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   INTERPOLASI DATA G1 JULAT TERHAD DENGAN 

TAMPALAN SEGI TIGA BÉZIER 

ABSTRAK 

Pembinaan permukaan berparameter 1G  julat terhad kepada data yang semua 

terletak di sebelah satu satah kekangan dipertimbangkan. Permukaan interpolasi 

dibina secara cebis demi cebis daripada gabungan cembung tiga tampalan segi tiga 

Bézier kuartik. Syarat cukup untuk keselanjaran satah tangen sepanjang sempadan 

dua tampalan Bézier kuartik dibentangkan. Syarat cukup penghadan julat diterbitkan 

di mana batas bawah dikenakan kepada titik-titik Bézier. Di samping itu, syarat 

tambahan untuk memastikan penghadan julat dua tampalan segi tiga Bézier 

bersebelahan dibentangkan. Vektor normal dianggarkan pada tapak data dengan satu 

kaedah penganggaran setempat. Titik Bézier pada mulanya ditentukan dengan titik 

data dan vektor normal anggaran pada data supaya interpolan adalah berkeselanjaran 

1G  pada salah satu sempadan segi tiga. Titik Bézier kemudian diubah jika perlu 

supaya syarat cukup penghadan julat dipenuhi bersama syarat keselanjaran. 

Permukaan terhasil adalah berkeselanjaran 1G  dan terletak di sebelah satah 

kekangan yang sama seperti data yang diberikan. Beberapa contoh dipersembahkan 

secara grafik. 
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G1 RANGE RESTRICTED DATA INTERPOLATION USING 

BÉZIER TRIANGULAR PATCH 

ABSTRACT 

The construction of range restricted 1G  parametric surface to data that all lie on one 

side of a constraint plane is considered. The interpolating surface is developed 

piecewise as the convex combination of three quartic Bézier triangular patches. 

Sufficient tangent plane continuity conditions along the common boundary of two 

adjacent quartic Bézier triangular patches are presented. Sufficient range restriction 

conditions are derived which imposed the lower bound to Bézier points. In addition, 

supplementary conditions to ensure the range restriction of two adjoining triangular 

Bézier patches are presented. The normal vectors are estimated at the data sites by a 

local estimation method. The Bézier points are initially determined by the data points 

and the estimated normal vectors at data, and such that the interpolant is 1G  

continuous across one of the triangle boundaries. The Bézier points are then modified 

if necessary so that the sufficient range restriction condition is fulfilled in 

conjunction with the continuity condition. The resulting surface is 1G  continuous 

and lies on the same side of the constraint plane as the given data. Some examples 

are presented graphically. 
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CHAPTER 1 

INTRODUCTION 

Computer Aided Geometric Design (CAGD) is a branch of applied mathematics  

concerned with the representation, approximation and computation of free-form 

curves, surfaces and volumes by using computer technology. It has a wide variety of 

applications in the manufacturing of products such as the design of planes and ships, 

in the representation of physical phenomena such as geophysical maps, and in 

numerous other situations. 

A common problem in scientific visualization is to present the 

three-dimensional data as a surface or a contour map. Scientific visualization 

provides a means of understanding various physical phenomena, from limited or 

incomplete information. The data that are known represent only a sample and may 

not be sufficient to let one visualize the entire entity. As such one uses interpolation 

to construct an empirical model which matches the data samples and approximates 

the unknown entity at intermediate locations. There are some properties inherent in 

the data like convexity, monotonicity (for non-parametric data) and positivity which 

one wishes to preserve. It is the last of these that is of interest in this thesis, namely if 

all the sampled data are positive, then the interpolant should be positive everywhere.  

Positivity preserving is particularly important when visualizing a physical entity 

that should not possibly be negative. For example, if the data represent a material 
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concentration or pressure, a probability density, or the progress of an irreversible 

process, negative values of an interpolant are not physically meaningful. Examples of 

studies in the area of positivity-preservation for surface can be found in (Brodlie et 

al., 1995) described the problem of interpolation subject to simple linear constraints. 

It looks at the problem of constructing a function ( ),u x y  of two variables from 

data on a rectangular mesh, such that ( ),u x y  is non-negative. Sufficient conditions 

are derived to ensure a positive piecewise bicubic interpolant results from positive 

data. The problem of non-negativity is then generalized to range restricted 

interpolation such that ( ),u x y  is greater or smaller than some linear functions.  

