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PENGKLONAN MOLEKUL, UNGKAPAN DAN PENCIRIAN 

GLUTATHIONE-S-TRANSFERASE SEBAGAI SASARAN NOVEL 

BAGI REKABENTUK UBAT-UBATAN DAN PENEMUAN 

ANTIMALARIA 

 

ABSTRAK 

 

Glutation-S-transferase (GSTs) adalah sekumpulan enzim detoksifikasi. Plasmodium 

falciparum mempunyai isoform tunggal GST (PfGST) yang terlibat dalam bagi 

detoksifikasi heme. Isoform GSTs daripada manusia (hGSTP1) dan tikus (mGSTM1) 

terlibat dalam tekanan apoptosis laluan kinase dan menjadi pengantara bagi 

kerintangan sel kanser terhadap kemoterapi. PfGST, hGSTP1 dan mGSTM1 telah 

berjaya diklon dan diungkapkan secara heterologus dalam E. coli. Eksperimen 

perencatan, kinetik dan penghabluran enzim telah dijalankan untuk mencari sebatian 

yang berpotensi untuk merencat PfGST. Substrat PfGST iaitu glutation (GSH) dan 1-

kloro-2,4-dinitrobenzena (CDNB), serta perencat glutation yang diketahui iatu S-

hexyl (GSX), cibacron biru (CB), asid etacrinic asid (EA), Hemin, protoporfirin IX 

(protoIX) dan 4- (2-hidroxietil) -1 asid-piperazineetanesulfonik (HEPES) telah dikaji. 

Keputusan menunjukkan afiniti, mod pengikatan dan interaksi yang mungkin antara 

perencat dan PFGST. Dua tapak pengikatan telah dicadangkan untuk Hemin dalam 

PfGST. Bagaimanapun CB, GSX, EA dan HEPES tidak mampu bersaing dengan 

Hemin untuk mengeluarkannya daripada tapak pengikatannya dan menjadikan mereka 

tidak sesuai untuk digunakan sebagai petunjuk. Oleh kerana afiniti yang tinggi dan 

interaksi yang mungkin antara CB dan Hemin, struktur kristal kompleks CB dengan 

PfGST dikaji menggunakan X-ray kristalografi. Sebagai satu pendekatan alternatif 

untuk mendapatkan petunjuk, molekul telah direka untuk menyasarkan tapak pengikat 
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GSH dalam PfGST dan menjejaskan kestabilan Hemin untuk mengikat. Peneraju 

berdasarkan molekul GSH dan / atau poket pengikatannya telah dicari menggunakan 

pendekatan de novo. Tiga pendekatan telah dibangunkan untuk perencat berbalik 

menggunakan reka bentuk berasaskan serpihan dan reka bentuk berasaskan atom, dan 

satu reka bentuk menggunakan pendekatan untuk perencat tidak berbalik. Penggantian 

serpihan-isosterik (IFR) dan penggantian serpihan-berlabuh (DFR) telah berjaya 

menjana ligan de novo  dengan tenaga bebas untuk mengikat dan skor akses sintetik 

telah dinailai untuk pemilihan penunjuk. Simulasi dinamik molekul menunjukkan 

bahawa 1598-DFR mengekalkan kestabilan untuk mengikat dengan pengikatan tenaga 

bebas adalah -16 Kcal / Mol dan RMSD berfungsi kurang daripada 3 Å sepanjang 

tempoh simulasi (7.5 ns). Pendekatan ketiga yang menjana molekul pernunjuk oleh 

pemasangan atom menggunakan reka bentuk molekul de novo  berasaskan atom 

bantuan struktur (SAAD) yang khusus membuatkan serpihan molekul muat untuk 

poket pengikaan γ-glutamil moiti GSH. Dalam pendekatan terakhir, perencat tidak 

berbalik telah direka untuk membentuk ikatan kovalen dengan PfGST dengan 

menggunakan susunan unik 3 dimensi sisa sisteina. Analog-analog telah direka untuk 

mewujudkan ikatan kovalen dengan Cys101 melalui moiti elektrofilik yang 

menggantikan α-amino γ-glutamil GSH. Molekul penunjuk yang telah direka boleh 

membuka saluran baru untuk merawat malaria melalui perencatan PfGST berbalik dan 

tidak berbalik. Ekstrak tumbuhan telah disaring sebagai sumber alternatif bagi sebatian 

penunjuk. Nilai perencatan PfGST tertinggi telah diperolehi dengan menggunakan 

kulit kayu Cinnamomum iners, daun Terminalia catappa, dan daun Phyllanthus 

watsonii. Walau bagaimanapun, keputusan kinetik mencadangkan bahawa tumbuhan 

ini merencat PfGST melalui cara interaksi lain daripada bersaing dengan GSH, CDNB 

dan Hemin.  



