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BIOJISIM TERPEGUN DALAM GEL POLIMERIK UNTUK BIOREGENERASI 

BUTIRAN KARBON TERAKTIF YANG SARAT DENGAN SEBATIAN 

ISOMER KRESOL 

ABSTRAK 

Kaedah penjerapan menggunakan karbon teraktif sebagai bahan penjerap telah 

digunakan secara meluas bagi penyingkiran sebatian fenolik dari air buangan. Oleh 

sebab kapasiti penjerapan bahan penjerap akan berkurangan dengan aplikasi yang 

berpanjangan, penjanaan semula bahan penjerap yang digunakan adalah pilihan yang 

baik untuk mengurangkan sisa dan memulihara sumber. Dalam bioregenerasi, 

penggunaan biojisim terpegun akan mengatasi beberapa masalah yang berkaitan dengan 

penggunaan biojisim terampai dalam proses bioregenerasi termasuklah berlakunya 

pengotoran mikrob pada permukaan bahan penjerap dan kesukaran pengasingan bahan 

penjerap yang dijana semula daripada biojisim. Kajian ini mengkaji kesan faktor operasi 

yang berbeza dan penggunaan polivinil alkohol (PVA) dan poliuretana (PU) sebagai 

matriks pemegun terhadap bioregenerasi butiran karbon teraktif (GAC) sarat kresol 

menggunakan biojisim terpegun. 

 Keputusan menunjukkan bahawa kecekapan bioregenerasi untuk GAC sarat 

kresol dipengaruhi oleh struktur kimia isomer kresol, kepekatan awal kresol, dos GAC, 

masa sentuhan bagi GAC dan ketumpatan biomass kering. Kecekapan bioregenerasi 

untuk GAC yang sarat dengan m-kresol pada 1 g/L didapati adalah 76 ± 1%, 64 ± 1% 

dan 72 ± 1% masing-masing menggunakan biojisim terampai, PVA- dan PU-biojisim 

terpegun. Ini menunjukkan bahawa kekangan resapan bagi gel manik terpegun 
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merendahkan kadar biodegradasi bagi kresol mengakibatkan darjah pempolimeran 

oksidatif yang lebih disebabkan oleh masa sentuhan yang lebih panjang antara 

permukaan GAC dan larutan kresol. Kecekapan bioregenerasi untuk GAC dengan 

menggunakan manik PU-biojisim terpegun adalah lebih tinggi daripada yang 

menggunakan manik PVA-biojisim terpegun disebabkan oleh tahap keliangannya yang 

lebih tinggi. Kelebihan menggunakan PU-biojisim terpegun dilihat dalam pengurangan 

kesan pempolimeran oksidatif disebabkan oleh pemendekkan masa sentuhan antara 

GAC dan larutan kresol yang mengakibatkan peningkatan dalam kecekapan 

bioregenerasi untuk GAC sarat kresol. Kesan kedudukan metil pada gelang aromatik 

terhadap kecekapan bioregenerasi untuk GAC diperhatikan dalam kedua-dua sistem 

biojisim terampai dan terpegun. 

 Dua model kinetik telah dibangunkan untuk menerangkan bioregenerasi untuk 

GAC sarat kresol dengan menggunakan biojisim terampai dan terpegun melalui 

pendekatan penjerapan dan biodegradasi berturutan. Data eksperimen perjalanan masa 

bagi jumlah substrat terjerap pada GAC dan kepekatan baki substrat dalam larutan pukal 

dapat dipadankan dengan baik kepada model yang dibangunkan (     0.800). 

Persamaan kadar diselesaikan dengan menggunakan kaedah berangka untuk kedua-dua 

sistem abiotik dan biotik untuk mendapatkan pemalar kadar penjerapan (    dan    , 

penyahjerapan (   dan    , biodegradasi (   dan penjerapan tak berbalik (     dan    ).  

Didapati bahawa pemalar kadar untuk penyahjerapan adalah lebih rendah berbanding 

pemalar kadar biodegradasi dalam sistem biotic yang menunjukkan bahawa proses 

penyahjerapan adalah langkah penentuan kadar dalam bioregenerasi. Oleh itu, pemalar 

kadar penyahjerapan boleh digunakan untuk mencirikan kadar bioregenerasi. 
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IMMOBILIZED BIOMASS IN POLYMERIC GELS FOR THE 

BIOREGENERATION OF GRANULAR ACTIVATED CARBON LOADED 

WITH ISOMERIC CRESOL COMPOUNDS 

ABSTRACT 

Adsorption method using activated carbon as the adsorbent has been widely used 

for the removal of phenolic compounds from wastewater. As the adsorption capacity of 

the adsorbent will diminish with prolonged application, regeneration of the spent 

adsorbent is a good option to reduce wastes and conserve resources. In bioregeneration, 

the use of immobilized biomass would overcome several problems associated with the 

use of suspended biomass in bioregeneration process including the occurrence of 

microbial fouling on the surface of adsorbent and separation difficulty between the 

regenerated adsorbent and biomass. This study investigates the effects of different 

operational factors and the use of polyvinyl alcohol (PVA) and polyurethane (PU) as 

immobilizing matrices on the bioregeneration of cresol-loaded granular activated carbon 

(GAC) using immobilized biomass.  

