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PERTUMBUHAN DAN KARAKTERISASI STRUKTUR CdO BAGI APLIKASI 

SEL SOLAR 

ABSTRAK 

Struktur cadmium okside (CdO) yang berbeza berjaya disintesis melalui 

mendapan pepejal-wap (SVD) bagi serbuk Cd dan CdO dalam relau tiub kuartza 

mendatar di atas substrat silikon jenis-p pada suhu yang berjulat daripada 1235 K hingga 

1400 K dengan aliran argon dan oksigen. Mikroskopi imbasan elektron penskanan (SEM) 

menunjukkan bahawa morfologi CdO mempamerkan struktur CdO yang berbeza atas 

substrat Si, iaitu kelopak seperti dendrite, seperti rumput, rod mikro dan hablur nano, 

melalui mendapan pepejal-wap tanpa vakum dan pemangkin di bawah parameter 

pertumbuhan yang berbeza. Tambahan pula, sifat struktur, optik, dan electrik struktur 

nano CdO juga dikaji den diselidiki. Struktur nano mempunyai purata saiz hablur 

daripada 30 nm hingga 35 nm.   

SEM juga mempamerkan pelbagai bentuk struktur mikro CdO bergantung pada 

kedudukan substrat Si daripada bahan sumber (serbuk CdO) dalam relau. Struktur mikro 

CdO merangkumi rod mikro, kiub mikro dan seperti pek rumput. Sifat struktur dan optic 

struktur mikro CdO dikaji. Purata saiz hablur berkurangan dengan pertambahan pemalar 

kekisi apabila jarak substrat daripada bahan sumber semasa pertumbuhan bertambah. 

Filem nipis CdO juga diendapkan di atas substrat silikon jenis p dan substrat kaca 

pada suhu bilik melalui kaedah penyejatan haba bagi serbuk CdO dalam vakum. Corak 

belauan sinar X (XRD) menunjukkan bahawa struktur CdO yang berbeza adalah 



 

xxi 

 

polihablur dengan struktur kiub melalui kaedah kajian ini. Jurang tenaga jalur terus 

adalah 2.2 eV hingga 2.5 eV. 

Pengukuran Hall menunjukkan bahawa filem nipis CdO adalah jenis n. Jurang  

jalur terus optik semakin berkurangan, sedangkan kekonduksian elektrik dan kepekatan 

pembawa semakin meningkat selepas penyepuhlindapan pada 500 °C selama 1 jam bagi 

filem nipis CdO yang dimendapkan pada substrat kaca melalui penyejatan haba dalam 

vakum. 

Kaedah ini digunakan untuk memfabrikasi sel suria n-CdO/p-Si disebabkan 

darjah kekasarannya yang tinggi dan pantulan efektif yang minimum diperoleh melalui 

mendapan filem nipis n-CdO pada substrat Si jenis p. Tambahan pula, kecekapan sel 

suria n-CdO/p-Si adalah 5.51% pada keadaan iluminasi 100 mW/cm
2
 melalui kaedah 

mendapan pepejal-wap, dan 5.92% melalui penyejatan haba dalam kaedah vakum. 
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GROWTH AND CHARACTERIZATION OF CdO STRUCTURES FOR SOLAR 

CELL APPLICATION 

ABSTRACT 

Different structures of cadmium oxide (CdO) were successfully synthesized using 

a solid-vapor deposition (SVD) for Cd and CdO powders in a horizontal quartz tube 

furnace on p-type silicon substrates at temperature ranging from 1235 K to 1400 K with 

argon and oxygen flows. Scanning electron microscopy (SEM) revealed that the CdO 

morphology exhibited different structures of CdO on Si substrates, such as dendrite-like 

petals, grass-like, microrods, and nanocrystalline thin films, via solid-vapor deposition 

without a vacuum and catalyst under different parameters of growth. Moreover, the 

structural, optical, and electrical properties of structures of CdO were studied and 

investigated. The structures had an average crystallite size of 30 nm to 35 nm.  

SEM also exhibited various shapes of CdO microstructures depending on the 

position of Si substrates from the source material (CdO powder) in the furnace. The CdO 

microstructures included microrods, microcubes, and grass packs-like. The structural and 

optical properties of CdO microstructures were studied. The average crystallite size 

decreased with an increase in the lattice constant when the distance of the substrates from 

the source material during growth was increased.  

CdO thin films were also deposited on p-type silicon and glass substrates at room 

temperature using the thermal evaporation method for CdO powder in a vacuum. The X-

ray diffraction (XRD) pattern showed that different structures of CdO were 

polycrystalline in nature with a cubic structure using these methods in this study. Direct 

band gap energy was 2.2 eV to 2.5 eV.  
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Hall measurements revealed that the thin films of CdO were of n-type. The optical 

direct band gap was decreased, whereas electrical conductivity and carrier concentration 

increased after annealing at 500 °C for 1 h for CdO thin films were deposited on glass 

substrates using thermal evaporation in vacuum. 