 

xxxvi 

 

MOLECULAR CLONING, EXPRESSION, AND 

CHARACTERIZATION OF GLUTATHIONE-S-TRANSFERASE 

 AS A NOVEL TARGET IN ANTI-MALARIAL  

DRUG DESIGN AND DISCOVERY  

 

ABSTRACT 

 

The Glutathione-S-transferases (GSTs) are group of detoxification enzymes. 

Plasmodium falciparum has a single isoform of GST (PfGST) that involves in heme 

detoxification. While other GSTs isoforms from human (hGSTP1) and mouse 

(mGSTM1) are involved in apoptotic stress kinase pathway and mediate cancer cell 

resistance to chemotherapy. The PfGST, hGSTP1 and mGSTM1 were successfully 

cloned and heterologously expressed in E. coli. Enzyme inhibition, kinetics and 

crystallization experiments were conducted to find potential lead compounds that 

inhibit PfGST. The GSTs substrates, glutathione (GSH) and 1-chloro-2,4-

dinitrobenzene (CDNB), as well as the known GSTs inhibitors of S-hexyl glutathione 

(GSX), cibacron blue (CB), ethacrynic acid (EA), hemin, protoporphyrin IX (protoIX) 

and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were studied. The 

results revealed affinities, binding modes and possible interactions between the 

inhibitors and PfGST. Two binding sites were proposed for hemin in PfGST. However, 

CB, GSX, EA and HEPES were unable to compete with hemin binding, thus 

considered unsuitable leads to dislodge hemin from its binding site.  Due to its high 

affinity and possible interaction with hemin, the crystal structure of CB in complex 

with PfGST was studied further using X-ray crystallography. As an alternative 

approach to obtain leads, molecules were computationally designed for targeting GSH 

binding site in PfGST and destabilize hemin binding. Leads based on GSH molecule 
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and/or its binding pocket were searched using de novo approach. Three approaches 

were developed for reversible inhibitors using fragment-based and atom-based 

approaches, and one approach for irreversible inhibitors design. The isosteric-fragment 

replacement (IFR) and docked-fragment replacement (DFR) approaches successfully 

generated de novo ligands with free energy of binding and synthetic accessibility score 

were calculated for lead selection. Molecular dynamic simulation for selected IFR and 

DFR ligands showed that 1598-DFR maintain stable binding with free energy of 

binding of -16 kcal/mol and RMSD of less than 3 Å throughout simulation period of 

7.5 ns. The third approach generated lead molecules by atomic assembly using 

Structure-Assisted Atom-based De novo molecular design (SAAD) which tailor made 

the molecular fragments to fit the binding pocket of γ-glutamyl moiety of GSH. In the 

last approach, irreversible specific inhibitors were designed to form covalent bond with 

PfGST by using its unique 3-dimensional arrangement of cysteine residues. The 

analogues were designed to establish covalent bond with Cys101 through electrophilic 

moieties that replaces α-amino of the γ-glutamyl of GSH. The designed lead molecules 

may open a new avenue for treating malaria by reversible and irreversible inhibition 

of PfGST. Plant extracts were screened as an alternative source for lead compounds. 

The highest PfGST inhibition was obtained using Cinnamomum iners bark, Terminalia 

catappa leaves and Phyllanthus watsonii leaves. The kinetic results suggest that these 

plants inhibited PfGST via competing with CDNB. 
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CHAPTER 1   

INTRODUCTION 

1.1 Problem statement 

The discovery of new class of anti-malarial compounds is highly recommended 

specially after development of resistant strains for Plasmodium falciparum. The 

resistance is developed by mutations at enzymes or transmembranal transporters which 

are interacted with anti-malarial compounds. Such mutations are usually occurred 

close to the active site of those macromolecules and consequently disrupt their proper 

functions. However, the harmful biochemical consequences of such disruption can be 

relieved if the genome encodes other isoforms of the mutated macromolecule. 

Glutathione-S-transferases (GSTs) are group of detoxification enzymes that 

conjugate xenobiotics or hydrophobic molecules to endogenous substrate of 

glutathione (GSH). The conjugation product is more polar and thus suitable for 

subsequent elimination from the cell (Hinchman and Ballatori, 1994). Moreover, GSTs 

have been reported to catalyze isomerization reactions as well as involve in small 

molecular carriage and protein interactions (Oakley, 2011). 

