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PENILAIAN KEBARANGKALIAN BENCANA SEISMOS DI TEHRAN DAN 

KAWASAN BERHAMPIRAN 

ABSTRAK 

 

Dalam kajian ini, analisis kebarangkalian Bencana Seismos (PSHA) telah dilakukan 

di Tehran dan di  kawasan sekitarnya. Penilaian Kebarangkalian Bahaya Seismos 

(PSHA) merupakan prosedur yang  sering digunakan secara meluas dalam penilaian 

bencana seismos. PSHA memaparkan kebarangkalian semulajadi bencana seismos 

dengan mengintegrasikan semua sumbangan magnitud gempa bumi yang 

berkemungkinan serta lokasi dalam bentuk yang konsisten. Katalog gempa bumi 

yang seragam adalah penting dalam penilaian bencana seismos. Dalam kajian ini, 

sebuah katalog gempa bumi Tehran dan kawasan sempadannya telah dikumpulkan 

dengan mengabungkan bank data antarabangsa dan tempatan. Pempiawaian katalog 

dalam perihal magnitud telah dicapai dengan mengubah kesemua jenis magnitud 

kepada magnitud momen dengan menggunakan kaedah regresi ortogon. Dalam 

katalog baru yang disatukan, semua kejutan lanjuran dan kejutan depan telah dikesan 

dan dibuang dari katalog. Kawasan kajian ini dibahagikan kepada dua kawasan 

seismos berasaskan kepada rejim seismotektonik. Sumber seismos telah didefinisikan 

sebagai sumber sesaran dan sumber kawasan. Parameter keseismosan dan magnitud 

kelengkapan minimum telah dihitung berasingan bagi sesar-sesar dan setiap zon 

seismos dalam kawasan tersebut. Empat hubungan pengecilan dan tiga hubungan 

pengecilan NGA baharu telah dipilih dan diambil kira dalam kajian ini. Puncak 

pecutan bumi (PGA) tidak mencukupi untuk mereka bentuk kod bangunan moden 

maka PGA dengan nilai pecutan spectrum telah dianggarkan dan digunakan dalam 

tempoh masa 0.2 dan 1.0 s. 
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Analisis bencana seismos telah dilakukan pada beberapa titik terpilih dan peta 

bencana bagi puncak pecutan bumi mendatar dan pecutan spektrum (T=0.2 saat dan 

T=1.0 saat) bagi jangka pulangan yang berbeza (475, 975 dan 2475 tahun) telah 

dihasilkan dan dibandingkan dengan hasil yang sedia ada dalam literatur.  

Peta dalam kajian ini menunjukkan tahap anggaran yang lebih tinggi puncak pecutan 

bumi dan respon pecutan spektrum yang dijangka dalam pelbagai tempoh pulangan 

daripada yang dihasilkan dalam kajian sebelum ini. Model baru itu dijangka 

menghasilkan pengubahsuaian besar untuk kod bangunan.  
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PROBABILISTIC SEISMIC HAZARD ANALYSIS IN TEHRAN AND 

ADJACENT AREA 

ABSTRACT 

In the current study, probabilistic seismic hazard assessment (PSHA) for Tehran and 

adjacent area has been performed. Probabilistic seismic hazard analysis (PSHA) is 

the most widely used procedure for seismic hazard assessment. PSHA displays the 

probabilistic nature of seismic hazard by integrating the contributions of all possible 

magnitude earthquakes and locations in a consistent manner. A uniform earthquake 

catalogue is an essential tool in any seismic hazard analysis. In this study, an 

earthquake catalogue of Tehran and adjacent areas was compiled by merging 

international and local databanks. The standardization of the catalogue in terms of 

magnitude was achieved by the conversion of all types of magnitude into moment 

magnitude by using the orthogonal regression technique. In the newly compiled 

catalogue, all aftershocks and foreshocks were detected and eliminated from the 

catalogue. The study area is divided into two seismic regions based on their 

seismotectonic regime. The seismic sources have been defined as fault sources and 

area sources. The seismicity parameters and minimum magnitude of completeness 

were calculated separately for the faults and each seismic zone in the area. Four 

attenuation relationships and three new generation attenuation relations (NGA) have 

been selected and considered for this study. Peak ground acceleration (PGA) is not 

sufficient to design for the modern building codes, so PGA along with spectral 

acceleration values have been estimated and used in period of 0.2 s and 1.0 s.  