These methods were used to fabricate n-CdO/p-Si solar cells due to the high 

degree of roughness and the minimum effective reflectance obtained by deposition of n-

CdO thin films on p-type Si substrates. Moreover, the solar cell efficiency of the n-

CdO/p-Si was 5.51% under 100 mW/cm
2 

illumination conditions via the solid-vapor 

deposition method while it was 5.92% using the thermal evaporation in a vacuum 

method. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The physics of thin films is an important branch of solid state physics. The term thin 

film is used to describe a layer or layers of material’s atoms with a thickness not 

exceeding 1µm [1, 2]. Moreover, thin films significantly influence studies of the physical 

properties of materials that cannot be studied in their bulk phases [1]. Thin films are used 

in many modern electronic fields, such as the fields of electronic circuits, photodiodes, 

optoelectronics, phototransistors, transparent electrodes, gas sensors, and solar cells [2, 

3]. The importance of thin films has stimulated the emergence and development of 

different methods for fabricating such films.  

Nanostructured materials are attractive and interesting materials for many 

optoelectronic applications because of their unique chemical and physical properties, 

which differ from those of bulk materials or single atoms their distinctive chemical and 

physical qualities, which varies compared to those of bulk materials or single atoms [4]. 

The properties of such materials depend on structure type, nature of surface, and 

dimension, such as nanoparticles, nanocubes, nanorods, nanowires, nanoflowers, 

nanotubes, and nano-thin films [5]. The nanostructured materials have dimensions 

between in 1 nm to 100 nm [6]. Many methods have been adopted to synthesize micro- 

and nano-thin films, such as spray pyrolysis, sputtering, chemical bath deposition, sol-gel 

method, vapor–liquid–solid method (VLS), vapor transport or solid–vapor deposition 

(SVD), and thermal evaporation in a vacuum [6].  
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Energy is the most important problem facing mankind. Solar energy is a renewable 

energy source that offers a potentially endless energy supply that can meet the electricity 

demands of the entire world [7]. Therefore, researchers have studied and fabricated 

heterojunctions for solar cells from micro- and nano-materials. A solar cell is a device 

that converts solar energy into electrical energy [8]. This phenomenon is called the 

photovoltaic (PV) effect. This technology is characterized by simplicity because it 

involves only the application of sunlight to a crystal surface to produce electricity. This 

technology is also free of pollution and noise and has low economic cost [9].  

The compounds of II–VI semiconductors represent some of the highly used 

compounds in the manufacture of optoelectronic devices, such as solar cells, because 

these semiconductors have high efficiency in generating electron–hole pairs (i.e., high 

quantity efficiency) and high absorption coefficient with direct band gap energy [10-12]. 

Among the II–VI semiconductors, cadmium oxide (CdO) is the most significant 

transparent conductive oxides (TCOs) [13, 14]. Technological interest in TCO materials 

has grown tremendously after Bädeker prepared CdO films by thermally oxidizing 

sputtered cadmium in 1907 [15, 16]. CdO exhibits intrinsic features that include an 

intermediate direct band gap ranging from 2.2 eV to 2.5 eV [17], high electrical 

conductivity (even without doping), and high carrier concentration at room temperature 

[18, 19]. Thus, different structures of CdO (micro- and nano) are now widely used in 

various physical applications, such as electronic and optoelectronic devices [8, 13]. CdO 

are also commonly applied as n-type window layers (photoconductive material) in the 

thin films of solar cells because of its high transparency in the visible region of the solar 

spectrum [20, 21]. 
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Vapor transport (SVD) without a catalyst and thermal evaporation in a vacuum are 

the most attractive methods to synthesize and grow different CdO structures because of 

their low cost and simplicity. The products of these methods depend on parameters of 

synthesis and growth, such as reaction temperature, the gas flow rate, and the position of 

the substrate from the source material in the furnace. CdO has many applications 

depending on the structure shape of CdO (microstructure or nanostructure). Vapor 

transport and thermal evaporation are used to fabricate heterojunctions for solar cells, 

such as n-CdO/p-Si has been fabricated from CdO micro- or nano-thin film deposited on 

Si substrates because of the high crystallinity of these thin films and their minimum light 

reflection with superior light trapping in the visible region. These properties increase the 

efficiency of solar cells [13, 8]. 

Currently, micro- and nano-structured materials are not only in the forefront of the 

hottest studies on fundamental materials, but are also gradually being used in daily life. 

However, the increased development in electronic technology has brought about the need 

for better understanding of the optical and electrical properties of CdO microstructures 

and nanostructures, which are used to fabricate numerous electronic products. 