Although the necessary and sufficient non-negativity conditions for bivariate 

quadratic polynomials have been established (Nadler, 1992), the necessary and 

sufficient non-negativity conditions for bivariate polynomials of higher degree are 

not derived yet. Sufficient non-negativity conditions for cubic and quartic 

polynomials were given in (Chan & Ong, 2001), (Piah et al., 2005) and (Schumaker 

& Speleers, 2010). Here, we should note that sufficient condition means the 

statement is truth to its consequent, while necessary and sufficient condition means 

the former statement is true if and only if the latter is true. 

The problem of range restricted interpolation to irregularly spaced data is 

addressed in which the parametrically defined interpolant is restricted to lie within a 

specific region. This problem occurs in many practical situations where bounded data 

are gathered experimentally or via simulation studies. There are many approaches to 

scattered data interpolation, a good review is given in (Lodha & Franke, 2000).  
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The common approach to this problem is based on a triangulation of given data, 

followed by a piecewise construction of the interpolant - one piece per triangle. A 

simple technique of this type is piecewise linear interpolation. Obviously, the 

resulting interpolant remains within the bounds of the data. However, it is only 0C  

continuous. The smoothness remains an important issue in the problem. Smoother 

interpolant can be obtained by deeply refining the triangular mesh of given data. 

Many attempts have been made to produce a smooth non-negative interpolant such 

as in (Herrmann et al., 1996), (Ong & Wong, 1996), (Chan & Ong, 2001), (Piah et 

al., 2005), (Piah et al., 2006) and (Cheng et al., 2009). 

Herrmann et al. (1996) have constructed a range restricted bivariate 1C  

interpolant using quadratic splines on a Powell–Sabin refinement of a triangulation 

of scattered data subject to piecewise quadratic lower and upper bounds. The 

sufficient range restriction conditions are derived in the form of a solvable system of 

linear inequalities with the gradients as parameters.  

Goodman et al. (1995) proposed a method of estimating gradients at scattered 

data points. It requires significantly less computation and produces comparable 

accuracy to the existing least-squares minimization method. The method was used to 

construct a smooth C1 surface for the scattered data interpolation. 

Ong & Wong (1996) have derived a local 1C  scattered data interpolation 

scheme subject to constant lower and upper bounds. The side vertex method is 

applied for interpolation in triangles and rational cubics are used for univariate 

interpolation along the line segments joining a vertex to the opposite edge of a 
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triangle. 

Chan & Ong (2001) and Piah et al. (2005) described a local 1C  range 

restricted scattered data interpolation scheme. The interpolating surface is obtained 

piecewise as the convex combination of three cubic Bézier triangular patches. Lower 

bound on the Bézier ordinates is derived to ensure that the non-negativity of a cubic 

Bézier triangular patch. Indeed Piah et al. (2005) proposed a more relaxed lower 

bound. The gradient at each data site is modified subject to the non-negativity 

conditions. 

Piah et al. (2006) and Cheng et al. (2009) generated non-parametric surfaces 

that interpolate positive scattered data. The surfaces comprise piecewise quartic 

Bézier triangles. The schemes are very similar to that of cubic interpolation scheme. 

Sufficient non-negativity conditions on quartic Bézier ordinates are derived. The 

gradient at each data site are used to modify Bézier ordinates if necessary. 

All the range restricted surfaces cited above are non-parametric. For the time 

being, no scheme was presented on the problem of range restricted data interpolation 

with geometric 1G  continuity except in (Piah et al., 2006) which described the 

generation of surfaces that interpolate positive scattered data with the simplest 1G  

continuity conditions. Free-form surface design is typically accomplished in a 

piecewise manner. It is preferable that the composite surface not to be viewed as a 

map of a triangulated domain on   !2  into   !3 . Therefore, the composite surface 

shall be considered as many maps of one domain triangle onto different patches of 

the surface (Piper, 1987). The 1G  continuity is independent of the parameterization 
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of the surfaces. For parametric case, quartics are the lowest degree triangular Bézier 

patches that are suitable for the construction of a composite 1G  surface. 

Motivated by previous work, in this thesis the problem of range restricted data 

interpolation is considered where the surface is defined parametrically by quartic 

Bézier triangular patches subject to a given constraint plane. This extends the 

existing works from the parametric 1C  continuity to geometric 1G  continuity and 

non-parametric interpolation to parametric interpolation. The resulting surface 

interpolant is piecewise a convex combination of three quartic Bézier triangular 

patches interpolating the prescribed data. The sufficient 1G  continuity condition 

along the common boundary of two adjacent quartic Bézier triangular patches is 

presented. This condition can be simplified to the 1C  continuity condition when 

certain conditions are met. The Bézier points of quaritc Bézier triangular patch are 

determined by the given data points and normal vectors at data sites, and such that 

ensures 1G  continuity across one of the triangle boundaries. The Bézier points as 

obtained which do not satisfy the lower bound of range restriction condition shall be 

adjusted to ensure the surface to be range restricted. In addition, supplementary 

conditions of range restriction are derived to ensure two adjacent Bézier patches 

which join smoothly are range restricted. These conditions have not been alerted in 

earlier work. 