Seismic hazard analysis was performed in selected points and the hazard maps for 

horizontal peak ground acceleration and spectral acceleration (T=0.2 sec and T=1.0 



xix 
 

sec) for different return periods (475, 975, and 2475 years) have been produced and 

compared with those available in literature. 

Maps in this study show higher estimate levels of peak ground acceleration and 

response spectral accelerations expected in various return periods than those 

produced in the earlier researches. The new model is therefore expected to result in 

considerable modifications to the building code. 

 

 

  



1 
 

                                                         CHAPTER 1 

INTRODUCTION 

1.1  General background 

       Vulnerability due to earthquake in many places of the world is seemed to be 

increasing. The number of victims and damages particularly in the developing 

countries could be addressed increasing because of over population, poor 

construction works and lack of useful building codes. 

       Iran is among the most seismically active places on the world. Over the last 

number of years, many people died and encountered social and economic problems. 

Iran has been host to a long series of large damaging earthquakes. There have been 

roughly 126000 deaths attributed to 14 of magnitude of 7 and 51 earthquakes of 6 to 

6.9 that have occurred in Iran since 1900. During this period nine cities were 

destroyed. Review of historical seismic data shows that every part of the country has 

been hit by major earthquakes. 

       For example, during the 1990 Rudbar earthquake (moment magnitude =7.3) in 

northwest Iran, more than 40000 people lost their lives, more than 50000 became 

homeless, nearly 100000 buildings were destroyed, three cities and 700 villages were 

demolished.  In December 2003 an earthquake measuring moment magnitude of 6.6 

devastated the city of Bam, 1,000 kilometer southeast of Tehran 31,000 people were 

killed. 
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 Report on these seismic events demonstrates nearly all part of the region is being 

suffered and has gone under experiences of the severe economic process and social 

damages by major earthquakes. 

       Hence, it is important for the scientists and engineers to reduce such destructions 

through scientific research and development. A useful map is used as an aid for the 

sustainable development and can explain seismic hazard through the understanding 

and uses of seismogenic faults, ground motions, existing building codes or any 

relevant associated parameters (Gholipoor et al., 2008). 

1.2  Natural hazards 

       Any undesirable event in any system is hazard. Natural hazard indicates the 

occurrence of a natural risky event in a in a defined space and time. Natural hazards 

tend to be harmful and often create damage to the physical as well as social on short 

time and long-term basis because of their effects, thus hazards are the consequence 

of instant changes within long-term behavior caused by minute. These hazards are 

highly relevant to geomorphology while they are important parts of the Earth’s 

surface dynamics (Alcantara-Ayala, 2002).  

       Rapid changes due to Earth system processes could rearrange the planet’s 

surface in a moment with consequences for both natural systems and people’s 

welfare and livelihoods (Young and Leon, 2009). Cities are definitely more 

vulnerable to disasters because of the density of buildings, population, and 

infrastructure. Unfortunately, many urban as well as rural dwellers live near the 

coasts or active seismic faults and are subject to natural hazards like hurricanes, 

landslides or earthquakes (Montoya and Masser, 2005).  
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1.3  Earthquake hazards 

       Earthquakes tend to be the most harmful associated with natural hazards. 

Earthquake happens because of  unexpected instant movement  of  the  ground  as  a  

result  of  release  of  elastic  energy  in  a  matter  in couple of seconds.  Earthquakes 

happen sudden and affect large area so the impact of the event is harmful.  They 

could lead to  huge  loss  of  life  and  property  and  disturb  important  services  

including  sewerage systems, communication, power, water supply transportation 

and many others. 

       Earthquakes demolish cities, towns and villages and destabilize the economy and 

social structure of the region. Earthquakes lead to huge damage in lifelines, 

structures and other facilities for prepared and less prepared regions in spite of 

awareness and mitigation attempts. Consequently, it is essential to create plans that 

could set priorities for prevention, reduction, and compensation for regions. 

Government and public awareness could play fundamental role in reducing human 

and financial losses due to earthquakes if decision makers know what could be done 

in advance to reduce hazards (Momani, 2011). 