 

1.2 Problem Statement 

Different structures (micro- and nano) of CdO can be widely prepared using vapor 

transport with gas flow and thermal evaporation in vacuum methods. In this study, vapor 

transport (SVD) was used to synthesize thin films and other CdO structures, such as 

nanocrystalline thin films, microcubes, and microrods, in a tube of a small furnace 

without a vacuum and catalyst depending on the different parameters of synthesis. 
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However, this method has its disadvantages. For example, the method requires high 

temperature to evaporate the source material (CdO powder). Because of the requirement 

of high melting point, the method cannot determine the thickness of thin films used in the 

fabrication of solar cells. Furnace setup also involves several problems, such as the small 

diameter of the furnace tube. These drawbacks create difficulties in controlling the 

parameters of synthesis and growth of CdO. Thus, the preparation process needs to be 

skillfully done, and the structural, optical, and electrical properties are improved in the 

preparation of CdO/Si samples, such as thin films have good homogeneous, high 

absorption in the visible region, high electrical conductivity, and high carrier 

concentration so as to fabricate highly efficient solar cells. In addition, thermal 

evaporation in a vacuum was used to deposit CdO thin films. Few studies have 

synthesized different structures of CdO and fabricated CdO/Si solar cells using these 

methods. Thus, more studies should investigate the effect of the parameters of the 

synthesis and growth of CdO on its structural, optical, and electrical properties via simple 

methods that lower the cost of fabrication of optoelectronic devices, specifically solar 

cells. 

 
1.3 Research Objectives 

The main objectives of this study are to: 

a) Synthesize and grow different structures (micro-and nano) of CdO on Si 

substrates via SVD under different parameters of growth, and study their 

structural, optical, and electrical properties.  

b) Deposit CdO thin films on glass substrates via thermal evaporation in vacuum and 

study the effects of annealing on their structural, optical, and electrical properties. 
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c) Fabricate n-CdO/p-Si solar cells using SVD and thermal evaporation in vacuum, 

and study their electrical (I-V) properties. 

 

1.4 Originality of this Research 

The originality of this study lies in the following aspects: 

a) Dendrite-like petals of CdO microstructures were grown by SVD without a 

catalyst. 

b) CdO/Si heterojunction was fabricated as a solar cell via the SVD method. 

c) Different structures of CdO microstructures were grown using SVD depending on 

the position of Si substrates from the source material. The effect of this growth 

parameter on the morphological properties of CdO was investigated. 

 

1.5 Scope of Study 

Using the SVD method, varying structures of CdO were grown on Si substrates, and 

their structural, optical, and electrical properties were investigated to be used in 

optoelectronics and electronics applications. The prepared thin films of CdO were used to 

fabricate a solar cell. For comparison, a CdO/Si solar cell was also fabricated by thermal 

evaporation in a vacuum to enhance performance.  

 

1.6 Outline of the Thesis   

The contents of this thesis are organized as follows: 

Chapter 1 provides a concise synopsis of the research subject. Chapter 2 reviews related 

literature on synthesis of CdO thin films, effects of annealing on their properties, the 
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growth of CdO different structures, and their applications in solar cells. The physical and 

chemical properties of CdO are explained. This chapter also discusses theoretical 

concepts of semiconductors, nanostructured material properties, and energy bands in 

heterojunction as well as the fundamentals of solar cell with its parameters. Chapter 3 

describes synthesis equipments and discusses the principles of the tools and parameters 

used to characterize the optical, structural, and the electrical attributes of different 

structures grown, prepared thin films, and solar cells. Chapter 4 contains the 

methodology and explains the synthesis methods of CdO structures. This chapter also 

describes the synthesis of different microstructures, nanostructures, and thin films of CdO 

with the effects of annealing. In addition, the chapter details the fabrication of solar cells 

using SVD and thermal evaporation in a vacuum. Chapter 5 presents the results of 

growth of CdO different structures (micro- and nano) using SVD under different 

parameters of growth and their structural, optical, and electrical properties are studied. In 

addition, CdO/Si solar cell is fabricated by the same method and its electrical (I-V) 

properties are investigated in this chapter. Chapter 6 presents the effects of annealing on 

the structural, optical, and electrical properties of CdO thin films deposited on glass 

substrates via thermal evaporation in vacuum. In this chapter, CdO/Si solar cell is also 

fabricated by thermal evaporation and its morphological, structural, optical, and electrical 

properties are studied. Chapter 7 includes the concluding part of the thesis as well as 

recommendations for future works. 
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CHAPTER 2 

LITERATURE REVIEW AND THEORETICAL CONCEPTS 

 

2.1 Introduction  

This chapter presents a literature review on CdO thin film synthesis, effects of 

annealing on their properties, the growth of CdO different structures, and their 

applications in solar cells. Theoretical concepts of semiconductors, nanostructured 

material properties, and energy bands in heterojunction as well as fundamental concepts 

and parameters of solar cell are discussed. 

