shape and position during the delivery of radiotherapy 

treatment for cancer. 

1.2 Problem statement 

This thesis is primarily concerned with a non-contact measurement called 

structured lighting method for determining tumour volumes. A pattern of fringe is 

projected onto a surface to generate the height information on the surface. The 

extraction of this information is called fringe analysis. The volume of smooth surface 

can be estimated using the known height information. These surfaces were used to 

simulate tumours and the problem is to calculate the volume of shapes using this 

height information. 

1.3 Research Objectives 

Nowadays, manufacturers need to ensure that their products comply with their 

specifications to be successful as manufacturing technology improves. A verification 

process is essential for the system before commercial use to ensure the system 

complies with the specifications. This verification is performed on known surfaces that 

have defined volumes. Also, the advance in computer industry creates new areas to be 

explored and offers new tools to help clinicians. The primary objective of this research 

is to develop and calibrate a non-contact optical measurement system, which can 

measure the volume of smooth surfaces. These surfaces were chosen smooth to 

simulate the 3-D human skin tumours. 

The specific objectives of this research can be summarized as: 

i. To identify a suitable method to calculate the volume. 

2 



11. 1 o mvest1gate the ettect of different sizes of pattern of fringes on volume 

calculation. 

iii. To design, fabricate and assemble a low-cost instrument to project the 

fringe pattern onto a surface. 

iv. To use the fringe projection system to measure the volume of spherical 

caps, so that the system calibration and validation are performed. 

v. To develop a new segmentation method based on the triangulated mesh 

to extract surfaces from the background. 

vi. To determine the shape similarity among 3-D models in the database. 

This similarity measurement adds a new facility to help clinicians to 

compare new tumours to the previously measured tumour. An algorithm is 

applied to measure the similarity between different shapes. This step is 

necessary to identify the suitable medication if a record is kept for the 

similar tumours in the database. 

The developed non-contact method is subjected to the following constraints: 

1. Work in ambient light conditions (clinic or hospital) 

2. Able to calculate the volume using one image. 

The output of this work can be applied to other applications and is not limited to 

tumour volume measurement. For example, it can be applied in reverse engineering 

area, where a CAD file is created from an exist 'lg prysical part or it can be used for 

retrieval from a database of 3-D CAD model. 

1.4 Thesis Organization 

Chapter one introduces the importance of measuring different human skin ailments and 

the problem of calculating the volume using structured lighting. The details of the 

3 



research aims are given. Chapter two reviews the work published in tumour volume 

measurement and two other relevant areas: wounds and female breasts volume 

measurement. A review on different segmentation methods is also presented. An 

introduction for shape similarity and a review of the literature in this area are also 

presented. A simulation study was carried out within chapter three. A suitable method 

to calculate the volume is identified among other possible methods. The effect of fringe 

spacing on volume calculation was investigated and presented in this chapter. Chapter 

four presents the development of the fringe projection system. The necessary 

parameters such as scaling factor, fringe projection angle were identified. In chapter 

five, an experimental work was carried out on six different spherical caps at different 

location inside the image field of view. The profile of the spherical cap was measured at 

different cross-sections. The root mean square errors of the spherical caps were 

calculated and the volume of each cap was calculated and compared to the actual one. 

The scanned shapes were modelled using STL file format to keep a permanent record 

of the shape. Chapter six describes a shape similarity method and an algorithm was 

applied to measure the similarity between the 3-D scanned shapes. Finally, chapter 

seven draws conclusions from the research described in this thesis and outlines areas 

for further research. 