The results showed that the bioregeneration efficiencies of cresol-loaded GAC 

were affected by the chemical structure of cresol isomers, initial cresol loading 

concentration, GAC dosage, contact time of GAC and dry biomass density. The 

bioregeneration efficiencies of m-cresol-loaded GAC at 1 g/L at 76 ± 1%, 64 ± 1% and 

72 ± 1% using suspended, PVA- and PU-immobilized biomasses, respectively, were 

found to be lower using immobilized biomass compared to those using suspended 

biomass. This indicated that the diffusion constraint of the immobilized gel beads 
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lowered the biodegradation rate of cresols resulting in greater degree of oxidative 

polymerization due to longer contact period between the GAC surface and cresol 

solution. The bioregeneration efficiencies of GAC using PU-immobilized biomass were 

higher than those using PVA-immobilized biomass due to higher porosity of PU 

immobilized gel beads. The advantage of using PU-immobilized biomass was seen in 

the reduction of the oxidative polymerization effect due to shortening of the contact 

period between GAC and cresol solutions resulting in the enhancement in the 

bioregeneration efficiencies of cresol-loaded GAC. The effect of the position of the 

methyl substituent in the aromatic ring on the bioregeneration efficiencies of GAC was 

observed in both the suspended and immobilized systems. 

 Two kinetic models were developed to describe the bioregeneration of cresol-

loaded GAC using suspended and immobilized biomasses under sequential adsorption 

and biodegradation approach. The experimental data of the time courses of the amount 

of adsorbed substrate on GAC and the residual substrate concentration in the bulk 

solution were mostly well fitted (     0.800) to the developed models. The rate 

equations were solved numerically for both abiotic and biotic systems to obtain the rate 

constants of adsorption (    and    , desorption (   and    , biodegradation (   and 

irreversible adsorption (     and    ). The rate constant of desorption was found to be 

lower than that of biodegradation in biotic system indicating that the desorption process 

was the rate-determining step in bioregeneration. Therefore the desorption rate constant 

could be used to characterize the rate of bioregeneration. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Water pollution by phenolic compounds is a prominent environmental issue over 

decades. The outbreak of water pollution threatens human health and natural ecosystem. 

For this reason, the presence of phenolic compounds in wastewaters has been a subject 

of great concern. Phenolic compounds are the persistent pollutants and recognized as the 

main target compounds in wastewater treatment systems. Phenolic compounds are 

considered as priority pollutants by United States Environment Protection Agency. Due 

to their extensive use, phenolic compounds are widespread pollutants present in the 

environment. Large amounts of phenolic compounds are generated in many industries 

such as petroleum processing plant, oil refineries, coke oven, and pharmaceutical (Lobo 

et al., 2013). Furthermore, phenolic derivatives are widely used as intermediates in the 

synthesis of plastics, colours, pesticides and insecticides (Dąbrowski et al., 2005). 

Wastewater containing phenolic compounds gives rise to a serious discharge problem 

due to their poor biodegradability, high toxicity and long term ecological damage 

(Bayramoglu et al., 2013). In view of this, the removal of phenolic compounds from 

wastewaters is of great concern. Many treatment techniques such as adsorption 

(Dąbrowski et al., 2005), microbial degradation (Basheer et al., 2012), chemical 

oxidation (Comninellis and Pulgarin, 1993; Rubalcaba et al., 2007) and solvent 

extraction (Rao et al., 2009) have been employed for the removal of phenolic 

compounds. 



24 
 

1.2 Phenolic compounds 

 Phenolic compounds are classified as priority pollutants in wastewater. There are 

many classifications of phenolic compounds. Among them, methyl-, chloro- and nitro-

substituted phenols are the most common phenol derivatives compounds. Substituent 

can be categorized into three groups, namely ortho-, meta- and para-substituted phenols. 

1.2.1 Cresols 

Cresols are the methylated derivatives of phenol, which have a methyl group 

substituted onto the aromatic ring of phenol. There are three cresol isomers, namely 

ortho-cresol (o-cresol), meta-cresol (m-cresol) and para-cresol (p-cresol). Substituted 

phenolic compounds are considered to be one of the major pollutants in wastewater 

(Kennedy et al., 2007). Cresols are toxic organic compounds and widely used in the 

manufacture of pesticides, biocides, antioxidants and other chemicals which are 

commonly found in many industrial wastewaters. These compounds have strong odor 

emission, suspected carcinogenicity, are persistent in the environment and have potential 

toxicity toward humans and animals (Basheer et al., 2012; Chu et al., 2013). Therefore, a 

proper treatment is essential for the treatment of cresols before discharging into water 

bodies. Three cresol isomers were selected in this study. The physical and chemical 

properties of cresols are presented in Table 1.1. 

  