 

2.2 Synthesis of CdO Thin Films  

 Over the years, TCO materials have drawn enormous technological attention, 

beginning with the study by Bädeker (1907), where he prepared CdO thin films for the 

first time by thermally oxidizing sputtered cadmium [22]. Singh and Dayal (1969) 

measured the lattice constants and thermal expansion coefficients of CdO at elevated 

temperatures ranging from 32 to 732°C [23]. Benedict and Look (1970) examined the 

electrical properties of polycrystalline CdO at temperatures ranging from 1.4 to 300K. 

These studies discovered that majority of charge carriers are electrons, indicating that the 

material was of n-type and the concentration of the carriers was based on different 

temperatures [24]. Furthermore, Call et al., (1980) [25] investigated the structural 

properties of ZnO, CdO, and CdS films using Miller indices, and carried out a 

comparative analysis with values of the bulk form to show the deposition of the 

equilibrium phase. In addition, Benko and Koffyberg (1986) measured the quantum 
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efficiency (η) of CdO films in the range (1-4 eV). The plotted η curve showed an indirect 

relationship with the optical absorption coefficient (α), although the direct band gap 

energy (2.18 eV) was in conformity with previous studies [26]. Several methods have 

been applied to fabricate CdO films at different temperatures. Dantus et al. [27] prepared 

CdO thin films on glass substrates by thermally oxidizing vacuum evaporated cadmium 

(Cd) thin films at 650 K. The electrical conductivity property of the CdO thin films was 

found to be approximately 5×10 to 5×104 Ω-1cm-1 at room temperature, while the optical 

direct band gap varied between 2.20 and 2.22 eV. Dantus et al. [28] also synthesized 

CdO thin films via thermal evaporation of CdO powder under vacuum with source 

temperature of 900 K, the electronic transport mechanism of thin films was elucidated 

based on the Seto’s model, while values of optical band gap were been measured from 

the absorption spectra. Furthermore, Suhail et al. [29] examined the impact of 

temperature on the structure and optical attributes of CdO films synthesized by subjecting 

CdO powder to thermal evaporation in a vacuum. They noted that the direct band gap 

decreased with rising substrate temperature as a result of the enlarged grain size and 

decreasing defect density. Mahaboob et al. [30] studied the structural, optical and 

morphological properties of CdO thin films deposited on glass substrates. XRD patterns 

showed the thin films are polycrystalline in nature with preferential orientation along 

(111) plane. Hassan et al. prepared CdO thin films on glass substrates using different 

substrate (deposition) temperatures. Based on the calculated energy gaps of thin films, the 

study showed that sheet resistance decreased with increasing deposition temperature 

possibly due to the increase in free carrier concentration [31]. Sankarasubramanian et al., 



9 

 

[32] also determined the average optical transmittance, resistivity, mobility, and carrier 

concentration of CdO thin films deposited on glass substrates. 

 

2.3 Effects of Annealing on the Characteristics of CdO Thin Films 

There are few studies published on the effects of annealing on the characteristics 

of CdO thin films. Eze synthesized CdO thin films on glass substrates using a modified 

reactive thermal evaporation technique with annealing treatment at 250-300 °C in 

oxygen. The identity of the resulting CdO was established with X-ray diffraction, while 

electrical and optical measurements showed that the thin films were n-type and the band 

gap was 2.45 eV direct [33]. A study by Vigil et al., [34] discovered that increase in 

crystallite size and electron mobility due to augmented annealing time reduces the band 

gap energy, lattice constants and electrical resistivity of CdO thin films. Dakhel and 

Henari [35] prepared CdO films on a glass substrate at room temperature via thermal 

evaporation in the absence of air. X-ray diffraction (XRD) showed the films are 

characterized by a cubic system with lattice parameter of a = 4.69±0.02 Å. The optical 

and electrical measurements of the thin films, obtained at varying annealing 

temperatures, showed that average grain size increase with increase in temperature of 

annealing. Ismail [36] observed that the direct band gap, lattice constant and electrical 

resistivity of annealed films decreased as annealing time increased. The resistivity of 

films reached a minimum value of 6×10-4 Ωcm and then gradually saturates with 

increasing annealing times. A study by Salunkhe et al., on the impact of annealing effects 

on the properties of CdO thin films showed that electrical resistivity and the energy band 

gap decreased after annealing due to the decrease in defect levels [37]. Gokul et al. also 
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evaluated the changes in intrinsic properties of CdO thin films as a result of annealing at 

250-450°C for duration of 2h. Their study deduced certain observations: transmittance 

decreases with rising annealing temperature; the estimated band gap energy ranges 

between 2.24 and 2.44eV; Hall effect measurement increases in carrier concentration and 

resistivity decreases with increasing annealing temperature [38]. In addition, a study by 

Azizar et al., [39] on the effects of annealing on CdO thin films properties found that 

grain size, carrier density, and mobility increased with annealing, while the direct and 

indirect optical band gaps decreased with increasing annealing temperature. 