The Plasmodium falciparum genome encodes single isoform of GST (PfGST) 

which is being involved in heme capturing (Harwaldt et al., 2002; Deponte and Becker, 

2005; Hiller et al., 2006). Thus PfGST provides a potential target for anti-malarial drug 

discovery and development which could act synergistically with quinines (Harwaldt 

et al., 2002). The structural differences between PfGST and human GSTs can be 

involved to promote selectivity during drug design and screening (Fritz-Wolf et al., 

2003). 
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Other GST isoforms like human Pi-1 (hGSTP1) and mouse Mu-1 (mGSTM1) 

have been reported to involve in apoptotic stress kinase pathway. The apoptosis signal 

regulating kinase-1 and its substrate C-Jun N-terminal kinase (JNK) are inactivated by 

interaction with mGSTM1 (Cho et al., 2001) and hGSTP1 (Adler et al., 1999), 

respectively. Moreover, the overexpression of hGSTP1 in malignant cells was found 

to promote resistance toward alkylating agents (Parker et al., 2008). Therefore, 

ethacrynic acid (a GST substrate and inhibitor) has been used in conjugation with 

chemotherapies to potentiate cytotoxicity (Tew, 1994). 

Cloning of cDNAs and heterologous expression of PfGST (Liebau et al., 

2002), hGSTP1 (Moscow et al., 1989) and mGSTM1 (Townsend et al., 1989) have 

been previously conducted in E.coli using Plasmodium falciparum parasite, human 

lymphoblast, and mouse fibroblast as RNA sources, respectively. Biochemical and 

kinetic experiments have been conducted to study substrates and inhibitor binding to 

PfGST, hGSTP1 and mGSTM1. In case of limited X-ray crystallographic data, 

molecular docking provides a computational aid to interpret the observed kinetic 

behavior for those enzymes.  

Plants are considered the origin of known anti-malarial like quinine (Lee, 

2002b) and artemisinin (Lee, 2002a), as well as provide diverse library for hit 

screening (Harvey, 2007; Guantai and Chibale, 2011). Measuring the inhibitory effect 

of plant extracts toward PfGST, hGSTP1, and mGSTM1 has potential application for 

lead discovery as well as usage in malaria and cancer treatment.   

Computational tools are currently being incorporated in molecular lead 

discovery and design. Depending on macromolecular crystal structure, high affinity 

molecules can be designed to fit the active site using de novo fragment-based or atom-

based assembly. The stability and binding energy of the designed molecule at the 
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binding site can be tested by molecular dynamics simulation. With respect to the 

development of GSTs inhibitors, computational tools have seldomly being used with 

the exception of using combination of GRID and docking approaches to design simple 

GS-R derivatives (Procopio et al., 2005). Up to date, no isosteric replacements of GSH 

residues have been used to fully design GST inhibitors, with the exception of replacing 

Gly residue by tetrazole carboxylate isostere (Burg et al., 2002b) and γ-glutamyl-

cysteine peptide bond with urethanic junction (Cacciatore et al., 2005). Yet, both 

replacements have been reported to adversely affect the activity of the prepared 

analogues. Several non-specific inhibitors have been developed by seeding GSH or 

other scaffolds (Mahajan and Atkins, 2005; Ruzza et al., 2009). 

Since its discovery (Liebau et al., 2002), PfGST has not been the subject for 

specific lead discovery and design despites being frequently reported as valuable anti-

malarial target (Srivastava et al., 1999; Harwaldt et al., 2002; Fritz-Wolf et al., 2003; 

Deponte and Becker, 2005). Which could be an application of neglection for a member 

of bottom billion problems, where support is given for financial opportunities over 

global health needs (Trouiller et al., 2001). Therefore, the aim of this study is to clone 

and heterologously express GST isoforms of PfGST, hGSTP1 and mGSTM1. Enzyme 

kinetics and molecular docking are to be used for investigating the interaction between 

the GST isoforms and a group of GST inhibitors; which may shape and address 

potential leads. X-ray crystallography is to be used to resolve the binding mode of 

PfGST inhibitor. Several plant extracts and fractions are to be screened for 

comparative inhibitory effect toward the GSTs isoforms. Computational tools are to 

be involved in lead molecules design and validation. Atom-based and fragment-based 

de novo molecular design approaches are to be developed and applied for PfGST 

inhibitor design.  
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1.2 Malaria and anti-malarial compounds 

Malaria is one of the most devastating endemically reemerging protozoal 

disease which is no more restricted to poor and developing countries. According to 

reports in 2014 from World Health Organization and Global Malaria Action Plan, 

malaria infects 198 million people and kills about 600,000 annually. And according to 

the reports, about half of world population is at risk of being infected with malaria and 

there are 79 malarious countries of which 20 countries are in Asia-Pacific (Figure 1.1). 

In spite of global spread of malaria and development of drug resistant strains, no new 

chemical class of anti-malarial has been introduced to clinical practice since 1996 

(Gamo et al., 2010).  