The outline of the thesis is as follows. In Chapter 2, the triangular Bézier 

surface is introduced in terms of generalized Bernstein polynomials. Barycentric 

coordinates are used to deal with triangular domain of Bézier surface. Some useful 
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properties of Bézier triangle are given. Degree elevation of Bézier curve is given to 

raise the degree of a Bézier curve without changing the shape of the curve. 

Directional derivatives of Bézier triangle are described. A method of estimating unit 

surface normal vector at given data site is proposed. 

In Chapter 3, the sufficient 1G  continuity conditions along the common 

boundary of two adjacent triangular Bézier patches are derived. The coefficients in 

the tangent plane continuity conditions are prescribed to be linear functions. The 

structure of 1G  continuity is illustrated geometrically and its properties are 

remarked. The 1C  continuity condition is also presented in this chapter.  

In Chapter 4, the sufficient range restriction condition is introduced for a 

parametric quartic Bézier triangular patch to lie on the same side of a given 

constraint plane as data points. A lower bound on the Bézier points is derived to 

ensure range restriction for a quartic Bézier triangular patch. When the concerned 

constraint plane is the xy -plane, the condition is simplified to as the sufficient 

non-negativity condition given in (Piah et al., 2006). Supplementary conditions to be 

satisfied are given in order to guarantee the range restriction for two adjoining 

quartic Bézier patches. An example is also given to show that the lack of 

supplementary conditions may cause two adjacent Bézier patches failed to satisfy the 

lower bounds of range restriction condition in conjunction with the continuity 

condition. 

In Chapter 5, a local scheme for parametric 1G  range restricted scattered data 

interpolation is presented. The scheme fit a composite surface to scattered data points 
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that all lie one side of a constraint plane. Each surface patch is constructed as the 

convex combination of three quartic Bézier triangular patches. The continuity 

condition and the range restriction condition presented in Chapters 3 and 4 are 

imposed to Bézier points in order to obtain a range restricted 1G  interpolant. Lastly, 

some graphical examples, the conclusion and suggestions for the future work are 

given in Chapter 6. 
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CHAPTER 2 

TRIANGULAR BERNSTEIN-BÉZIER PATCH 

2.0  Introduction 

Triangular Bézier patch in terms of Bernstein polynomials have been widely 

implemented in Computer Aided Geometric Design as a basic model for generating 

free-form surface. Such popularity is certainly due to its powerful geometric 

properties and to its simplicity of manipulation. Barycentric coordinate is used as 

coordinate system to deal with the triangular domain of Bézier patch.  

In this chapter, the definition of triangular Bézier patch and some of its useful 

properties are expressed. Directional derivatives are considered upon Bézier patch. 

Besides, degree elevation of Bézier curve is discussed to raise the degree of a Bézier 

curve without modifying the shape of the curve. This will be used in Chapter 5 on 

elevating cubic boundary curves of a Bézier patch to quartics. Lastly a method for 

estimating normal vectors at vertices of a triangle is presented. The estimated normal 

vectors are utilized to construct boundary curves of a Bézier patch. 
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2.1  Bernstein Polynomials 

There are two forms (univariate and bivariate) of Bernstein basis for the space 

of polynomials (Hoschek & Lasser, 1993). The univariate Bernstein polynomials of 

degree n  are defined as 

 ( ) ( )1 n in i
i

n
B t t t

i
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

,     i = 0, 1, …, n , 0 1t≤ ≤  (2.1) 

where the binomial coefficients are given by 

 
( )
!

! !
n n
i i n i
⎛ ⎞

=⎜ ⎟ −⎝ ⎠
. 

Obviously, there are ( 1)n +  Bernstein polynomials of degree n . These 

polynomials are quite easy to be formulated as the binomial coefficients can be 

obtained via Pascal’s triangle. They have a number of useful properties. One of them 

is that all the Bernstein polynomials are non-negative over the parametric interval 

[0, 1] i.e.,  

 ( ) 0n
iB t ≥ .  