 

2.4 Synthesis and Growth of Different CdO Structures 

Several different structures of CdO (nano- and micro) have been synthesized 

using vapor transport process in the absence of vacuum and catalyst by means of solid-

vapor deposition, or in the presence of catalyst via vapor-liquid-solid (VLS) deposition. 

Pan et al., [40] synthesized nanobelts of semiconductor oxides of zinc, tin, indium, 

cadmium, and gallium by basically evaporating the metal oxide powders at 1000 °C in 

the absence of catalyst. They observed that the as-synthesized oxide nanobelts were pure, 

structurally homogeneous, monocrystalline, and lacked defects and dislocations. Liu et 

al. [41] synthesized CdO nanoneedles via the vapor transport (VLS) of Cd vapor along 

with trace amount of oxygen in an argon flow to the Si/SiO2 substrates zone, and 

subsequently heated to 850-900 °C for 30 min using gold as a catalyst. The Cd vapor was 

generated from Cd metal at 350 °C. After investigating their inherent electronic, 

optoelectronic, and chemical sensing properties, the study showed that the nanoneedles 

were monocrystalline of large diameters that increased with time. Wang also synthesized 
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nanobelts of CdO via the solid-vapor process of CdO powder at 1000 °C under argon 

flow [42]. The surface morphology of CdO was characterized by growth sheets of 

different shapes along with the nanobelts. The sheets exhibited sizes of up to several tens 

of micrometers, while the lengths of the nanobelts were less than 100 µm with widths 

ranging from 100 to 500 nm. Kou and Huang [43] synthesized necklace-like CdO 

nanowires on Si substrates using a VLS growth mechanism for Cd powder in a tube 

furnace at 500 °C with argon and oxygen flows. The study showed that the nanowires 

exhibited diameters ranging from few tens of nanometers to 30-50 µm as a result of a 

long duration of reaction (2 h). They also observed an emission peak (2.25 eV) centered 

at 550 nm of photoluminescence spectrum, attributable to the presence of CdO 

nanowires. A similar study by Srivastava et al., [44] demonstrated the growth of a range 

of nano- and micro CdO structures (tubular, cylindrical, horse-shoe, cuboids, and 

nanorods) via the metal-catalyst free-vapor phase deposition (solid-vapor) of Cd granules 

in furnace under atmospheric pressure at high temperature of 1273 K. A contemporary 

work by Lu et al., [45] utilized the simple thermal evaporation under argon and air flow 

to prepare CdO nanotubes (NTs) from Cd powder at 500 °C for duration of 30 min in the 

absence of any catalyst. Their study showed that CdO NTs is characterized by 

polycrystalline structure, with lengths of over a few tens of micrometers and a mean 

diameter of 50 nm. Using a similar method but under different conditions, Fan [46] 

synthesized CdO nanowires and nanotubes on Si substrates at low temperatures with 

argon and oxygen flows in a horizontal tube furnace system at various distances between 

the substrates and the evaporation source. The study also synthesized CdO nanowires at 

520°C close to the Cd source (4 cm), while nanotubes were grown on a substrate far from 
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the Cd source (15 cm) at 400°C. XRD analysis showed that the synthesized nanowires 

and nanotubes exhibit high crystallinity and are characterized by face-centered cubic 

CdO structures. Furthermore, Ghoshal et al. [47] synthesized CdO nano and micro 

crystals under different temperatures of growth. The study obtained direct and indirect 

band gap values of 2.52 eV and 1.78 eV respectively. In a study carried out to synthesize 

CdO nanospheres, Clament et al., [48] derived direct band gap value of 2.52eV from 

diffused reflectance spectra. The synthesized CdO nanospheres showed good 

optoelectronic properties. In the process of synthesizing CdO nanoparticles, Anandhan et 

al. [49] observed that energy band gap decreases with increasing reaction temperature, 

which confirmed the quantum confinement effect of semiconducting CdO nanoparticles. 

In other related studies, Pavithra et al. [50] studied the structural and optical properties of 

nanocrystalline CdO thin films synthesized on glass substrates. Mohamed et al. [51] grew 

CdO nanowires on Au coated Si and quartz substrates using vapor transport method. The 

diameters of the nanowires ranged from 30-90 nm with lengths greater than 30µm, while 

the optical band gap was measured at 2.41 eV. 

 

2.5 CdO Thin Films in Solar Cells Fabrication 

The fabrication and development of economical viable solar cells has garnered 

considerable attention from researchers, particularly CdO because of its intrinsic 

properties. Several studies investigated the inherent properties of fabricated CdO thin 

films based on its conversion efficiency, electrical resistivity and electron mobility. 