Malaria causative agent is the Plasmodium parasite. Until now, more than 100 

species of Plasmodium have been identified (Tuteja, 2007), however at least 5 species 

are currently known to infect human with the most virulent being Plasmodium 

falciparum (Kantele and Jokiranta, 2011). The parasite multiplies sexually in the gut 

of Anapheles mosquito to form sporozoites which migrate to insect’s saliva and is 

injected to host blood stream when the insect takes its meal. Subsequently, the 

sporozoites reach and multiply asexually in host’s liver (5-15 days) before shizonts 

rupture and release merozoites. Merozoites infect red blood cells and occasionally 

form the sexually mature gametes; the forms which are suitable for multiplication in 

insect gut (Laurence et al., 2008).  
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During the intra-erythrocytic stage, the parasite digests cellular haemoglobin 

of the host to get the necessary amino acids by using several proteinases. The 

unavoidable consequence of haemoglobin digestion is the release of free 

ferroprotoporphyrin. In the presence of oxygen ferroprotoporphyrin (heme) is oxidized 

to ferriprotoporphyrin (hemin). This process produces superoxide, which decomposes 

into H2O2 and O2. The parasite detoxify free heme by crystallizing it into hemozoin 

(Egan et al., 2002). Anti-malarial of 4-aminoquinolines like chloroquine and 

amodiaquine inhibit heme accumulation into hemozoin, thus building up a toxic 

concentration of ferro/ferriprotoporphyrin leading to parasite death (Deharo et al., 

2003). 

At the host side, human body reacts against infection by production of nitrous 

oxide and oxygen radicals. Host reaction as well as parasitic digestion of haemoglobin 

and formation of free heme exaggerates the oxidative stress in the parasite. The 

parasite relieves the oxidative stress via glutathione and thioredoxin dependent 

enzymes systems (Krnajski et al., 2002; Becker et al., 2004). 

Several anti-malarial compounds are available (Figure 1.2) and act at different 

stages through the life cycle of the parasite (Figure 1.3). Although the molecular 

targets have not been determined for many of the compounds, the currently known 

targeted pathways are mainly related to nucleic acid metabolism, heme detoxification, 

oxidative stress, protein digestion, fatty acid biosynthesis, and trans-membranal 

channels (Alam et al., 2009).   

Resistance toward anti-malarial compounds is attributed to mutation in key 

enzymes or in compounds trans-membranal transporters. For example, resistance 

toward chloroquine is attributed to mutation in Pfmdr1, Pfcg2 and Pfcrt transporters, 

atovaquone to mutation in cytochrome b, anti-folates (pyrimethamine and proguanil) 
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to mutations in dihydrofolate reductase, sulfonamides and sulfones to mutations in 

dihydropteroate synthase, and even artemisinin due to mutations in PfATPase6 

(Olliaro, 2001; Alam et al., 2009).  

The Plasmodium falciparum (isolate 3D7) has 23-megabase nuclear genome 

consists of 14 chromosomes, encodes about 5,300 genes, and is the most (A + T)-rich 

genome sequenced to date (Gardner et al., 2002a). Enzymes form about 15% of the 

predicted expressed proteins (Figure 1.4) and considered as anti-malarial targets 

(Table 1.1).  
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Figure 1.2: The main classes of anti-malarials. The chemical structures of all the main 

classes of anti-malarials and other therapeutic and control molecules are assembled 

according to either the chemical classes they belong to (endoperoxides, 4- and 8- AQs, 

amino-alcohols) or their function (antifolate, antibiotics), or both (e.g., sulfonamides, 

a chemical class of antibiotic used in combined anti-malarial therapies) (Delves et al., 

2012).  



 

9 

 

 

Figure 1.3: Summary of the activity of the most widely used anti-malarials throughout 

the life cycle of Plasmodium. The three main phases, i.e., liver stage, blood stage, and 

vector stage, of the life cycle of Plasmodium are shown. The two key entry points 

leading to transmission of the parasites from vector to host and from host to vector are 

indicated (green circles). Parasite forms specific to each stage are highlighted and 

drugs identified as inhibitors of development of these forms are listed in boxes and 

colored as described in previous Figure. Stars highlight components of the main 

artemisinin combination therapies: green, coartem; red, pyramax; orange, eurartesim; 

blue, ASAQ (Delves et al., 2012).  
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Figure 1.4: Classification of functional proteins predicted from Plasmodium 

falciparum (3D7) genome (Gardner et al., 2002a). 

Table 1.1: Enzymes considered as anti-malarial targets (Mehlin, 2005; Buchholz et al., 

2007; Alam et al., 2009). 