       Seismic hazard assessment research is actually important for identification of the 

zones with various hazards that will help doing additional risk studies, land use 

planning and updating construction codes.  

       The energy released by an earthquake sets many processes into action, and may 

have both short-term and long-term consequences. Some of the hazards make effect 

immediately, and others may not appear for days, weeks, or months after the event.  

Earthquakes are associated with a wide variety of specific hazards, including primary 
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effects such as ground motion, ground breaks (or faulting), mass wasting and 

liquefaction. 

        Secondary and tertiary hazards are indirect effects, caused by events initiated by 

the earthquake. These may include explosions, tsunamis and fires caused by 

interruption of pipelines utilities (Kusky and Kushy, 2008). 

1.4  Seismic hazards and risks of study area 

       Seismic hazard analysis is the evaluation of the maximum amplitude of some 

ground motion parameter (peak ground acceleration, peak ground velocity, relative        

displacement, etc.) expected to occur once at a certain site or area within a particular 

time span. This time span is referred to the return period, which is the reciprocal of 

the annual probability of occurrence of certain amplitude (Thenhaus and Campbell, 

2003).  

       Seismic hazard is often displayed on a ground motion hazard map, which 

illustrates the regional differences in expected ground motion amplitude (typically 

PGA) at a constant return period. 

       The growth of population, high buildings and big cities lead to the increase in 

damages caused by seismic hazards. Throughout the twentieth century, huge 

earthquakes have caused about 90 % of direct deaths because of buildings collapsing 

(Lantada et al., 2009). Consequently, happening of great earthquakes and their 

effects in different areas during the last couple of years informs us about the 

necessity of hazard assessment (Mohanty and Walling, 2008). The probabilistic 

earthquake hazard analysis aim to estimate the likelihood function of the study area 

for any specified level of ground motion due to the cause of earthquakes from 
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potential seismic sources (Hamouda, 2011). Iran situated on the Alp-Himalayan belt 

one of the seismic zones in the world where critical earthquakes have always been 

happening(Ghobadi and Fereidooni, 2012). 

       The Iranian plateau is famous because of recent volcanic, active faults and high 

surface elevation alongside the Alpied earthquake belt. Extremely high density of 

active and recent faults could be observed in Iranian Plateau according to the tectonic 

studies. 

       Tectonics information, the historical earthquakes data, fault activity, geology and 

seismic source models are used for seismic hazard map based on probabilistic 

seismic hazard. These maps explain the earthquake hazard of study area in the forms 

of iso-acceleration contour lines, and include the probabilistic estimates of Peak 

Ground Acceleration for different return periods. 

       The basis for all seismic hazard assessment is the investigation of seismicity or 

the occurrence of earthquake in space and time (Scawthorn and Chen, 2002; 

Tavakoli and Ghafory-Ashtiany, 1999). 

       The considered region in this research is the area including  mega city of Tehran 

and adjacent area covers a square limited by 34.35˚N to 37.10˚N and 49.80˚E to 

53.10˚E. It covers the northern central Iranian depression in the south and the central 

part of the Alborz mountain in the north (Figure1.1). 
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1.5 Tectonic Framework 

       The tectonic framework physically links the geologic, geodetic and 

seismological data on earthquake sources and constrains geodetic models of crustal 

deformation. Plate tectonic processes cause earthquake events and crustal 

deformation. These processes have been going on for hundreds or millions of years 

(Gholipoor et al., 2008). 

Figure 1.1 Map of Iran. Study area is inside the box 
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       Four major tectonic plates (Arabia, Eurasia, India and Africa) are responsible for 

seismicity and tectonics in the Middle East and adjacent area (Figure 1.2). The active 

deformation of the Iranian plateau, as a tectonically active part of Alpine-Himalayan 

tectonic belt is effected by the Arabian–Eurasian convergence and it makes regions 

with different seismotectonic features.  

 

Figure 1.2 Seismotectonics of the Middle East and vicinity (Walter, 2002). 

