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PENYUKATAN KEPEKATAN LARUTAN BERAIR SUKROSA MELALUI 
MICHELSON INTERFEROMETER 

 
ABSTRAK 

Penyukatan kepekatan bagi larutan berair adalah secara terus bergantung kepada 

indeks biasan (RI) medium berair yang berfungsi sebagai faktor dominan. 

Pemahaman sifat perubahan dalam nilai RI adalah penting untuk mengukur 

kepekatan sampel berair dengan tepat. Oleh sebab tahap ketepatan pengukuran RI 

yang amat tinggi (sehingga 5 tempat perpuluhan) pada masa kini, peralatan yang 

mempunyai sifat kepekaan yang tinggi diperlukan untuk membuat pengukuran yang 

tepat. Objektif utama penyelidikan ini adalah untuk membangunkan satu sistem 

Michelson interferometer (MI) yang berdasarkan konsep interferometri untuk 

menyukat tahap kepekatan sampel berair sukrosa dan juga menentukan hubungan 

antara RI dan tahap kepekatan sampel. Dalam kajian ini, analisis kuantitatif 

dijalankan ke atas 41 sampel sukrosa berair (termasuk air paip yang ditapis) yang 

terdiri daripada tahap kepekatan yang berbeza di antara 0% hingga 50% Brix dengan 

meletakkan sampel berair sukrosa di dalam sel kuarza padu yang membolehkan 

pancaran laser menembusinya dan menghasilkan corak interferens melalui MI. Hasil 

imej corak interferens yang terhasil akan direkod dan diproses dengan menggunakan 

perisian pemprosesan imej. Nilai warna merah, hijau, biru (RGB) yang diperolehi 

melalui perisian digunakan untuk mengira nilai jarak pemisahan antara pinggir gelap, 

nilai ketebalan pinggir cerah, dan juga analisis profil RGB berdasarkan titik-titik 

secara rambang. Analisis yang berlainan dijalankan terhadap golongan sampel 

kepekatan tinggi dan golongan sampel kepekatan rendah boleh didapati di dalam isi 

kandungan. Secara kesuluruhanya daripada pencarian penyelidikan, jarak pemisahan 

pinggir gelap dan ketebalan piggir cerah menunjukkan nilai regresi R-kuasa dua (R2) 

masing-masing sebanyak 88.90% dan 55.54%. Hasil daripada eksperimen 
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menunjukkan keputusan yang baik dan agak sejajar dengan ramalan teori dan 

kesimpulanya adalah nilai RI akan meningkat dengan penambahan kepekatan larutan 

berair dengan berkadar linear. 
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AQUEOUS SUCROSE CONCENTRATION MEASUREMENT BASED ON 
MICHELSON INTERFEROMETER 

 
ABSTRACT 

Measurement of concentration for aqueous solution is fundamentally relied on the 

refractive index (RI) of the aqueous medium as a dominant factor. Understanding the 

nature of variation for RI is crucial for precise measurement of solution 

concentration. Due to the high precision level of RI (up to 5 decimal places) 

nowadays, a high sensitivity versatile instrument such as optical interferometer is 

required to enable accurate measurement. The main objective of this research work is 

to develop a non-destructive Michelson Interferometer (MI) based interferometry 

setup to measure the concentration level of aqueous sucrose samples and as well as 

investigate the correlation between RI and concentration level of the samples. In this 

research, quantitative analysis of 41 aqueous sucrose samples (including 0 %Brix 

clear filtered water) with different concentration level ranging from 0% to 50 %Brix 

are accomplished by allocating the aqueous samples in a cubic quartz cuvette to 

allow the transmission of laser pass through and produce interference fringes as a 

result of going through MI. Image result of the interference patterns generated are 

captured and processed with the help of image processing software. Red, green, blue 

(RGB) gray value obtained is used to calculate multiple minima (dark fringe) 

separations, maxima (bright fringe) thickness values, and as well as RGB profile 

analysis based on random pixel points. Independent analysis of low concentration 

samples segment and high concentration samples segment in respective order are 

available in the content. From the research, the minima separations and maxima 

thickness show fair regression response in R-squared (R2) value of 88.90% and  

55.54% respectively.  The findings from experiment depict good agreement with 
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theoretical prediction and can be concluded with the RI response proportionally to 

aqueous solution concentration in linearly ascending order. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 1  

INTRODUCTION 

Optics is the branch of physics which study about the nature of light from 

scientific aspect. Thus, study of optics involved a very broad topic coverage 

including the interaction of light with matter. Generally under the linear optics, there 

are geometric optics and physical optics. Geometric optics study light travel in 

straight lines and light undergoes refraction and reflection, while physical optics 

study light as properties of wave such as diffraction and interference. Light is an 

electromagnetic waves. Therefore,  studying optics also related to other 

electromagnetic waves such as X-ray, infrared ray and microwaves.  