Group Enzymes 

Peptidases Plasmepsin 

Faclipain 

Aminopeptidase N 

falcilysin  

Glycolytic enzymes L-lactate dehydrogenase 

Triose phosphate Isomerase 

Glyceraldehyde-3-phosphate dehydrogenase 

Fructose-1,6-bisphosphate aldolase 

Lipid metabolizing enzymes Enoyl-acyl carrier reductase 

Phosphoglycerate kinase 

 

Redox and detoxification enzymes Glutathione reductase 

Thioredoxin reductase  

Glutathione S-transferase 

Glutamate dehydrogenase 

Folate synthesis Dihydrofolate reductase-thymidylate synthase 

 

Purine salvage enzymes Purine Nucleoside Phosphorylase 

Adenylosuccinate synthetase 

Hypoxanthine phosphoribosyltransferase 
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1.3 Glutathione-s-transferases (GSTs) 

Glutathione-S-transferases (GSTs, E.C. 2.5.1.18) are ubiquitous family of 

enzymes involved preliminarily in nucleophilic substitution reactions. GSTs can bind 

to endogenous as well as exogenous substrates. Exogenous substrates represent drugs, 

industrial intermediates, pesticides, herbicides, environmental pollutants, and 

carcinogens. While endogenous substrates represent cell-membrane phospho-lipid 

hydroperoxides, oxidized products of nucleotides and catecholamines, as well as 

several other endogenous compounds.  

GSTs were first studied as xenobiotic metabolizers before other functions were 

reported. Back to 1960s, the rate liver extracts showed the ability to catalyze the 

conjugation of 1,2-dichloro-4-nitrobenzene to glutathione tripeptide (γ-glutamyl-

cysteinyl-glycine, GSH) (Figure 1.5). Other activities such as binding carcinogens, 

steroids and bilirubin were also reported, thus the protein was initially called 

‘ligandin’. The previous activities were –later on- attributed to Mu and Alpha classes 

of GSTs. Several classes of GSTs were discovered by using 1-chloro-2,4-

dinitrobenzene (CDNB) as a more general transferase substrate as well as using 

bioinformatics approach (Sherratt and Hayes, 2002).  

GSTs belong to phase-II detoxification enzymes that remove electrophilic 

compounds from the cell by conjugation to endogenous GSH. The GS-conjugates are 

substrates for transmembranal transporters. GSTs protect the cell from environmental 

and oxidative stress, xenobiotics, as well as responsible for resistance against certain 

drugs, therefore, have been considered a reliable target in several therapeutic designs 

and interventions. In this section a biological introduction will be given regarding 

classification, structure, functions, and medical significance of GSTs. Members of 

GSTs family from Plasmodium falciparum, human, and mouse will be considered.  
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Figure 1.5: Structure of tripeptide glutathione (γ-glutamyl-cysteinyl-glycine or GSH) 

1.4 Classification of GSTs 

Within creatures, three classes of proteins so far have been discovered that 

show glutathione transferase activity. Two of them are soluble, namely cytosolic and 

mitochondrial GSTs. The third is membrane-bound microsomal GST also referred as 

membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG).  

Variations in structure and substrate selectivity represent the main differences between 

soluble and membrane-bound GSTs. Soluble forms are more directed toward drugs 

and xenobiotics metabolism while membrane-bound toward leukotrienes and 

prostaglandins metabolism. All soluble and membrane-bound GSTs can conjugate 1-

chloro-2,4-dinitrobenzene to GSH and exhibit glutathione-dependent peroxidase 

activity toward cumene hydroperoxides (Holm et al., 2002; Hayes et al., 2005; Holm 

et al., 2006).  

About 15-20 different cytosolic GSTs have been identified in human and 

mammalians, 40-60 in plants, 10-15 in bacteria, and more than 10 in insects (Nebert 

and Vasiliou, 2004; Frova, 2006). Cytosolic GSTs can be classified into 16 classes 

depending on sequence similarity, immunological cross reactivity, and substrate 

specificity, namely: alpha, beta, delta, epsilon, zeta, theta, kappa, lambda, mu, nu, pi, 

sigma, tau, phi, omega and dehydroascorbate reductase (DHAR) (Mannervik and 
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Danielson, 1988; Salinas and Wong, 1999; Strange et al., 2000; Strange et al., 2001; 

Frova, 2006; Oakley, 2011).  Some subclasses are ubiquitous, others are organism-

specific. Currently recognized classes of cytosolic GSTs in mammals include alpha, 

mu, omega, pi, sigma, theta and zeta (Mannervik et al., 2005). GSTs show higher 

interclass sequence similarity (60-80%) than structural homology (25-35%) (Andujar-

Sanchez et al., 2005) 

1.5 General structure of cytosolic GSTs 

Microsomal GSTs or Membrane Associated Proteins in Eicosanoid and 

Glutathione metabolism (MAPEGs) are present as homotrimeric membrane-spanning 

helical structures (Holm et al., 2006). On the other hand, soluble GSTs are all 

functional homo or hetero (within same class) dimeric. Each monomer is of 199–244 

amino acids in length and has molecular weight from 23-28 kDa (Armstrong, 1997). 

It is composed of a conserved N-terminal thioredoxin domain containing GSH binding 

site connected to a more variable C-terminal R-helical domain containing the binding 

site for the GSH acceptor substrate (Hayes et al., 2005) (Figure 1.6).  