4 



2.1 Introduction 

CHAPTER TWO 
LITERATURE REVIEW 

Today, many non-contact measurement systems exist. These systems are 

used in different applications such as reverse engineering, where a CAD file is created 

for an existing physical part. These system have also been used in further applications 

beyond surface measurement, e.g. Avril et al. (2004) used Fourier fringe analysis to 

detect cracks in plates, Ratnam et al. (2001) used shadow moire and neural network to 

classify eggs, Tan et al. (2000) combined a laser tracking technique and fringe 

projection method into one optical system to track objects, Spagnolo et al. (1997) 

measured the vibration amplitude of objects using fringe projection method and Fast 

Fourier Transform (FFT). Their work show that non-contact measurements can be 

engaged with other sciences for further developments. Within this chapter, it will be 

shown that the use of non-contact measurement to measure the tumour volume is a 

well-known application. The different non-contact measurements are also reviewed in 

this chapter (Section 2.2). This Section does not review non-contact measurement 

systems, but rather focuses on volume determination using non-contact techniques. 

For the purpose of measuring the volume of object having a smooth surface 

using a non-contact system, it is necessary to use a segmentation method to extract 

the surface from the background. The literature in Section 2.3 describes different 

segmentation methods concerning the triangulated mesh of the known surface points. 

After the shape is extracted from the ::ackg·:::c;nd and its volt.;"Tle is determined, 

a record of the tumour volume and the 3-D s-:ape can be kept ins;~e a database. This 

database may contain the name, address, sex, age, medication and other details of the 

patient. A new facility can be added to help the clinicians to search for similar tumours 

or 3-D shape from inside this database. For example, the clinician might search for 

5 



~lflllkH 0-u ~napes or sKin a1soraers due to mosquito bites and access the offered 

medication. The term shape similarity is used to measure the similarity between 

shapes and is taking more attentions from scientists to develop new algorithms, as 

there is no definite definition for a 3-0 shape. Section 2.3 reviews various publications 

in the area of shape similarity. 

2.2 Volume Determination using Non-contact Devices 

In the past, tumour volume measurement is not getting enough attention from 

researchers. There was more attention in two relevant subjects, wound and female 

breast volume measurement. This section presents different techniques and methods 

that define the volume of these three subjects. 

Frankowski, et al. (2000 and 2002) proposed a commercial system called 

PRIMOS (Phaseshift Rapid In vivo Measurement Of Skin). This system is the closest to 

this research. The system is calibrated before measurement on steps, blocks, disks 

and grid. The system uses the digital micromirror devices (DMD) technology to project 

the fringe pattern three times on the human skin. A fourth image is captured to acquire 

the colours. All these images are captured in 64 ms. The system can calculate the 

volume of pores, scar, lesion and moles. A background subtraction is performed to 

eliminate the human skin data and leaving only the aliment. The limitations of this 

system are image noise and cost. The presence of noise in the image captured by the 

camera would lead to high errors in height, as three images are required to calculate 

tne volume. The value of one system is more than 45,000 Euros (207,000 RM). 

Boersma et a!. (2000) developed a photogrammetry system consisting of three 

video cameras to cetermine the wound volume. The volume was defined as the region 

bounded between two surfaces: the measured surface of the wound and the original, 

healthy skin surface. In their research, the original healthy skin underneath the wound 

was created by cubic spline interpolation. The measured surface of the wound was 

6 
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medication. The term shape similarity is used to measure the similarity between 

shapes and is taking more attentions from scientists to develop new algorithms, as 

there is no definite definition for a 3-D shape. Section 2.3 reviews various publications 

in the area of shape similarity. 
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In the past, tumour volume measurement is not getting enough attention from 

researchers. There was more attention in two relevant subjects, wound and female 

breast volume measurement. This section presents different techniques and methods 

that define the volume of these three subjects. 

Frankowski, et al. (2000 and 2002) proposed a commercial system called 

PRIMOS (Phaseshift Rapid In vivo Measurement Of Skin). This system is the closest to 

this research. The system is calibrated before measurement on steps, blocks, disks 

and grid. The system uses the digital micromirror devices (DMD) technology to project 

the fringe pattern three times on the human skin. A fourth image is captured to acquire 

the colours. All these images are captured in 64 ms. The system can calculate the 

volume of pores, scar, lesion and moles. A background subtraction is performed to 

eliminate the human skin data and leaving only the aliment. The limitations of this 

system are image noise and cost. The presence of noise in the image captured by the 

camera would lead to high errors in height, as three images are required to calculate 

the volume. The va!ue of one system is more than 45,000 Euros (207 ,000 RM). 