Other is that the Bernstein polynomials form a partition of unity (Farin, 1996) 

 ( )
0

1
n

n
i

i
B t

=

=∑   

and the product of an thm  degree Bernstein polynomial with an thn  degree 

Bernstein polynomial is th( )m n+  Bernstein polynomial 

 ( ) ( ) ( )m n m n
i j i j

m n
i j

B t B t B t
m n
i j

+
+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠=

+⎛ ⎞
⎜ ⎟+⎝ ⎠

 .  

The bivariate Bernstein polynomials are commonly presented in the form of 
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barycentric coordinate. Barycentric coordinate is used as ideal coordinate system 

when dealing with a triangle. Consider a triangle T  with vertices 1V , 2V  and 3V  

as in Figure 2.1, any point V  on the triangle can be written as a barycentric 

combination of 3V , 1V , 2V  as 

 3 1 2u v w= + +V V V V   

where , , 0u v w ≥  and 1u v w+ + = . 

	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

	
  

Figure 2.1  Triangle T  with vertices 1V , 2V , 3V  

Due to univariate Bernstein polynomials are the terms of the binomial expansion of 

[ ](1 ) nt t+ − , therefore the bivariate Bernstein polynomials are defined by  

 ( ), ,
!, ,

! ! !
n i j k
i j k

nB u v w u v w
i j k

= , (2.2) 

where , , 0u v w ≥ , 1u v w+ + = , and integers , , 0i j k ≥ , i j k n+ + = . Although 

( ), , , ,n
i j kB u v w  looks trivariate, it is not, since 1u v w+ + = . The bivariate Bernstein 

polynomials possess the properties that 

 ( ), , , , 0n
i j kB u v w ≥  , 

and  

2V 	
  

3V 	
   1V 	
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 ( ), ,

, , 0

, , 1n
i j k

i j k n
i j k

B u v w
+ + =

≥

=∑  . 

2.2  Bézier Curve 

Bézier curve is a parametric curve widely used in geometric modelling. Given 

( 1)n +  control points     b0 , b1, …, bn ∈!
3 , a Bézier curve is defined explicitly by 

(Farin, 1996) 

 ( ) ( )
0

n
n

i i
i

t B t
=

=∑P b ,  0 1t≤ ≤  (2.3) 

where ( )n
iB t 	
   are Bernstein polynomials in (2.1). The polygon formed by 

connecting control points     b0 , b1, …, bn  is called Bézier polygon or control polygon 

of Bézier curve. The derivative vector to Bézier curve ( )tP  is another Bézier 

polynomial  

 ( ) ( )
1

1

0

n
n

i i
i

t B t
−

−

=

′ =∑P b   (2.4) 

where coefficients 

 1i i i+= −b b b ,    i = 0, 1, …, n−1. 

2.3  Degree Elevation of Bézier Curve 

Degree elevation is an algorithm that raises the degree of Bézier curve from n  

to ( 1)n + 	
   and adds a control point as well without changing the shape of the curve. 

The process of degree elevation may be repeated. As every polynomial curve of 

degree n 	
   can be expressed as a polynomial curve of degree ( 1)n + , hence for a 

Bézier curve of degree n  with control points     b0 , b1, …, bn , the curve  



	
  
	
  

12	
  

 ( )tP  ( )
0

n
n

i i
i

B t
=

=∑b ,  0 1t≤ ≤  

 ( )
1

* 1

0

n
n

i i
i

B t
+

+

=

=∑b  

where control points     b0
*, b1

*, …, bn+1
*  are given as (Farin, 1996) 

 *
1 1

1 1i i i
i i
n n−

⎛ ⎞= + −⎜ ⎟+ +⎝ ⎠
b b b ,     i = 0, 1, …, n+1. (2.5)	
  

2.4  Triangular Bézier Patch 

In this section, a triangular Bézier patch is presented using the bivariate 

Bernsterin polynomials in (2.2). For easier understanding, the concept of a triangular 

patch is described first. A triangular patch is a mapping     S :T → !3
 where 

parameter set    T ⊂ !2  is a triangle described by barycentric coordinates of 

( , , )u v w . Triangular Bézier patch is a surface defined over the domain triangle T . 