Champness et al., [52] fabricated photovoltaic Se-CdO thin film cell via the reactive 

sputtering of CdO on a crystallized Se film. They detected cell conversion efficiency (η) 

of approximately 1.7%, which is higher than values associated with commercial selenium 
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photovoltaic cells. Shih et al., [53] fabricated a semiconductor-insulator-semiconductor 

photovoltaic structure in the form of CdO-SiO2-Si by reactively sputtering a layer of n-

type CdO on a thin SiO2 layer thermally grown on a p-type Si substrate. The cell 

exhibited an estimated air mass (AM) of 1 illumination and conversion efficiency (η) of 

about 7% based on its photovoltaic features. Sravani et al., [54] fabricated n-CdO/p-CdTe 

heterojunction solar cell via the electron beam evaporation of CdTe onto CdO films 

obtained by activated reactive evaporation. Electrical conversion efficiency of about 7.7% 

was recorded for the cell with specific surface area of 1 cm2 under a solar input of 

85mW/cm2. Champness and Chan [55] fabricated Se-CdO photovoltaic cell through the 

sputtering of the CdO layer on Se with an optimized CdO window layer, although in the 

absence of an optimized assembling grid or antireflection coating. The fabricated Se-CdO 

photovoltaic cell exhibited a conversion efficiency η of about 2.5% under solar input of 

100 mW/cm2 of solar irradiance, which is higher compared to the conventional selenium 

cell (0.3%). Similarly, Al-Quraini and Champness [56] fabricated photovoltaic cells 

(CuInSe2/CdO and CuInSe2/CdS/CdO layer structures), where the CdO window layer of 

both devices was deposited by sputtering, and CdS interlayer was deposited by a 

chemical bath method. A conversion efficiency of approximately 6.3% and 6.8% for the 

first and second kind of cells, respectively. In addition, Ismail and Abdulrazaq [57] used 

the rapid thermal oxidation (RTO) technique to deposit CdO thin films of 200 nm 

thickness on p-type monocrystalline Si substrate to produce a solar cell by means of a 

halogen lamp at 350 °C/45s in static air. The electrical and photovoltaic features of 

CdO/Si solar cell showed that CdO/Si had electrical resistivity, electron mobility, and η 

values of 5×10-4 Ωcm, 22 cm2/Vs, and 8.84%, respectively. Similarly, Yahiya [58] 
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fabricated CdO/Si heterojunction solar cell by vacuum evaporation of CdO thin film with 

300 nm thickness onto monocrystalline Si substrate from CdO powder. The photovoltaic 

properties of the solar cell exhibited a conversion efficiency η of 5.5% at AM1 

illumination power density of 93 mW/cm2. Inpasalini et al., [59] deposited and fabricated 

p-NiO/n-CdO heterojunction on glass substrate using the spray pyrolysis technique under 

optimized condition. The analysis of the photovoltaic properties of the solar cell 

exhibited conversion efficiency, η of 1.34% under an illumination of 50 mW/cm2. 

 

2.6 Physical and Chemical Properties of CdO 

 CdO is a compound semiconductor comprising of cadmium and oxygen [13]. 

CdO is currently used extensively as TCOs in various physical applications [60], 

particularly in the production of optoelectronic devices such as n-type window layer in 

thin films for solar cells as a result of its high transparency in the visible region of the 

solar spectrum [52, 20]. CdO is solid brown in color and exhibit certain intrinsic features 

such as high density (8150 kg/m3), high melting point (1500 °C), and molecular weight 

(128.4 gm/mol) [61]. It is characterized by a cubic crystal structure [NaCl (fcc) type; 

lattice constant a = 0.4695 nm] with an alternate sequence of Cd and oxygen atoms 

positioned within a lattice arrangement [62, 63], as shown in Figure 2.1. Furthermore, 

CdO has a high electrical conductivity (low resistivity), which is a resultant effect of 

moderate electron mobility and higher carrier concentration arising from native defects of 

oxygen anionic vacancies and cadmium interstitials [66-68]. CdO also consists of an 

intermediate direct band gap ranging from 2.2 eV to 2.5 eV as thin films, and 2.5 eV as 
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bulk [43, 69]. CdO can also be obtained by directly heating cadmium in air to 

temperature as high as 900 °C [26]. 

 

      Figure 2.1: The crystal structure of CdO [64, 65]. 

 

2.7 Crystalline Structure of Semiconductors 

Solids can be divided into two classes, namely, amorphous and crystalline. In an 

amorphous solid, atoms are not arranged in a long-range order. Thus, amorphous solids 

are also referred to as glassy solids. By contrast, a crystal is a solid formed by atoms [70]. 