The typical thioredoxin domain composed of β-α-β-α-β-β-α structural motif 

(Armstrong, 1997; Hebert and Jegerschold, 2007; Atkinson and Babbitt, 2009) 

(Figure 1.7). The active site within the thioredoxin domain which recognizes GSH (G 

site) is conserved in all classes of GSTs, however, some residues may vary among 

different classes. The residue of major interest in the binding site is the one which 

principally activates the thiol group of GSH for nucleophilic attack (Armstrong, 1997). 

For example, the binding site of alpha, mu, and pi classes in mammals as well as 

PfGST utilizes tyrosine residue for GSH activation. The classes of phi and tau in 

plants, delta in insects as well as theta and zeta utilize serine residue. While omega in 
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mammals and insects, beta in bacteria, lamda and DHAR in plants utilize cysteine 

residue (Frova, 2006).  Due to the formation of mixed disulfide bond with GSH, omega 

class of GSTs has poor conjugation activity, instead; it is involved mainly in redox 

reactions (Whitbread et al., 2005). In all of alpha, mu, and pi classes, the GSH 

tripeptide adopts an extended conformation running antiparallel to the conserved loop 

(50-53) that connects α2 and β3 (Fritz-Wolf et al., 2003). The α-amino group of γ-Glu 

interacts with strictly conserved Gln and Asp residues. However, the fundamental 

interaction found in all classes of cytosolic GSTs is the hydrogen bonding between Pro 

residue at the N-terminus of β3 and backbone amine of GSH cysteinyl moiety (Oakley, 

2011)  

The second domain contains the hydrophobic substrate binding site (H-site) 

and consists of a variable number (4–7) of α-helices positioned downstream the 

thioredoxin domain and connected to it via short loop (around 10 amino acids). GSTs 

sequence alignments from different species showed that about one third of the 

sequence differences are focalized at the H-site, thus determines the range and 

selectivity of chemicals metabolized by the enzyme (Armstrong, 1997). The G- and 

H-sites are labeled in Figure 1.11. 
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Figure 1.6: Topology and structural representations of (a) cytosolic GST, (b) 

mitochondrial GST, and (c) MAPEG. The thioredoxin domain (green) composed from 

α-helices (circles) and β-sheets (triangles). The C-terminal domain composed mainly 

from α-helices (Oakley, 2011).  

 
 

Figure 1.7: Thioredoxin domain common in soluble GSTs; it is composed from 4 beta-

sheets interconnected by 3 alpha helices. The GSH binding to GST is stabilized by 

hydrogen bonds (dashed blue line). The GSH thiol group is activated by giving 

hydrogen bond to catalytic residue Tyr (Atkinson and Babbitt, 2009).  
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1.6 General mechanisms for catalyzing chemical reactions employed by 

enzymes and GSTs 

Enzymes are merely catalysts for chemical reactions, they only accelerate rate 

of chemical reaction toward the equilibrium by lowering activation energy and not 

changing the equilibrium. Enzymes (E) induced strains and perturbations that convert 

substrate (S) to its highly energized unstable transition state structure (ES‡). The short 

half-life of transition state (about 10-13 second) is extended by binding enzymes, thus 

reduces the required activation energy (ΔGES
‡). According to Arrhenius equation, 

linear lowering of activation energy separating for a given reaction, produces 

exponential increment in reaction rate (Equation 1.1).  

𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐴𝑒−
∆𝐺𝐸𝑆‡

𝑅𝑇                          Equation 1.1 

Where R is the gas constant, T is the temperature in Kelvin, and A is the 

Arrhenius constant. Several mechanisms have been proposed for ES‡ complex 

stabilization (Copeland, 2000): 

 

Structural features of enzyme active site: 

 Sequester the substrate from solvent effect. 

 Decrease dielectric constant by the hydrophobic pocket, thus, intensifying the 

electric field against the substrate produced by judiciously placed charged 

functional groups within the active site. 

 

Reactivity features of enzyme active site: 

 Approximation of reactants and orbital steering 

 Covalent catalysis (nucleophilic and electrophilic addition) 
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 General acid-base catalysis 

 Conformational distortion 

 Preorganization of the active site for transition state complementarity 

 

GST group of enzymes catalyzes the conjugation reaction of GSH by 

nucleophilic addition. The enzyme active site involves in activating the thiol group of 

GSH to form partial covalent bond between the tyrosine or serine residue and thiolate 

ion of GSH. Subsequently, the activated thiolate ion can easily attack any electrophilic 

group of the second substrate (Graminski et al., 1989; Shan and Armstrong, 1994; 

Armstrong, 1997).  

Generally in nucleophilic catalysis, the reaction rate depends on nucleophilic 

strength and electron donating ability of the attacking group which in turn directly 

related to basicity (pKa). Moreover, it depends on the group’s oxidation potential, 

polarizability, ionization potential, electronegativity, potential energy of the higher 

occupied molecular orbital (HOMO), covalent bond strength, and general size of the 

group. 