The patch is based on control points , ,i j kb  arranged in space and are assigned three 

indexes , ,i j k , such that , , 0i j k ≥  and i j k n+ + = . When at least one of 

indexes turn to zero, , ,i j kb  is referred to a boundary control point, otherwise it is 

referred to as an inner control point. The value of n  is selected by the user 

depending on how large and complex the patch should be and how many points are 

given. The triangular Bézier patch P  of degree n  on domain T  is defined 

parametrically as (Farin, 1986) 

 ( ) ( ), , , ,

, , 0

, , , ,n
i j k i j k

i j k n
i j k

u v w B u v w
+ + =

≥

= ∑P b , (2.6)  

where , , 0u v w ≥ , 1u v w+ + =  and ( ), , , ,n
i j kB u v w  are the Bernstein polynomials 
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defined by (2.2). In particular, the quartic Bézier patch ( 4n = ) is  

 

( ) 4 3 3 2 2 2
4,0,0 3,1,0 3,0,1 2,2,0 2,1,1

2 2 3 2 2 3
2,0,2 1,3,0 1,2,1 1,1,2 1,0,3

4 3 2 2 3 4
0,4,0 0,3,1 0,2,2 0,1,3 0,0,4

, , 4 4 6 12

6 4 12 12 4

4 6 4  .

u v w u u v u w u v u vw

u w uv uv w uvw uw

v v w v w vw w

= + + + + +

+ + + + +

+ + + +

P b b b b b

b b b b b

b b b b b

  

The coefficients in (2.6) are vector-valued in   !3  as  

, ,i j kb ( ), , , , , ,, ,i j k i j k i j kx y z= .  

They can be real numbers in  !  by considering , ,i j kz  which are then referred to as 

Bézier ordinates and name non-parametric triangular Bézier patch. In the latter case, 

the Bézier patch is actually a scalar-valued function in which the Bézier ordinates are 

associated with the abscissas ( ), , , ,,i j k i j kx y  that defined by the parameter values 

, ,ji k
n n n

⎛ ⎞
⎜ ⎟⎝ ⎠

 on T . 

The three boundary curves of Bézier patch P  are obtained from (2.6) by 

setting each of the three parameters to zero respectively. For example, the boundary 

curve along 0u =  (i.e., edge 1 2VV  ) is 

 ( )0, ,v wP  ( ), , , ,

, , 0

0, ,n
i j k i j k

i j k n
i j k

B v w
+ + =

≥

= ∑ b  

 ( )0, , 0, ,

, 0

0, ,n
j k j k

j k n
j k

B v w
+ =
≥

= ∑ b  
 

where 1v w+ = . Observe that boundary curve ( )0, ,v wP  can be rewritten as 

 ( )vP ( )0, ,
0

n
n

j n j j
j

B v−
=

=∑b , 0 1v≤ ≤  

that is a Bézier curve of degree n  with control points 0, ,j n j−b ,    j = 0, 1, …, n . 

Obviously, boundary curve ( )0, ,v wP 	
   also can be rewritten as 
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 ( )wP ( )0, ,
0

n
n

n k k k
k

B w−
=

=∑b , 0 1w≤ ≤ . 

The other two Bézier curves along the edges 0v = 	
   and 0w = 	
   can be obtained 

similarly. 

Corner points can also be obtained from (2.6) when any two of the three 

barycentric parameters are set to zero. They can be expressed as 

 ( ) ,0,01,0,0 n=P b , 

 ( ) 0, ,00,1,0 n=P b , 

 ( ) 0,0,0,0,1 n=P b . 

These imply that the corner Bézier points ,0,0nb , 0, ,0nb , 0,0,nb  lie on the surface at 

vertices 3V , 1V , 2V  respectively. 

2.5  Directional Derivatives of Bézier Patch 

For a triangular Bézier patch, because of the barycentric parameterization, it is 

more ideal to use directional derivatives instead of partial derivatives. The directional 

derivative of a multivariate differentiable function along a given direction d 	
   at a 

given point V  intuitively represents the instantaneous rate of change of the function, 

moving through that point in the given direction. It therefore generalizes the notion 

of partial derivative. 

A direction at the parametric domain of a triangular Bézier patch is defined by 

two points in the domain. Let ( )0 0 0, ,u v w=A  and ( )1 1 1, ,u v w=B , where 0u +  

0 0 1v w+ =  and 1 1 1 1u v w+ + = , be any two points in the domain triangle T . 
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Obviously, barycentric vector  

 ( )1 0 1 0 1 0, ,u u v v w w− = − − −B A  
 

has that sum of all its components is zero.  