       The early Quaternary tectonic history and the pre-Quaternary geological record 

are very important in understanding the present continental deformation during 

earthquakes. Iranian seismic activity is directly related to reactivation of the existing 

faults and it is separated into three categories:  

i.  The Zagros active fold-thrust belt, where shortening along longitudinal high 

angle reverse basement faults spread over the entire belt, is absorbed by 
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ductile layers of the top sedimentary cover (usually no earthquake rupture is 

observed at the surface).  

ii. The Central Iranian plateau, where the earthquakes are accompanied by 

surface faulting along mountain-bordering reverse faults. 

iii. The Makran accretionary flysch wedge where the oceanic crust of the Oman 

Gulf is subducting underneath the southeastern Central Iran. 

       Tectonic shows movements during the late Neogene-early Quaternary and the 

mechanism of the recent active fault motions explains that the Iranian plateau is a 

broad zone of compression deformation. The plateau is a quite weak belt affected by 

several collisional orogenic movements and is being compressed between two blocks 

(Arabia and Eurasia), since 65 Million years. The compressional motion between 

these blocks resulted in a continuous thickening and shortening of the continental 

crust by reverse faulting and folding in a NE-SW direction. Situation of the Iranian 

plateau between two impinging zones of the Arabian plate in the west and the Indian 

plate in the east has provided a unique constrained convergent zone along the Alpine-

Himalayan belt (Copley and Jackson, 2006). 

1.6  Geology of the Study area 

       Systematic geological studies in Iran started in late 1960s with the establishment 

of the Geological Survey of Iran. The tectonic and structural setting of Iran in the 

Alpine–Himalayan orogenic belt, and the structural evolution of Iran, has been the 

focus of many studies. Using Stocklin and Nabavi (1973) was the first to publish a 

tectonic map of Iran. The authors divided Iran into 10 structural zones (units) based 

on certain geological features: Makran,  the  Lut  Block, Eastern  Iran,  Kope  Dagh,  

the  Alborz  mountains, the  Central  Iran  Block,  the  Urumieh-Dokhtar  zone,  the 

Sanandaj-Sirjan  zone,  the  Zagros  fold  belt,  and the  Khuzestan  plain.  The  
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boundaries  of  these units  are  usually  marked  by  faults  or  in some  cases  

(mainly  tectonic)  depressions. This structural division remained a reference for 

Iranian geologists for almost three decades (Figure 1.3). 

       New observations and findings require a revision to this structural scheme. 

Following this structural division by Stocklin and Nabavi, some other structural 

divisions were presented that are cited in following section related to Central Iran. 

These newer structural schemes are mostly derived and inspired by the very first 

structural division presented by Stocklin(1968). In recent years, new interpretations 

and models have been offered regarding the geological setting of Iran (Nabavi, 1976; 

Eftekharnezhad, 1980; Nogol-e-Sadat, 1993; Alavi, 1996; Aghanabati, 2004).  

       Northern region of Tehran province is a part of Alborz mountains while southern 

Tehran is located in central Iran plain so Tehran province belongs to Alborz and 

central Iran structural zones. The boundary between these zones matches on northern 

Tehran thrust fault. The oldest stratigraphic units of Tehran province include a late 

Precambrian to mid Triassic platform sequence which emprise several geologic 

formations and sedimentary unconformities indicating land-forming movements 

during late Precambrian to mid Triassic time. These units outcrop specially on 

upriver regions of Karaj River.  
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Figure 1.3 Structural zones of Iran (Stocklin, 1968) 
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1.7       Problem statement 

     People have been experiencing numerous catastrophic earthquakes  all around  the 

world. As there  are  no  reliable  means  to  predict  the  timing  of  these  

earthquakes,  engineers  focus  on preventing  significant  earthquake  loss  by  

designing  earthquake-resistant  new  structures  and seismically  mitigating  existing  

structures  based  on  proper  seismic  hazard  analysis. 

     Major earthquakes in Iran have motivated Iranian scientists to map and study the 

seismic hazard and enhance existing building codes. The study of earthquake hazard 

plays an important role in the sustainable development countries like Iran, where 

earthquakes have occurred repeatedly. 

      Most researchers have concluded their seismic hazard analyses by reporting the 

PGA value of Iran. This value will be very useful once the analysis of structures 

becomes based on local Building codes for Iran. However, the analysis of a structure 

based on International Building Code (IBC) 2003 or IBC 2006 is not possible using 

PGA alone; instead, spectral acceleration values are required for a return period of 

2500 years.  