With respect to substrate, the reaction rate depends on the electrophilicity of 

the substrate functional group (i.e. how good its “leaving group” is), pKa of leaving 

group, hence, its state of protonation (the weaker is the base, the better is the leaving 

group species), and chemical nature of the leaving group (Copeland, 2000). 

With respect to GSTs, the enzyme stabilizes the thiolate form of GSH, thus 

making it available for conjugation. All of PfGST, hGSTP1, and mGSTM1have been 

designed to use tyrosine residue for stabilizing GSH thiolate ion via hydrogen bond 

(Figure 1.8). Moreover, intra molecular interaction with the free amino group of γ-
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glutamyl moiety appears to play a crucial role in activating the thiol group in GSH 

(Adang et al., 1988).  

 

 

 

 

Figure 1.8: Conjugation reactions catalyzed by rate GST Mu 1-1 (rGSTM1-1, PDB 

5FWG) that uses Tyr6 for activating GSH thiol group. The active thiolate group attacks 

a) phenthrene epoxide by nucleophilic addition and b) benzylideneacetone double 

bond by Michaelis addition (Shan and Armstrong, 1994).   
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1.7 GSTs functions and substrates 

The main function of GSTs is to catalyze the conjugation of GSH toward 

xenobiotic substrates. However, other functions are vested to GSTs including peroxide 

degradation, double-bond cis-trans isomerization, steroid and leukotriene 

biosynthesis, reduction and non-catalytic “ligand-in” activities. 

1.7.1 Conjugation activity 

GST is defined as a member of phase-II detoxification enzyme. GSTs catalyze 

variety of reactions involving endogenous and exogenous compounds as substrates. 

Nucleophilic attack of GSH to nonpolar molecules which carry electrophilic C, N, or 

S atoms is the most important cellular defense reaction catalyzed by GSTs.  In human, 

GSH conjugates are, subsequently, expelled from the cell by trans-membranal ATP-

Binding Cassett (ABC) transporters.  GSH conjugates are then metabolized by 

extracellular proteins γ‐glutamyltransferase and dipeptidases to sequentially remove 

glutamyl and glycyl moieties, respectively. Specific cells reabsorb cysteine S‐

conjugates and perform acetylation on the amino group of the cysteinyl residue by 

intracellular N‐acetyl‐transferases. Corresponding mercapturic acids (N‐acetylcysteine 

S‐conjugates) is then formed that can be released into the circulation and delivered to 

the kidney for excretion in urine, or they may undergo further metabolism (Hinchman 

and Ballatori, 1994) 

Substrates that can be detoxified by GSTs include cancer chemotherapeutic 

agents specially alkylating agents such as busulfan, carmustine, chlorambucil (Parker 

et al., 2008), cis-platin, cyclophosphamide, etoposide quinone (metabolite of 

Etoposide), ethacrynic acid, melphalan, mitozantrone, and thiotepa. Environmental 

chemicals and their metabolites also detoxified by GST include acrolein, atrazine, 
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DDT, inorganic arsenic, lindane, malathion, methyl parathion, muconaldehyde, and 

tridiphane. Another important class of substrates for conjugation by GSTs is the in 

vivo products of phase-I transformation, like phenanthrene epoxide, benzo[a]-pyrene 

epoxide, and lipid peroxides (Hayes et al., 2005). Other substrates include herbicides 

(Marrs, 1996; Neuefeind et al., 1997), pesticides, industrial intermediates, 

environmental pollutants, carcinogens, heterocyclic amines produced by cooking 

protein-rich food, arene oxides, unsaturated carbonyls, and organic halides (Hayes et 

al., 2005; Oakley, 2011). A list of conjugation reactions catalyzed by GSTs is provided 

in Figure 1.9. 

1.7.2 Peroxidase activity 

GSTs possess selenium-independent glutathione peroxidase activity towards 

organic hydroperoxides. This activity is cellular protective since it prevents organic 

hydroperoxides of phospholipids, fatty acids and DNA in becoming engaged in free 

radical propagation reactions which ultimately lead to macromolecular destruction 

(Hayes and Strange, 1995; Deponte and Becker, 2005). GSTs can detoxify products of 

lipid peroxidation (Bruns et al., 1999; Collinson et al., 2002), polycyclic aromatic 

hydrocarbon epoxides derived from the catalytic actions of phase 1 cytochrome P-450s 

as well as numerous by-products of oxidative stress (Strange et al., 2001).  