Consider a direction in parametric domain indicated by ( ), ,d f g h= , thus the 

directional derivative of Bézier surface P  with respect to vector d  is defined by 

 ( ) ( ) ( ) ( ), , , , , , , ,d u v wD u v w f u v w g u v w h u v w= + +P P P P  (2.7)	
  

where uP , vP , wP  indicate the partial derivatives of P  with respect to u , v  

and w  respectively. The partial derivative of P  with respect to u  is  

 ( ), ,u u v wP  ( ), ,u v w
u
∂=
∂
P   

 ( )
( )

1
, ,

, , 0

1 !
1 ! ! !

i j k
i j k

i j k n
i j k

n
n u v w

i j k
−

+ + =
≥

−
=

−∑ b   

 ( )
1, ,

1
, , 0

1 !
! ! !

i j k
i j k

i j k n
i j k

n
n u v w

i j k +
+ + = −

≥

−
= ∑ b   

 ( )1
1, , , ,

1
, , 0

, ,n
i j k i j k

i j k n
i j k

n B u v w−
+

+ + = −
≥

= ∑ b . 	
  

Owing to symmetry, the other two partial derivatives can be formulated in the same 

way as 

 ( ), ,v u v wP ( )1
, 1, , ,

1
, , 0

, ,n
i j k i j k

i j k n
i j k

n B u v w−
+

+ + = −
≥

= ∑ b ,  

 ( ), ,w u v wP ( )1
, , 1 , ,

1
, , 0

, ,n
i j k i j k

i j k n
i j k

n B u v w−
+

+ + = −
≥

= ∑ b .	
  

Substituting these partial derivatives into (2.7), it leads to (Farin, 1986) 

 ( ) ( ) ( )1
1, , , 1, , , 1 , ,

1
, , 0

, , , ,n
d i j k i j k i j k i j k

i j k n
i j k

D u v w n f g h B u v w−
+ + +

+ + = −
≥

= + +∑P b b b . (2.8) 

Next, a boundary point is considered. Let ( )1 0, , 1e v v= − , 0 1v≤ ≤ , be a 
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point on the edge 1 2VV , see Figure 2.2. Consider a barycentric direction along the 

edge 1 2VV , let ( )0, 1, 1d = − . From (2.8), the directional derivative of P  at point 

1e  is given by  

 ( ) ( ) ( )
1

1
(0, 1,1) 1 0, 1 , 1 0, , 1

0

n
n

n k k n k k k
k

D e n B e
−

−
− − − + −

=

= −∑P b b .  

It is clear that the directional derivative along the edge 1 2VV  is determined 

completely by the control points of that boundary.  

    Suppose a direction across the edge is concerned, let ( )1, 0.5, 0.5d = − − . 

From (2.8), the directional derivative of P  at point 1e  along direction (1, 0.5,−  

)0.5−  is  

 ( ) ( )
1

1
(1, 0.5, 0.5) 1 1, 1 , 0, , 0, 1 , 1 1

0

1 1
2 2

n
n

n k k n k k n k k k
k

D e n B e
−

−
− − − − − − − +

=

⎛ ⎞= − −⎜ ⎟⎝ ⎠
∑P b b b .  

Obviously, the cross-boundary derivatives are determined by the control points of the 

boundary and those of the next row to the boundary. 	
  

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

	
  

Figure 2.2  Directions at a boundary point 1e  

From the description given above, for the boundary curve defined along an edge 

connecting two vertices, the corner Bézier point and the Bézier point next to it 

determine the tangent to the boundary at the endpoint. Furthermore, the corner 

2V 	
  

3V 	
   1V 	
  

1e 	
  

( )0, 1,1− 	
  

( )1, 0.5, 0.5− − 	
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Bézier point and its two neighboring Bézier points determine the tangent plane to the 

surface at the corner. 

2.6  Normal Estimation 

In this section a method for estimating normal vector at given data set is 

proposed. The estimated normal vectors are used to generate curve network of 

interpolating surface which will be discussed precisely in Chapter 5. Suppose a set of 

triangulated 3D data is given. A unit vector which will act as surface normal vector is 

estimated at each data point by using convex combination of the normal vectors to 

the neighboring triangles of which the point is a vertex. The weight in convex 

combination is determined by the size of concerned triangle. This estimation method 

is motivated by the method of estimating derivatives at data point introduced in 

(Goodman et al., 1995).  

Consider a (inner) vertex O  of a triangulated data and let iπ ,    i = 1, 2, …, m , 

be the triangles which have O  as a vertex as shown in Figure 2.3 (where 6m = ). 