      Within the scope of the literature review done for this study, it was established 

that only Gholipour et al. (2008), Hamzeloo et al. (2012) and Abdi et al. (2013) had 

applied estimation of spectral acceleration along with peak ground acceleration. In 

this study, we perform a seismic hazard analysis of Tehran and the surrounding areas 

and suggest spectral acceleration values in line with ASCE (American Society for 

Civil Engineers) and IBC 2006 (International Building Code of 2006) and improve 

the results by considering fault slip rates along with fault activity rate and using new 

generation attenuation relations . 
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      Improve the accuracy and quality of existing data is a knowledge gap to be filled 

in this study. However, establishment of a local relation for converting magnitudes 

instead of global relations is also considered in this study, Hence, a new but a simple 

relation is developed for this study. 

1.8 Objective of thesis 

       The general approach to seismic hazard evaluation is usually directed towards 

reducing the uncertainties at various stages of the research process by collecting a 

sufficient amount of reliable and relevant data. In this study, the available 

geophysical, geological, seismological and geodetic characteristics of the project area 

are evaluated. The database should be sufficient to determine the strong ground 

motion at the project area. 

In summary the objectives of this research are:  

i. To develop and update earthquake data to compile a comprehensive 

earthquake catalogue of the region and standardize the event catalogue in 

terms of magnitude to generate a uniform catalogue with moment 

magnitudes. 

ii. To develop and validate data for faults and produce the existing fault 

mechanism and an effective fault map for the region for developing a 

comprehensive seismicity of the study area and calculating seismic 

parameters using available earthquake catalogues. 

iii. To investigate  the New Generation Attenuation (NGA) functions using the 

Iranian recorded ground motions to verify its applicability for use in the 

hazard analysis of the research for the study area and produce Peak Ground 
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Acceleration (PGA)  and Spectral acceleration(SA) for the entire study area 

in different return periods. 

iv.  To develop new seismic hazard maps for the study area. 

1.9 Significances and novelties of the study 

       The uniqueness and novelties of this study are as follows: 

i. The study adopted a novel approach of homogenizing the earthquake 

magnitudes for this area.  

ii. The study will be the first to build seismic hazard map of the area based on 

combination of new generation attenuation and the old attenuation relations 

considering the fault slip rate along with the activity rate to generate new 

hazard maps based on International building codes. 

iii. The study improved the accuracy and quality of existing data. 

1.10 Thesis Organization 

       Generally, the content of this thesis is as organized in five chapters. The 

components of each chapter are briefly discussed as follows: 

       Chapter1 presents the introduction of the study. This chapter is discussed under 

background of study area, problem statement, research objectives and location of the 

study area. 

       Chapter 2 is devoted to review the early studies using the two approaches of 

seismic hazard analysis (Deterministic and Probabilistic) However, only study on 

probabilistic seismic hazard is to be highlighted. 
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       Chapter 3 deals with the methodologies adopted for the study and discuss 

compilation of the earthquake catalogue, by merging information from different 

international and local sources and conversion all magnitudes into moment 

magnitude. Processing of the data, which includes removing of duplicate events, 

homogenizing, declustering, and calculating magnitude of completeness has been 

carried out. The next part of this chapter summarizes geological and seismotectonic 

setting of the study area and includes the study of the active faults in this area and 

calculates maximum moment magnitude related to each fault. The last part of this 

chapter describes seismicity assessments, calculates seismic hazard parameters 

separately for each seismotectonic zone and deals with the selection of ground-

motion prediction equations and explains Four ground motion equations  and three 

new generation attenuation relations appropriate for this region. The final part of this 

chapter proposes model for seismic hazard assessment and illustrates the outline of 

the seismic hazard assessment methodology applied in the current study by using the 

EZ-FRISK. 

       Chapter 4 allows showing the results of probabilistic seismic hazard analysis in 

terms of maps and tables for PGA and spectral acceleration in different return 

periods along with comprehensive discussions. 