Boersma et al. (2000) developed a photogrammetry system consisting of three 

video cameras to cetermine the wound volume. The volume was defined as the region 

bounded between !wo surfaces: the measured surface of the wound and the original, 

healthy skin surface. In their research, the original healthy skin underneath the wound 

was created by cubic spline interpolation. The measured surface of the wound was 
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processed using a software called Softplotter and the volume was obtained using the 

program. Their experiment was performed on flat surface with texture and plastic 

models of different sizes of pressure sores. The limitation of this procedure is that 

training on the Softplotter software is necessary to the clinicians to calculate the 

volume. 

Jones et al. (1995) introduced the prototype of the MAVIS (Measurement of 

Area and Volume Instrument System) based on a structured lighting method. The 

system consists of a projector and a CCD camera connected to a computer. An image 

is captured for the distorted stripes over the wound and the surrounding skin. Another 

image is captured for the wound without the projected stripe. The volume of the ulcer 

was defined as the region enclosed by the former healthy skin and the existing ulcer 

surface. In their research, the healthy skin was interpolated using the cubic spline, 

which performed better than Bezier curves. In order to calculate the volume, the 

rectangular surface grid (60 rows by 52 columns) is subdivided into a mesh of triangles. 

The volume was found by multiplying the area of a triangle by its average depth or 

height of the three vertices and summing over all triangles within the wound boundary. 

The disadvantage of this method is that taking the average of three height values does 

not guarantee accurate results in volume calculation. 

Rogers et al. (1997) used a laser line generator for illumination and two video 

cameras for image acquisition. The laser and the cameras were mounted in a scanning 

head that moves on a linear track. An image is captured for the projected line and the 

head is moved to a new location where another image was captured. This process was 

repeated until the wound is completely scanned. Properties such as wound perimeter, 

area and volume can be obtained by host software. This software was developed by 

the authors under Microsoft Windows application using OpenGL. The (x, y, z) point 

data were interpolated and used to generate a regular grid of the wound. The healthy 

skin surface was approximated using spline. The system was tested on holes of known 
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geometry and simulated wounds on plaster models. Measurements were performed 

five times for each hole. The system has a disadvantage of long time scanning with no 

guarantee to keep the patient stand still for the whole measurement process. 

Krouskop et al. (2002) projected a grid of points to measure the volume of 

wounds. The volume was defined as the region bounded between the original healthy 

skin and the measured surface. The original healthy skin was approximated using 

second order least square fitting. They noticed that the approximation method does not 

suite all body parts. The error in volume of the measurement system decreases by 

increasing the wound size. 

Structure lighting method was also used for breast volume measurement of 

nursing mothers. Ng et al. (1994) used black face paint to mark the boundary of the 

breast. In the volume computation part, the two end points of each light stripe curve 

were used to determine the baseline of the chest wall. All the other 3-D points on the 

light stripe curve were then projected onto the baseline to get the height values. This 

procedure was done for each line stripe curve. Finally, adjacent light stripe curves gave 

the volume using the trapezoidal rule, i.e. summing up the small volumes of all the 

triangular prisms. 

2.3 Segmentation Methods 

Razdan et al. (2003) defined the word segmentation by breaking down an 

existing structure into meaningful, connected subcomponents. On the other hand, 

Benko et. al. (2004) stated that if the surface were known, o::e could collect all point 

being within a given threshold to that surface, and dedare this set of points as the 

region belonging to the surface. Segmentation can be implemented us ~,g edge 

detection technique, region growing technique or 2 hybrid approach USing edge 

detection and region growing (Razdan et al. 2003). The research work relevant to the 
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problem of 3-D object segmentation can be divided into three categories: (i) range 

data, (ii) 3-D point clouds and (iii) mesh. 