Denote in ,    i = 1, 2, …, m , as the unit normal vector to the triangle iπ . In order to 

obtain a precise approximant, in  of surrounding triangles are defined with a fixed 

orientation such as 

 1

1

i i
i

i i

+

+

×=
×

OA OAn
OA OA

, for    i = 1, 2, …, m−1   

and 

 1

1

m
m

m

×=
×

OA OAn
OA OA
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where ‘×’ indicates cross product of two vectors and v  be the magnitude of a 

vector v . 

 

 

 

 

 

 

 

Figure 2.3  Vertex O and surrounding triangles 

The normal vector at vertex O  can be estimated by a convex combination of the 

unit normal vectors in  of the surrounding triangles iπ  expressed as 

 1

1

m

i i
i

O m

i
i

λ

λ
=

=

=
∑

∑

n
n  

 

where 1i iλ = Δ ,    i = 1, 2, …, m , with iΔ  denotes the area of triangle iπ . 

In above the vertex O  is assumed in the interior of triangulated data. Special 

consideration should be taken when vertex O  is on the boundary of the 

triangulation as in Figure 2.4. Denote *
iπ , i = 1 , ...,	
   m , as the triangle which shares 

the edge of iπ  not containing O . Denote also *
iΔ  as the area of triangle *

iπ  and 

*
in  as the unit normal vector to *

iπ  defined as  

 * 1

1

i i i i
i

i i i i

+

+

×=
×

AO AAn
AO AA

, for    i = 1, 2, …, m .  

	
  

6A1A

3A 4A

2A 5A

O

1π
6π

5π

4π

3π
2π
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If a triangle iπ  meets at O  but does not has adjacent triangle *
iπ , set * 0iΔ =

 
and 

*
i i=n n . The normal vector at vertex O  is now determined by  

 

( )* *

*
1

1

21

1

m
i i i i i

i i i i
O m

i i

=

=

Δ +Δ −Δ
Δ Δ +Δ=

Δ

∑

∑

n n

n . 
	
  

The formulation of these normal vectors is not shown here, however it can be done 

by using simple Calculus and it is similar to that given in (Goodman et al., 1995). At 

last, unit normal vector at a data point O  is defined by 

 O
O

O

= nN
n

. 
 

 

 

 

 

 

 

Figure 2.4  A boundary vertex O   

	
   	
  

	
  

3A 4A2A

5AO

1π
*
1π

4π

3π2π

1A

*
2π

*
3π

1O

2 3O O=
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CHAPTER 3 

G1 CONTINUOUS JOIN OF QUARTIC BÉZIER TRIANGULAR PATCHES 

3.1  C1 Parametric Continuity Conditions 

Consider two quartic Bézier triangular patches that are maps of two adjacent 

domain triangles, whose common edge is mapped onto the common boundary curve 

of the Bézier patches. Let 1 2 3VV V  and 1 2 3WWW  be two adjacent domain triangles 

with 1 1=V W  and 2 2=V W , see Figure 3.1. Barycentric coordinates ( ), ,u v w  and 

( ), ,r s t  are used upon these two triangles respectively.  

 

 

 

 

 

 

 

Figure 3.1  Two adjoining domain triangles  

Suppose that the quartic Bézier triangular patches ( )1 , ,u v wS  and ( )2 , ,r s tS  on 

these two triangles have Bézier points , ,i j kb  and , ,i j kc  respectively, see figure 

below. 

3W 	
  

2 2=V W 	
  

1 1=V W 	
  

0r = 	
  
0u = 	
  3V 	
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Figure 3.2  Control points of two adjacent quartic Bézier patches  

A necessary and sufficient condition for the 1C  continuity along the common 

boundary of two adjacent Bézier patches is described in (Farin, 1996). For two 

Bézier patches to meet 1C  continuously along the common edge 1 2VV  ( 0u =  and 

0r = ) the patches are required to be 

 ( ) ( )1 20, , 0, ,v w s t=S S  

and 

 ( ) ( )1 20, , 0, ,
rd dD v w D s t=

l
S S  

where dl  and rd  are the barycentric forms of a directional vector with respect to 

triangles 1 2 3VV V  and 1 2 3WWW  respectively. These yield   

 1,0,3 1,0,3 0,1,3 0,0,4u v w= + +c b b b , 

 1,1,2 1,1,2 0,2,2 0,1,3u v w= + +c b b b , 

0,4,0 0,4,0=b c 	
  

0,2,2 0,2,2=b c 	
  

0,1,3 0,1,3=b c 	
  

0,3,1 0,3,1=b c 	
  

0,0,4 0,0,4=b c 	
  

2,2,0c 	
  

3,1,0c 	
  

1,3,0c 	
  

1,0,3c 	
  

4,0,0b 	
  

2,2,0b 	
  

3,0,1b 	
  

2,0,2b 	
  

2,1,1b 	
  

1,3,0b 	
  

1,1,2b 	
  

1,2,1b 	
  

1,0,3b 	
  

4,0,0c 	
  

1,2,1c 	
  

1,1,2c 	
  

2,0,2c 	
  

2,1,1c 	
  

3,0,1c 	
  

3,1,0b 	
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 1,2,1 1,2,1 0,3,1 0,2,2u v w= + +c b b b , 