       Finally, Chapter 5 makes conclusions of the current research and contains the 

outcome of the hazard assessment and including recommendations for future 

research. 
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Chapter 2                                       CHAPTER 2 

LITERATURE REVIEW 

2.1  Introduction 

       Seismic hazard is related to any  physical  phenomena  associated  with  an  

earthquake  (ground  motion,  ground failure,  liquefaction,  and  tsunami)  and  their  

effects  on  land, man-made  structures  and  economic systems that have the 

potential to produce a loss (Kijko, 2011a). Seismic hazard analysis is a critical part of 

the development of design ground motions (Zhao, 2005).  

       There are two approaches for the seismic hazard analysis, Deterministic Seismic 

Hazard Analysis (DSHA) and Probabilistic Seismic Hazard Analysis (PSHA). Both 

probabilistic and deterministic methods have a role in seismic hazard and risk 

analysis performed for decision-making purposes. These two methods can 

complement another to provide additional insights to the seismic hazard or risk 

problem. One method will have priority over the other depending on how 

quantitative are the decisions to be made, Seismic environment and scope of the 

project. 

       Deterministic against probabilistic approaches have differences, advantages, and 

disadvantages that often make the use of one advantageous over the other. 

Probabilistic methods can be viewed as inclusive of all deterministic events with a 

finite probability of occurrence (McGuire, 2001).  
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2.2  Deterministic seismic hazard analysis (DSHA) 

       Deterministic seismic hazard analysis involves the quantitative estimation of 

ground-shaking hazards at a particular site (Kramer, 1996). In deterministic 

approach, earthquake magnitude is the magnitude of the largest earthquake capable 

of occurring on each seismic source (the maximum creditable earthquake). Faults 

and other tectonic features near the site are identified. A suitable attenuation equation 

is used to determine the ground motion at the site (Bhatti et al., 2011). 

      The shortest distance is selected as the source to site distance parameter for the 

seismic source zone. After the earthquake magnitude and distance are selected, the 

peak horizontal acceleration (PHA) is estimated (Reiter, 1990). The controlling 

earthquake is one that produces the highest PHA and the hazard in the site is 

formally defined in terms of ground motions produced at the site by the controlling 

earthquake (Reiter, 1990). 

       DSHA provides a framework for evaluation of worst-case ground motions. 

However, it provides no information about the likelihood of occurrence of the 

controlling earthquake. The frequency of earthquakes and resulting ground motions 

are not clearly considered in DSHA. The uncertainties and scientific judgment in 

DSHA may not be explicitly recognized and quantified. Figure 2.1 shows the steps in 

this approach. 
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Figure 2.1 Steps in Deterministic Seismic Hazard Analysis. 

 

2.3    Probabilistic seismic hazard analysis (PSHA) 

       The concept of probabilistic seismic hazard has allowed uncertainties in the size, 

location and rate of recurrence of the earthquake events. PSHA provides a 

framework which uncertainties can be identified, quantified and combined in a 

rational manner to provide a more complete picture of the seismic hazard (Kramer, 

1996). 

       In probabilistic approach, site ground motions are estimated for selected values 

of the probability of exceedance in a specified return period.  PSHA can be 

implemented by a four step procedure developed by Reiter, 1990 (Figure2.2): 
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Figure 2.2 Steps in Probabilistic Seismic Hazard Analysis. 

 

1. The  first  step  of  PSHA  consists  of  the  identification  and  parameterization  of  

the  seismic  sources (known also as  source zones,  earthquake sources  or  seismic 

zones) that may affect the site of interest. These may be represented as area, fault, or 

point sources. Area sources are often used when one cannot identify a specific fault. 

In classic PSHA, a uniform distribution of seismicity is assigned to each earthquake 

source, implying that earthquakes are equally likely to occur at any point within the 

source zone. Seismic source models can be interpreted as a list of potential scenarios, 

each with an associated magnitude, location and seismic activity rate (Field, 2005).  

2. The next step consists of the specification of temporal and magnitude distributions 

of seismicity for each source.  The  classic,  Cornell-McGuire  approach, assumes  

that  earthquake  occurrence  in  time  follows  the  Poisson  process. The  most often  

used  model  of  earthquake  magnitude  recurrence is  the  frequency-magnitude  

Gutenberg-Richter relationship (Gutenberg and Richter, 1942) . 
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                                                                  (2.1)       

       Where   is the number of earthquakes with a magnitude of   and   and   (b-

value of Gutenberg and Richter) are constant parameters. It is assumed that 

earthquake magnitude belongs to the domain between      and     , where      

is the level of completeness of earthquake catalogue and      is the upper limit of 

earthquake magnitude for a given seismic source. The parameter    is the measure of 

the level of seismicity, while   describes the ratio between the number of small and 

large events.  