In range data, the image of the scanned object is viewed as a piecewise 

smooth surface which is different than structured lighting method. Besl et al. (1988) 

defined eight types of surfaces (peak, flat, pit, minimal, ridge, saddle, valley, saddle 

valley) according to the sign of Gaussian and mean curvatures that were calculated 

using the neighbourhood points. Their method is based on variable order surface fitting 

(degree less than five). If the approximation is accepted, the fitting stops, otherwise the 

order of the polynomial is increased by one. 

3-D point clouds are the known surface points of a scanned object. Figure 2.1 

shows the known surface points of a flat object using a scanning device (e.g. laser 

scanning, structured lighting). Vance et al. (2002) calculated the point normal vector 

and principal curvatures based on the neighbourhood information. Their segmentation 

method was performed in two steps. In the first step, sharp edges, regions of high 

curvature and flat areas in the object are detected using the point normal vectors. The 

angle between the point normal vectors of two adjacent points within one segment has 

to be smaller than angle a (defined by the user). The angle between the normal vector 

of a point and a reference vector has to be smaller than angle ~ (defined by the user). 

The reference vector of a segment is defined as the normalized sum of normal vectors 

of all points in the segment In the second segmentation step, a segment is initialized 

using a single point and the neighbourhood points are included into the segment after 

satisfying the thres'lold values. The minimum and maximum of the first threshold 

values are the min rr-:um and maximum deviation of the principal curvatures for two 

neighbourhood poi::s. The minimum anc ~'ax>num of the second threshold values are 

the average of the minimum and maxirT':..:: principal curvature within the segment 

respectively. This segmentation method has a disadvantage that the calculation needs 

many parameters to set by the user. 

9 



Yang et al. (1999) used local parametric quadric surface approximation of the 

neighbourhood data points to estimate the local surface curvature. They were able to 

find surface boundaries using the extremes and zero crossing of curvature on a mesh. 

This segmentation is not suitable in noisy cloud data. 
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• • • • • • 

Figure 2.1: Known surface points of a flat object. 

Lavoue et al. 2005 stated that only few published studies concern the problem 

of 3-D object segmentation using the 3-D triangulated surface mesh. The work in this 

area is necessary as triangulated surfaces are becoming one of the standard formats 

to model shapes and to exchange between different computers (e.g. STL files in CAD 

applications). An example of a triangular mesh is shown in Figure 2.2, where a set of 

known surface points are connected to neighbouring vertices by edges. 

Mangan et al. (1999) generalized the watershed segmentation used in 2D 

image to 3-D triangular mesh. Their method is based on the curvature value of each 

vertex. A token move from one vertex to its neighbour until it reaches the minimum 

curvature and label is assigned to each minima. Each minima serves as the initial basis 

for a surface segment. All regions that have a watershed depth lower than the 

threshold are merged. The segmentation has a disadvantage of long computation time 

as the segmentation is repeated until all minimum curvatures are found. 
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Figure 2.2: Example of a triangulated mesh of known surface points of a flat object. 

Razdan et al. (2003) presented a hybrid approach segmentation. Their 

segmentation method combined the watershed segmentation developed by Mangan et 

al. (1999) and edge detection. An edge is detected if the normal vectors make an angle 

greater than a threshold angle (dihedral angle) between polygon faces. 

Lavoue et al. (2005) presented a mesh segmentation based on the curvature 

tensor. Their approach is based on two steps. In the first step, the sharp edges and 

vertices are identified and the curvature tensor is calculated for each vertex. A region 

growing algorithm was applied to connect the vertices according to their principal 

curvature. In the second step, a boundary score computed using the curvature 

direction is used to mark the correct boundary edges coming from the region 

segmentation and followed by a contour tracking to obtain a set of closed contours. 