 1,3,0 1,3,0 0,4,0 0,3,1u v w= + +c b b b  

where ( ), ,u v w  are the barycentric coordinates of 3W  with respect to 3V , 1V  

and 2V , i.e. 

 3 3 1 2u v w= + +W V V V .  

From the geometrical view, the 1C  continuity would be fulfilled if the shared pairs 

of triangles along the common boundary as illustrated in Figure 3.3 be coplanar and 

be an affine map of the two domain triangles. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3  The shared pairs of triangles formed by control points of Bézier patches 
and the domain triangles  

3.2  G1 Geometric Continuity Conditions 

The concept of 1G  continuity is that two patches with a common boundary 

	
  

0,4,0b 	
  

0,0,4b 	
  

1,3,0b 	
  
1,2,1b 	
  

1,1,2b 	
  1,0,3b 	
  

1,3,0c 	
  

1,2,1c 	
  
1,1,2c 	
  1,0,3c 	
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curve have a continuously varying tangent plane along that boundary curve (Farin, 

1986). Geometric continuity is very useful in practice, in particular for modeling 

various kinds of spline surfaces where ordinary parametric continuity cannot be 

applied. More importantly, geometric continuity is invariant under parametric 

transformation, in contrast to parametric continuity. In this section mathematical 

description of geometric continuity 1G  between two quartic Bézier triangular 

patches ( )1 , ,u v wS  and ( )2 , ,r s tS  is presented in which the control points of the 

common boundary curve and the next “parallel” row in each patch are considered. 

The quartic Bézier patches are 0G  continuous at a common boundary curve, 

provided that 

 ( ) ( )1 20, , 0, ,v w s t=S S   

with the parameterization v s=  and w t=  for every point on the common 

boundary curve. This can be ensured by 0,4,0 0,4,0=b c , 0,3,1 0,3,1=b c , 0,2,2 0,2,2=b c , 

0,1,3 0,1,3=b c  and 0,0,4 0,0,4=b c .  

 

 

 

 

 

 

Figure 3.4  Three directions on domain triangles 

 

3W 	
  

2 2=V W 	
  

1 1=V W 	
  

3d 	
  

2d 	
  
3V 	
  

1d 	
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Figure 3.4 shows three directions on the domain triangles. Let 1d  and 2d  be 

the barycentric directions across the common edge and generally they may in 

different directions. Vector 3d  indicates the direction along the common edge with  

3d = ( )0, 1, 1− . It follows immediately that 

 ( ) ( )
3 31 20, , 0, ,d dD v w D s t=S S . 

In order to obtain 1G  continuity every point on the common boundary curve must 

own a common tangent plane. This means derivaties 
1 1dD S , 

2 2dD S  and 
3 1dD S  

must lie on the same tangent plane. Therefore, the necessary and sufficient 1G  

continuity condition is frequently presented in the form (Hoschek & Lasser, 1993) 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 31 2 1, 0, , , 0, , , 0, ,d d dv w D v w s t D s t v w D v wα β γ+ + = 0S S S   

where α , β  and γ  are functions of the parameters describing the common 

boundary curve with  αβ ≠ 0 . The coplanarity condition above can be abbreviated as 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 31 2 1d d dt D t t D t t D tα β γ+ + = 0S S S   (3.1) 

for 0 1t≤ ≤ . Note that the above condition allows variety of coefficient functions 

α , β  and γ , but they are here restricted to be linear functions in t  as   

 ( ) ( )0 11t t tα α α= − + ,  

 ( ) ( )0 11t t tβ β β= − + ,  

 ( ) ( )0 11t t tγ α γ= − +   (3.2) 

which may give variable values along the common boundary in particular at the two 

endpoints against constant coefficient functions. Thus more degree of freedom is 

gained compared to constant coefficients. As discussed in (Hoschek & Lasser, 1993), 

coefficients α , β  and γ  are advised not to have arbitrarily high degree. The 
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