       The seismicity of each seismic source is described by four parameters: the 

(annual) rate of seismicity  , the lower and upper limits of earthquake magnitude 

     and      and the  –       of the Gutenberg-Richter relationship.  

3.  Calculation  of  ground  motion  prediction  equations  and  their  uncertainty.  

Ground  motion  prediction equations are used to predict ground motion at the site. 

The parameters of interest include peak ground acceleration, peak ground velocity, 

peak ground displacement, spectral acceleration, intensity, strong ground motion 

duration, etc. Most ground motion prediction equations available today are empirical 

and depend on the earthquake magnitude, source-to-site distance, type of faulting and 

local site conditions (Campbell, 2003; Douglas, 2003; 2004). The choice of an 

appropriate ground motion prediction equation is crucial since it is a major 

contributor to uncertainty in the estimated PSHA.  

4. Integration of uncertainties in earthquake location, earthquake magnitude and 

ground motion prediction equation into probability that the ground motion parameter 

of interest will be exceeded at the specified site during the specified time interval. 

The ultimate result of a PSHA is a seismic hazard curve (McGuire, 2004). 
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       The discussion by seismologists about the pros and cons of deterministic and 

probabilistic seismic hazard analysis has a long history. Using these approaches 

depends on the design level. There are four design levels for structures: 

i. Maximum Credible Design level(MCDL) 

ii. Maximum Design Level(MDL) 

iii. Design Basis Level(DBL) 

iv. Construction Level(CL) 

MCDL is used for structures with return period of 10000 years(useful life of 

structure) so infrastructures such as nuclear power plants or dams in most countries is 

still largely based on deterministic seismic hazard analysis.  

MDL is considered for return period between 1000 to 5000 years. DBL and CL are 

used for 475 and 50 year return period respectively (ICSRDB, 2005). 

Structures such as normal buildings, hospitals and schools are based on probabilistic 

seismic hazard assessment (Klugel, 2008). 

PSHA accounts for some points that DSHA does not consider them. Activity rates 

(Number of earthquakes per year) vary from fault to fault in PSHA. In PSHA hazard 

increases from multiple faults but in DSHA the hazard for multiple faults is same as 

single fault (Figure 2.3). 
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Figure 2.3 Comparison Multiple faults in PSHA and DSHA. 

2.4  Previous work 

       Number of studies (Orozova and Suhadolc, 1999; Romeo and Prestininzi, 2000; 

Krinitzsky, 2002) exist in the literature which have been trying to integrate both 

probabilistic approach and deterministic approach in a sophisticated engineered 

framework. 

       The majority of the publications in the subject of seismic hazard analysis 

concentrate on the application of the probabilistic approaches at different parts of the 

world. New challenges in the methodologies used in its development since its 

formation (Cornell, 1968; Veneziano et al., 1984; Kebede and van Eck, 1996; 

Theodulidis et al., 1998; Kijko and Graham, 1998; Eck and Stoyanov, 1996; 

Lindholm and Bungum, 2000; Stirling et al., 2002; Tsapanos, 2003). 

        Cornell (1968) formulated the theoretical base of ‘deductive’ method developed 

for seismic hazard analysis and it was called ‘deductive’ because by applying this 

procedure, the causative sources and ground motions for future earthquakes are 

deducted. This approach has permitted the incorporation of geological and 

geophysical evidence to complete the seismic event catalogues. It is still evident that 

deductive procedures of PSHA are dominant and remain the most commonly used 

method worldwide.  
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On the other side, the second category of PSHA has been composed of historic 

methods (Veneziano et al., 1984). They require input data, such as information about 

past seismicity and do not require specification of seismogenic zones. 

        Kebede and van Eck (1997) performed a probabilistic seismic hazard 

assessment for the Africa based on seismotectonic regionalization. The results have 

been presented as the regional hazard maps for 0.01 annual probability for intensity 

and peak ground acceleration and made the hazard curves for six economically 

significant sites. They have also analyzed the model uncertainties with respect to 

seismicity in a novel approach by means of a sensitivity analysis quantifying them in 

the probabilistic seismic hazard analysis. 