Benko et al. (2004) used a direct segmentation based on discarding triangles in 

the vicinity of edges to divide the surface points into smaller, distinct point regions 

keeping G1 continuity (where the tangents to each curve at the point of co'lnect!o'l 

have the same direction). The points were classified into either stable or unstable. The 

stable regions are kept so they can be approximated by a single surface. The 

classification was performed using tests that use indicators. The first indicator 

(geometric) uses the normal vector, principal curvature, best fit direction of linear 

11 



extrusion, or best fit axis of revolution. The second indicator (error) is based on 

normalised errors of least-squares fitting. The third test is based on similarity indicator 

and calculated in two phases. In the first phase, a geometric indicator is assigned to 

the point. In the second phase, the average sum of the magnitude of the difference 

vectors between the assigned geometric indicator vector of the current point and those 

in a neighbourhood is calculated. The point is considered stable, if the surrounding 

points have 'similar' indicator values to the current one. In order to define a threshold 

value to use for these indicators, four statistical tests were used. The first test is based 

on histograms of the error or scalar similarity indicator. The second test computes the 

standard deviation of the indicator in each neighbour point. In the third test, a point is 

considered stable if the indicators are approximately the same. The last test compares 

two full distributions computed from two neighbourhoods and decides the relative 

difference of the mean values and/or the standard deviation. The segmentation method 

is more suitable for CAD files that need extrusion or revolution features. 

Pan et al. (2004) developed a segmentation algorithm using a flatness 

measure. The flatness measure was defined as a function of the triangle area and the 

normal. Firstly, the mesh is divided into different patches based on the flatness 

measure. The segmentation consists of three steps: (i) find the local minima and label 

the faces with different flags, (ii) find the initial patch sets and (iii) merge patches using 

a local to global strategy. 

Park et al. (2002) proposed an automated segmentation for reverse engineering 

application. The triang'e mesh is generated from the input data point and aggregated 

into a region until the a:-ea of the region reaches a user-defined area criterion. The 

boundaries are detecte:: by comparing the t·a'lgle normal to the user defined angle 

criteria. These bounda·es are inputs for a ne•..:'al network to extract six features from 

the surface. These features are pocket, step, boss, slot, hole and block. Their 

segmentation method is limited to mechanical features. 
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Woo et al. (2002) studied the application of octree-based method in 3-D 

segmentation. Their work is similar to the work developed in this research. A triangular 

mesh is generated for the measured points. For each vertex the normal values of each 

surrounding triangle is considered. The triangle normal is calculated for each 

surrounding triangle (ni in Figure 2.3) and the average of these normal is assigned to 

the vertex (N in Figure 2.3). The algorithm starts with an initial 3-D grid that encloses 

the object. The standard deviation of the point normal direction with respect to one of 

the three axes (x, y, z) and the surrounding vertices is the criteria used to divide the 

initial grid. If the standard deviation is higher than the user specification, the grid is 

divided into eight daughters. The disadvantage of this segmentation method is that the 

segmentation results will change by setting different normal direction in (x, y, z). 

Figure 2.3: Schematic of point normal calculation of the method proposed by H. Woo et 
al. (2002) 

2.4 Shape Similarity 

Skin disorders scanned using the developed structured lighting method can be 

preserted in a 3-D shape. Clinicians can use these 3-D shapes for diagnosis, 

monitc· '9 and retrieval Traditionally, these shapes can be stored into a database and 

textual -:ormation is assigned to each shape. The advantage of textual indexing of 3-D 

shape is that it can provide clinicians with keyword searching. The limitation is that it 

consumes much time when the database is large in size or when the database without 
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textual information is exported or imported. As a result, there has been a new focus on 

developing 3-D shape indexing called 3-D shape similarity. Researchers achieved the 

shape similarity between 3-D models in the database using the following three steps: 

1- Analysis of the geometry 

2- Shape description 

3- Similarity measure 

Analysis of the geometry is performed to define a standard position for the 3-D 

object. Using this position allows different algorithms to perform the model translation, 

rotation and scaling invariance. The next step is shape description where the shape is 

transformed into a descriptor. The similarity measure is used to answer the question 

how much similar is the query shape to the remaining 3-D objects in the database. This 

step uses the distance similarity (or dissimilarity) function where the lower the 

dissimilarity measure the higher the similarity between these two 3-D object. 