Figure 2.2 shows that a lattice is an array of points in space that are arranged in a specific 

manner such that each point has identical surroundings. The smallest unit, which can be 

obtained by constructing planes through points called unit cell, and the lines resulting 

from the intersection of the planes at lattice points are known as lattice constants. As 

shown in Fig. 2.2, a, b, and c represent the lattice parameters. The shape and size of the 

lattice can be determined using the lattice constants values and the angles between the 
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lattice vectors. Thus, seven crystal systems are sufficient to cover all the 14 

crystallographic possible lattices [70]. The crystal systems are divided into cubic, 

tetrahedral, hexagonal (or trigonal), orthorhombic, rhombohedral, monoclinic, and 

triclinic. Several of these systems can have different lattices, namely, simple or primitive 

(P), body centered (BC), and face centered (FC). CdO structured has face centered cubic 

type (FCC) [71]. 

 

             

Figure 2.2: (a) Lattice, and (b) unit cell [71]. 

 

The CdO structure is a face centered cubic type (FCC), thus emphasis will be 

placed on the cubic system. The cubic system is the simplest crystal system where the 

three crystallographic vectors exhibit similar length and perpendicular to each other (a = 

b = c and α = β = γ = 90o). To describe the orientation of lattice planes, a set of three 

integers referred to as the Miller indices are used. Miller indices are the reciprocal 

intercepts of the plane on the unit cell axes. If the crystal plane makes fractional 

intercepts of (1/h), (1/k), and (1/l) with the three crystal axes, respectively, the Miller 
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indices are (hkl) [70]. Several lattice planes and their Miller indices in a unit cell with 

cubic structure are shown in Figure 2.3. The spacing between adjacent planes in a family 

is referred to as the d-spacing. The plane spacing formula of cubic structure is given by:  
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(2.1) 

where a is the lattice constant. The crystalline structure of the materials can be examined 

using X-ray diffraction. X-ray pattern analysis is used to deduce the average crystallite 

size and the strain of the crystalline material. 

 

 

Figure 2.3: (a) Indices of lattice directions, and (b) Miller indices of lattice planes                

in cubic structure [70]. 

 

2.8 Band Theory in the Solid State 

The band structure of a solid crystal is a very important factor with which to 

interpret electrical transport properties in solid-state materials. Every solid crystal 

contains carriers (electrons), which are organized in energy levels separated by energy 
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regions and do not have available wavelike electron orbits. Such a forbidden gap is called 

energy band gap (Eg), which is produced by the scattering of conduction electrons with 

the ion core of the solid crystal. The band structures of solid crystals can also classify 

solid-state materials into metal, semiconductor, and insulator, as shown in Figure 2.4. 

Solid crystals behave as metals if one or more bands are partially empty and partially 

filled regardless of temperature. Solid crystals are semiconductors if one or two bands are 

partially filled (the lower band regions known as valence band VB) or partially empty 

(the upper band regions known as conduction band CB). The forbidden energy regions 

that separate the valence and conduction bands are smaller in a semiconductor than in an 

insulator; thus, no electrons can move across this region in an electric field [72, 73]. 

 

 

 

Figure 2.4: Diagram of the electronic band structure of metal, semiconductor, 

and insulator [72, 73]. 
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2.9 Band Structure in Semiconductors 

Semiconductors are characterized by their distinctive bonding types that include 

covalent bonding and ionic bonding. The energy band structures develop when atoms are 

sporadically set in semiconductor crystals [74]. The valence and conduction electrons 

communicate with the atoms in crystalline semiconductors, which slightly move the 

isolated energy intensity of the electrons to develop several energies with contrasting 

levels corresponding to the overall atomic numbers in the crystal. In order to ensure 

conductivity, electrons should exceed the amount of energy equivalent to the Eg: 

VCg EEE −=                                                                                         (2.2)    

where EC is the lowest part of the conduction band energy level and EV is the upper of the 

valence band energy level [74].  

Semiconductors can be further divided into two groups: direct and indirect energy 

band gaps. The electrons present in semiconductors characterized with direct band gaps, 

can migrate from the valence band to the conduction band when their energy absorption 

is up to or greater than Eg, while the valence electron in the indirect band gap is incapable 

of migrating to the conduction band in the absence of phonon support, as shown in Figure 

2.5 [74, 75]. The valence and conduction bands both comprise energy levels that can be 

packed with electrons or holes. The amount of these permissible states per unit of energy 

is referred to as density of state (DOS), and DOS for the electrons in the conduction band 

is represented as shown in equation 2.3 below: 
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However DOS for the holes in the valence band is given by equation 2.4 shown below: 
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where N(E) is the DOS at energy E, me
*, mh

* are the electron and effective hole masses, 

respectively, and h is Plank’s constant. The probability of electrons absorbed in the 

electronic state in the conduction band is expressed by [71, 75]: 
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where EF  is the Fermi energy, K is Boltzmann’s constant, T is the absolute temperature, 

and f(E) represent the probability of finding the electron at energy E.  