       The purpose of the study by Theodulidis et al. (1998) has been to suggest a 

probabilistic seismic hazard analysis based on the local attenuation relations for peak 

ground acceleration and peak ground velocity. This study propose two factors, first  

the observed spectral acceleration amplification values and second the expected peak 

ground acceleration for mean return period of 500 years.  

       Kijko and Graham (1998) have described a new methodology for probabilistic 

seismic hazard analysis (PSHA) which combines the best features of the deductive 

and historical procedures and they called this new approach as ‘parametric-historic’ 

procedure. Part I of their study presents some of the statistical techniques used for the 

assessment and evaluation of the maximum regional magnitude. In Part II the 

approach of a probabilistic seismic hazard assessment, which permits the utilization 

of incomplete earthquake, catalogues and which takes into account uncertainty in the 

determination of the earthquake magnitude is described. Their technique has 

provided specifically the estimation of seismic hazard at individual sites, without the 
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psubjective judgment involved in the definition of seismic source zones, in which 

specific active faults have not been mapped and identified .  

       Vaneck and Stoyanov (1996) performed a probabilistic seismic hazard analysis 

(PSHA) for southern Bulgaria which represents a typical case of seismic hazard for a 

tectonically complex region with large uncertainties in model parameters. They 

showed that large uncertainties in seismic characteristics have relatively little effect 

on the PSHA output, especially when compared with the uncertainties associated 

with the attenuation function. Finally, they claimed that some future improvements 

could be handled first by the development of more accurate regional attenuation 

models, second by the addition of some constraints on the seismic zones and last by a 

better constrain of magnitude-frequency distributions. 

        Lindholm and Bungum (2000) presented some examples from Norway within a 

seismological frame by the aid of a probabilistic seismic hazard. They highlighted 

the subject of how a combined seismicity analysis using both modern network data 

and historical data can be utilized in order to provide realistic insights into location 

precision and to establish magnitude homogeneity. In fact their aim has been to 

improve the reliability of the seismic source models (activity parameters) and to 

rehabilitate the spatial differentiation of the seismogenic zones. By the objective of 

this study they demonstrated how a seismic hazard analysis critically depends on 

proper analysis of the underlying seismological information such as the seismicity 

catalogue, the attenuation relationships and the magnitude conversions .  

        On the other hand, Stirling et al. (2002) have presented a new probabilistic 

seismic approach for probabilistic seismic hazard analysis (PSHA) to be applied in 

New Zealand. This new challenge added as an important feature in the analysis has 
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been the application of a new methodology which combines the modern method 

based on the definition of continuous distributions of seismicity parameters with the 

traditional method based on the definition of large area sources and the associated 

seismicity parameters for the treatment of the historical seismicity data. Their PSHA 

has combined the modeled seismicity data with geological data representing the 

location and the earthquake recurrence behavior of different active faults and then 

incorporated new attenuation relationships specifically developed for New Zealand 

to these elements. They stated that the resulting maps have been currently used for 

the revision of the building code of the country.  

       Tsapanos (2003) has also developed a site-specific seismic hazard scenario to be 

applied to the sites located in the main cities of Crete Island in Greece in order to 

compute the probabilities of exceedance of specific peak ground acceleration (PGA) 

values and to predict the maximum possible PGA at each site. According to 

Tsapanos (2003). The methodology allows the use of historical or instrumental data, 

or a combination of both. The instrumental part of the data can be divided into 

subcatalogues with each having an individual minimum threshold magnitude for 

completeness and  were published maximum possible magnitudes for each site . 

       Wiemer et al. (2009) have presented the results of a new generation of 

probabilistic seismic hazard assessment for Switzerland. This study have replaced the 

previous intensity-based generation of national hazard maps and was based on a 

revised moment-magnitude earthquake catalogue for Switzerland. Seismic 

parameters ( –      ,  –         and        ) were estimated for earthquake 

catalogues of one-million-year duration .they expected ground motions in units of the 

5% damped acceleration response spectrum at frequencies of 0.5–10 Hz for all of 