Several measures were used for the distance similarity between two sets of 

features H = {h;} and K = {ki}, where hi and kj are the feature element. The most used 

measure in 3-D shape is element-by-element dissimilarity measures. One of these 

measures is the Minkowisky-form distance function and defined by Butos et al. (2004) 

as follows: 

(2.1) 

where L is the dissimilarity value and p is an integer value. For the case where p = 1, 

the Minkowisky distance is called the Manhattan or City-block distance and ras an 

abbreviation /1 , while the Minkowisky distance with p = 2 is called the Eu::::idean 

distance and has an abbreviation /2 . In this research, the Euclidean distance was used 
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for dissimilarity measure. Figure 2.4 shows the comparison which is done between 

corresponding element h, and k1, at only i=j. 

h1 h2 h3 h4 hn-2 hn-1 hn 

t t t t t t t 
k1 k2 k3 k4 kn-2 kn-1 kn 

Figure 2.4: Element-by-element similarity measure 

Authors in the past have used different techniques to describe a 3-D shape, 

which can be divided into three different methods: Feature based method, Histogram 

based method and Topology based method 

2.4.1 Feature-based Method 

This method is based on extracting features from the 3-D shape that describe 

the descriptor. The similarity measure is performed between these descriptors. 

2.4.1.1 Statistical Approach 

Osada et al. (2001 & 2002) proposed a statistical approach named the shape 

distribution, where a certain number of points on the 3-D object surface are chosen. 

Five geometric properties (shape function) were developed in their work: 

A3 measures the angle between three random points on the surface of a 3-D 

model. 

01 measures the distance betwee- the centroid of the boundary of the model 

and one random point on the surface. 

02 measures the distance betweer two random points on t'le surface. 

03 measures the square root of the area of the triangle between three random 

points on the surface. 
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04 measures the cubic root of the volume of the tetrahedron between four 

random points on the surface. 

Among these five shape functions, the 02 measure shows the most effective results in 

shape similarity applied on 133 models divided into 25 classes, such as: planes, 

phones, pens, mugs, tanks, boats, sofas ... etc. 

2.4.1.2 Moments 

Paquet et al. (2000) decomposed the outer surface of the 3-D shape into a 

triangular mesh and proposed the moments based-descriptor based on statistical 

moment. The moment was calculated using the following equation (Paquet et al. 2000): 

II 

Mqrs = 2 si(xi- XCM r (yi- YcM r (zi- ZCAI r (2.2) 
i-1 

where, xi, y; and z; are the co-ordinate of the centre of mass of the lh triangle, n is the 

total number of triangles that constitutes the object surface, XcM. YcM and zcM are the 

coordinates of the centre of mass of the object, S; is the mass of the r triangle and the 

sum q+ r+ s is the order of the moment. 

2.4.1.3 Geometric Parameters 

Geometric features such as area, volume, surface area and bounding box have 

been used to describe the shape. Zhang et al. (2001a and 2001 b) extracted features 

such as volume, area, volume-surface ratio and aspect ratio from the model. The 

Euclidean d;stance was used to measure the similarity between two models. The 

disadvantage of these features that models having same volume or area are 

considerec s 'Tiilar although they might be different in shape. 

Ohbuchi et al. (2002) divided the model into l equal thickness slabs along each 

of the principal axes and used the statistics values of three statistics along each of the 

16 



three principal axes: (i) the moment of inertia about the axis, (ii) the average distance to 

surfaces from that axis, and (iii) the variance of distance to surfaces from the axis. The 

similarity distance between features was calculated using the Euclidean distance. 

There was no specific slab number for each model. The change in slab number of each 

model leads to a change in results. 

Paquet et al. (2000) defined the bounding box of the model and used properties 

such as (i) the fractional occupancy (ratio of the object volume to the volume of its 

bounding box), (ii) depth, height and width of the bounding box and (iii) bounding box 

centroid. Each property is used separately according to the user demand. The 

disadvantage of their work that the rotation and translation invariance were not 

secured. Their work is similar to the work developed in this research. 