1.7.3 Isomerization activity 

Some GSTs isozymes are known to possess GSH-dependent isomerization 

activities, like isomerization of the keto steroid intermediates in testosterone and 

progesterone synthetic pathway (Johansson and Mannervik, 2001), the less 

hydrophilic maleate analogues of maleylacetoacetate (Keen and Jakoby, 1978; 

Fernandez-Canon and Penalva, 1998), and 13-cis retinoic acid (Chen and Juchau, 
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1998). Some GST isoforms are involved in biosynthesis of arachidonic acid derivative 

of eicosanoids like prostaglandins and leukotrienes (Kanaoka et al., 1997). Some 

parasites are able to use this characteristic of GSTs to perform GSH-dependent 

isomerization of some chemicals such as prostaglandins, thus modulating the host 

immune system during infection (Angeli et al., 2001; Ouaissi et al., 2002).  

1.7.4 Toxicity potentiation activity 

Opposite to detoxification, GSTs can potentiate the toxicity of some substrates 

by catalyzing conjugation or lysis reactions. As example GSTs increases the toxicity 

of some short chain alkyl halids that have two functional groups like dihalomethane, 

dihaloethane, isoesters, isothiocyanates, sulforaphane, and haloalkene. Moreover, 

GSTs can release cytotoxic drugs from prodrug contains sulfide bond such as the 

conversion of azathioptine to mercaptopurine (Eklund et al., 2006). This phenomenon 

has been efficiently incorporated in designing tumor selective chemotherapy where the 

overexpressed GSTs activate the release of active cytotoxic molecular fragment (Lyttle 

et al., 1994b; Satyam et al., 1996; Rosen et al., 2003; Ruzza and Calderan, 2013). 

Another example is the TER 286 which can be activated by the overexpressed GST 

(hGSTP1) in cancerous cells to generate nitrogen mustard alkylating agent (Morgan et 

al., 1998) 

1.7.5 Ligand-in activity 

GSTs can function as cargo proteins to carry certain organic molecules by non-

productive ligand-in process (Mannervik and Danielson, 1988). Ligand-in is another 

mechanism to detoxify compounds under condition of lower GSH concentration 

(Parker et al., 2008). GSTs can carry hemin, bilirubin, bile salts, steroids (Remoue et 

al., 2002), thyroid hormones, fatty acids (Caccuri et al., 1990). Moreover, GSTs can 
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detoxify several drugs by ligand-in like adriamycin, bleomycin, mitomycin C, 

carboplatin (Ruzza et al., 2009), as well as the anti-inflammatory drug sulfasalazine 

(Oakley et al., 1999). The process of ligand-in is applied for hemin transportation 

(Boyer and Olsen, 1991) giving hematin binding in  Haemonchus contortus as an 

example of endowment for parasite to tolerate blood feeding (van Rossum et al., 2004). 

Moreover, it was recognized that GST in Plasmodium falciparum could function as a 

buffer for heme-containing compounds in vivo (Platel et al., 1999; Harwaldt et al., 

2002; Deponte and Becker, 2005; Liebau et al., 2005).  

1.7.6 Protein-interaction activity 

Soluble GSTs can bind to some proteins and manipulate their functions. The 

protein kinases involved in apoptotic stress kinase pathway can be inactivated by 

interaction with some GST isoforms. The apoptosis signal regulating kinase-1 and its 

substrate C-Jun N-terminal kinase (JNK) are inactivated by interaction with mGSTM1 

(Cho et al., 2001) and hGSTP1 (Adler et al., 1999), respectively. The oxidative or 

chemical stress induced by chemotherapies mediate the dissociation GST-JNK-C-Jun 

complex leading to apoptosis (Adler et al., 1999; Townsend, 2007). 

Other functions of GSTs include reduction of dehydroascorbate and transfer of 

thiols (Neuefeind et al., 1997), dehydroascorbate reductase activities (Board et al., 

2000), participation in cellular signaling, regulation of transcription and stress 

response (Salinas and Wong, 1999), as well as catalyzing formation of disulfide bonds 

for some hydrophobic substrates (Keen and Jakoby, 1978). Selected reactions 

catalyzed by GSTs are provided in Figure 1.10. 
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a)  
  

b)  
  

c)  
  

d)  
  

e)  

  

f)  

Figure 1.9: Conjugation reactions catalyzed by GST for a) 1-chloro-2,4-dinitrobenzene 

(CDNB),  b) chlorambucil, c)sulforaphane, d) ethacrynic acid, e) benzylideneacetone, 

f) phenanthrene epoxide a product of cytochrome P450 catalyzed oxidation of 

phenanthrene.  
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a)  
  

b)  
  

c)  
  

d  
  

e)  
  

f)  
  

g)  

Figure 1.10: Reactions catalyzed by GST; a) reduction for cumene, b) o-dopaquinone 

conjugation, c,d) thiolysis for 4-nitrophenyl acetate and trinitroglycerin, f) 

isomerization of maleylacetoacetate, f) activation of 1,2-dibromoethane and g) 

conversion of PGH2 to PGD2).  