 

 

Figure 2.5: (a) Direct band gap, (b) indirect band gap [76]. 
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The probability of holes occupying the electronic state in the valence band is giving by: 
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Semiconductors are capable of a number of optical absorption, which include 

fundamental absorption, free carrier absorption, and energy level absorption within the 

band gap [74]. Fundamental absorption arises during the illumination of the 

semiconductor by a light with energy that exceeds that of the band gap, and excites the 

electrons in the valence band into the conduction band, thereby causing holes to be 

formed. In addition, other absorption types take place due to the amount of contamination 

in the band gap. In this absorption processes, the electrons transfer to another level of 

impurity, or from a donor level to the conduction band, or from valence to the accepter 

level, and so on. The absorption coefficient (α) represents the attenuation that occurs 

during the release of incident photon energy on the material as a result of the absorption 

processes. The Lambert relation between the absorption coefficient and the incident 

power intensity on thin films with thickness (t) is as follows [77, 78]:  

]exp[)( tII
ot

α−=

                                                                                 (2.7) 

where I(t)  is incident photon energy at thickness (t) inside the material, and Io is incident 

photon energy at the surface of the material. The negative signal refers to the decreases in 

photon energy. The absorption coefficient is a function of the wavelength of incident 

radiation and it is very significant because it provides absorption range to the radiation. 

Absorption is derived from the following relation [77]: 

1=++ TRA
        

                                                                                 (2.8)  
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where A is absorbance, R is reflectance, and T is transmittance. 

When photon energy decreases to less than the energy gap; hence transmittance will be 

given as follows [79]:   

t
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                                                                                    (2.9)    

The relation between absorbance and transmittance is shown below [80]:    
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when T from Eq. (2.11) is substituted in Eq. (2.8), it results in: 
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when R is very small (R < 1)  then Eq. (2.12) becomes as follow [77]:                                  

t

A
×= 303.2α                                                                                   (2.14) 

Transitions occur between the edges of the two bands (VB and CB) in semiconductor, 

which are described by Tauce formula [79, 81]: 

n

g
EhvAhv )( −=α

                                                                  (2.15) 

where A is a constant, hv is the incident photon energy, and n is equal (1, 2/3, 1/2, 3/2) 

depending on the material and the type of the optical transitions (direct or indirect) [82]. 

The direct transition occurs between the top of VB and bottom of CB at the same wave 

vector )0( =∆K . The allowed direct transition refers to that transition which occur 

between top of VB and the bottom of the CB when the change in the wave vector is zero
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)0( =∆K  and n = 1/2. For a number of semiconductor materials where the quantum 

selection system disallow the direct transition between the maximum of the VB and the 

minimum of CB, the transition occur at different positions of VB and CB (since 0=∆K ). 

The transition is referred to as forbidden direct transition and n = 3/2, as shown in Figure 

2.6 [74, 82]. 

 

Figure 2.6: Absorption process in (a) direct band gap semiconductor, and (b) indirect 

band gap semiconductor [74]. 

 

 On the other hand, the indirect transition takes place when the VB maximum and 

the CB minimum occur at different wave vector. Therefore, these transitions are limited 

by the low momentum conservation in crystalline semiconductors but unrestricted in 

amorphous semiconductors [73, 83]. Indirect transition involves the absorption or 

emission of phonons in order to stabilize the crystal momentum, as shown in Figure 2.6. 
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In this case the electron is unable to make a direct (perpendicular) transition from the VB 

to the CB except through a two-step process, because of variations in their crystal 

momentum. Therefore, the electron either absorbs both a photon and a phonon or absorbs 

a photon and emits a phonon simultaneously. The photon supplies the required energy 

while the phonon provides the needed momentum conservation [83]. 

 

2.10 Quantum Size Effects 

 The two basic factors that distinguish the behavior of nanocrystal from the 

corresponding macro crystalline materials depend on the size of individual nanocrystal. 

There is a high dispersity (large surface/volume ratio) associated with the particles, while 

the physical and chemical properties of the semiconductor are sensitive to the surface 

structure. Secondly, the actual size of the particle plays a significant role in determining 

the electronic and physical properties of the material. Reduction in size of the 

semiconductor crystal leads to the determination of Bohr radius, quantum confinement 

and the optoelectronic properties get modified [75].The electron and hole show more 

compaction in nanometer sized particles than in the macro crystalline material, and as a 

result there is a strong Coulomb interaction between electron and hole; they have higher 

kinetic energy than in the macro crystalline material. 

The effect of three-dimensional confinement is that it collapses the continuous 

density of states of the bulk solid into the discrete electronic states of the nanocrystal. The 

finite size of the nanocrystal quantizes the allowed k values. Decreasing nanocrystal 

diameter shifts the first state to larger k values and increases the separation between 

states. Several models have been proposed to explain the dependence of exciton energy 
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