Corney et al. (2002) used 101 L-shape blocks and proposed three properties. 

The first property is the hull crumpliness (ratio of the object's surface area to the 

surface area of its convex-hull), the second property is the hull packing (percent of the 

convex hull volume not occupied by the original object) and the last property is the hull 

compactness (ratio of the convex hull's surface area cubed over the volume of the 

convex hull squared). Their work is limited to the use of L-shape blocks. 

2.4.2 Histogram-based Method 

Paquet et al. (1999) proposed the cords-based method. The outer object 

surface is composed of a triangular mesh and a cord is then defined as a vector that 

connects the model centre of gravity and the centroid of each triangle. This chord 

produced three histograms. The first histogram represents the distribution of the angles 

between the cords and the first principle axis of the shape, while the second histogram 

provides the distribution of the angles between the cords and the second principle axis 
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of the shape. The third histogram describes the distribution of the chord length. If the 

chord length is taken as it is, the histogram is scale dependent. While normalizing the 

chord length values between zero for the shortest chord and one for the longest chord 

make this histogram scale independent. 

Liu et al. (2003) proposed the Directional Histogram Model (OHM). A number of 

sampling directions are defined and the thickness of the model at different cross 

sections is obtained. The histogram is represented by a 3-D function to define the 

direction and thickness value. This method can not be used for scanned models where 

the model is a surface without a thickness. 

2.4.3 Topology-based Method 

The topology method is based on the description of the model topology. The 3-

D shape is converted into a graph using skeleton-like presentation. The descriptor is 

the graph and the dissimilarity measure is performed between these two graphs. Hilaga 

et al. (2001) proposed the Multi-resolution Reeb Graph (MRG). In this case, a 

continuous function was applied to each vertex of the surface model (assuming a 

triangular decomposition of the model surface). This function is the integration of the 

geodesic distance between two vertices. At this point, the Reeb Graph is constructed 

by dividing the model into a number of levels based on the value of the scalar function. 

Each level is presented by a node, and connected to the adjacent node by an edge. 

The disadvantage of this method is that surfaces with O'!e patch are always similar as 

their graph is always one node. 
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2.5 Summary 

Although different non-contact measurement systems were used to calculate 

the volume of moles, wound, nursing female breast, etc, authors agreed that the 

volume is the region sandwiched between two surfaces. The first surface is the original 

healthy skin and the second surface is measured surface (tumour). Different published 

work showed better results when the original healthy skin is approximated using spline 

interpolation. The method of calculating the volume by dividing the projected area into 

triangles and the total volume is the summation of all prisms shows an error less than 

10%. This calculation method does not guarantee that the shape of the calculated 

volume is the same as the shape of the measured tumour. 

The different segmentation methods developed by the authors needs the 

calculation of neighbourhood information such as Gaussian, mean, principal curvature 

and normal values. These parameters would be difficult to clinicians (or other staff 

working in the medicine area) to understand and handle. A segmentation based on 

simple algorithm has to be developed to suite the application. 

In shape similarity, three steps are needed to measure the similarity distance 

between 3-D shapes. The first step is to define a reference position. In the second 

step, a set of features is extracted from the 3-D shape to form a descriptor. While 

similarity distance between models in the last step is calculated by the Minkowisky 

function or an equivalent function. It is important to extract features that are understood 

by normal users. This makes it easy to measure the similarity between a model in mind 

that does rot ex·st ' the database and all models in the database. These features are 

physical qca1tity such as volume. surface area, height, width or depth. Other features 

need an ex;:;erienced user to est;~a:e the feature values. 

19 



CHAPTER THREE 
A SIMULATION STUDY ON THE EFFECT OF FRINGE SPACING ON 

DIFFERENT VOLUME CALCULATION METHODS 
IN STRUCTURED LIGHTING 

3.1 Introduction 

One of the methods to determine the 3-D coordinates on a surface with 

minimum error is by using structured lighting. Structure lighting technique involves 

projecting patterns of light upon a surface of interest and capturing an image of the 

resulting pattern as reflected by the surface. The image must then be analyzed to 

determine the 3-D coordinates of data points on the surface (Varady, et al, 1997). 

Figure 3.1 shows the principle of a structured lighting method. A grating (normally 

placed inside a projector) is used to illuminate the object with the projected pattern. The 

pattern has definite fringe or line spacing. The grating is inclined at a predefined angle 

8 relative to the camera. The camera is placed above the object and able to capture an 

image of the surface with the projected pattern. A part of the projected pattern hits the 

surface and part of it continues on the flat background. Most structured lighting 

methods use triangulation equation to obtain the height values of the scanned surface. 

The sketch in Figure 3.2 shows the image of the scanned surface in Figure 3.1 

as seen by the camera. This simulated image shows the top view of the surface with 

the projected pattern. The lines of the projected pattern surrounding the object surface 

are straight. This happens due to the flat background in which the object was placed. 

The falling pattern lines on the surface are d started according to the surface profile. 

The x, y, z data along these lines c2:1 be known and defined, while elsewhere are 

unknown as the projected lines does ~at exist. The aim of ::;s par of the work is to 

calculate the volume of a certain shape using these known data 
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Figure 3. 1: Structured lighting principles 
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Figure 3.2: Sketch of the captured image for the scanned object in Figure 3.1 

3.2. Volume Calculation 

In order to determine the volume of a skin disorder two surfaces have to be 

known: the measured surface of the disorder and the original healthy skin surface 

(Boersma et al. 2000). The volume is defined as the region bounded between both 

surfaces and could be computed using the multiplication of area of base by height 
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method or integration of a fitted curve across coordinate points and multiplied by its 

depth along x-direction. 

3.2.1 Volume Determination using Multiplication of Area of Base by 

Height Method 

In this method, the measured shape is divided into a number of smaller shapes 

and the projected area of each of the smaller shape is calculated. The volume is 

obtained by multiplying each projected area (base) by the height. In this research, the 

base was a rectangle. The rectangle width equals to one pixel, the smallest integer 

units of an image. The length of the shape is divided into many rectangle lengths for 

approximation. Figure 3.3(a) shows a schematic example of volume calculation at a 

certain surface x-section. The surface points measured by a structured lighting 

technique are presented by squares. The distances between known surface points are 

known and assigned by the dimension d;. In this example, the first and last known 

surface points are assumed to be the limits of the measured profile. Otherwise, a 

segmentation method followed by an extrapolation is necessary to obtain these two 

points. The area under the profile is divided into five shapes and assigned by an 

integer number. Each shape encloses one known surface point. Figure 3.3(b) shows 

the different shape of rectangles each with a depth equal to w. The rectangle's length I 

is defined under three conditions: 

(i) The left limit of the measured profile. The length is the half distance between a 

known height point and its next one in the same x-section. 

(ii) "The right limit of the measured profile. The length is the half distance between a 

k:1own height point and its previous one in the same x-section. 

(iii) Otherwise, the length is the summation of two distances. The first distance is 

the half distance between a known height point and its next one in the same x-
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section. The second distance is the half distance between a known height point 

and its previous one in the same x-section. 

These three conditions define the length of the rectanglei in Figure 3.3(b) as 

rectanglei is multiplied by the height hj. Each hi value in the figure equals to the height 

of the enclose coordinate. Finally, the total volume is the volume summation of these 

rectangle-based shapes. 
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Figure 3.3: Schematic of volume calculation using area of base times height (a) The 
division of area under the measured surface profile (b) Top view of the created 
rectangles. 
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3.2.2 Volume Determination using Curve Fitting 

The volume is calculated by a method similar to the previous one. Instead of 

dividing the area under the measured data points, a fitted curve is used to interpolate 

or approximate the surface profile. The integration of the curve determines the area 

under the profile. The multiplication of the area under the curve by the depth along x-

direction gives the volume. 
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Figure 3.4: Plan and front views for known surface points. (a) Plan view for the surface 
and the direction of fitted curve. (b) Front view. 
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