 

1.1 Optical Interference and Interferometry 

Interference of wave is a phenomenon due to superposition of two mechanical waves. 

The two waves can be added constructively when they are in phase, the amplitude of 

resultant wave is greater than each individual waves, it is called as constructive 

interference; whereas when two waves are out of phase, destructive interference 

happens and the amplitude of resultant wave will be less (Morin, 2010). The resultant 

wave at any point within region where waves superimposed is the vector sum of each 

wave (Iyer, 2006). To observe phenomenon of interference of waves, the waves can 

add constructively if they are in phase, or destructively if they are out of phase, or 

something in between for other phases. To observe phenomenon of interference of 

waves from two sources, the two sources must be monochromatic and coherent 

(Serway & Jewett, 2014).   
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Optical interference can be produced by a number of types of optical 

instruments and these instruments are grouped under the generic name of 

interferometer. Interferometers are basic optical tools used to precisely measure 

wavelength, distance, index of refraction, and temporal coherence of optical beams. 

Most modern interferometers use laser light as it’s more regular and precise compare 

to ordinary light, in addition to produce coherent beams in which all the light waves 

travel in phase. The family of interferometers includes Fabry-Perot interferometer 

(FPI), Fizeau interferometer (FI), Twyman-Green interferometer (TGI), Mach 

Zehnder interferometer (MZI) and not forgetting the long existing, well-known 

Michelson interferometer (MI) used in the famous Michelson-Morley experiment 

(Woodford, 2014). 

 

 

Figure 1.1 Two monochromatic electromagnetic waves from same coherent source 
superimpose with each other.  

 

 

Figure 1.2 Constructive interference occur when two in-phase wave superimpose. 
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Figure 1.3 Destructive interference occur when two totally out of phase wave 
superimpose. 
 

Young first demonstrated his famous Young Double Slit Experiment in 1801 

(Zappe, 2010). Figure 1.4 and Figure 1.5 shows the geometry setup of Young Double 

Slit Experiment. It is basically an interferometer based on double-slit setup, where 

the propagating wavefronts are generated from the aperture slit interfering among 

each other. The monochromatic light source is incidence to S0 and pass through two 

slits S1 and S2 to form the interference pattern on the screen.   

 

 

Figure 1.4 Young’s Double Slit Experiment (Wolfe, Hatsidimitris, & Smith, 2014) 
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Figure 1.5 Electromagnetic wave geometry of Young’s Double Slit Experiment. 

 

Interference of light can also easily be seen by interference of thin film. 

Figure 1.6 shows the light travelling in a thin film causing interference. Light 

entering multiple layers of substance medium will undergo refractions and internal 

reflections, whereby the reflection light waves transmitted into observation spot are 

travelling marginally close enough to overlap each another and cause interference.   

 

 

Figure 1.6 Light path geometry in thin film interference. 
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Figure 1.7 Mechanism of Newton’s Ring formed by air wedge. 

 

Another method for observing interference of light is by placing a plano-

convex lens on top of a flat glass surface and the interference pattern formed is called 

Newton’s Ring as shown in Figure 1.7 (Serway & Jewett, 2014). 

 

1.1.1 Michelson Interferometer 

The Michelson interferometer (MI), which was developed by Albert Michelson in 

1881, with great historical significance, has contribute a lot in modern physics and 

nonetheless is an optical instrument of high precision and versatility. This versatile 

instrument was used to establish experimental evidence for the development for the 

validity of the special theory of relativity, to detect and measure hyperfine structure 

in line spectra, to measure the tidal effect of the moon on the earth and to provide a 

substitute standard for the meter in term of wavelengths of light. In the history 

timeline, this instrument was used by Michelson and Morley to try and measure the 

Doppler shift of light travelling parallel to and perpendicular to the motion of earth 

5 
 



through the ether. The result of the Michelson-Morley experiment that disproved the 

existence of ether became the stepping stone toward Albert Einstein’s theory of 

relativity and eventually leads to the revolution in physics at the beginning of the 

twentieth century (Iyer, 2006). 

The MI causes interference by splitting a beam of light into two so that one 

beam strikes a fixed mirror and the other a movable mirror. Each part of the 

transmission light is made to travel at a different path of length difference so that a 

single interference pattern results appear when the reflected beam are brought back 

together.  

                 Fixed Mirror    M2 

 

 

      Beam splitter 

Coherent light source        M1 

     

Translatable Mirror  

                
Screen 

Figure 1.8 Geometrical path of beam propagation in Michelson Interferometer. 

Figure 1.8 depicts the fundamental design of typical MI with detailed 

travelling geometrical light path showing the operation mechanism. The MI operates 

on the principle of division of amplitude rather than on division of wavefront. Light 

from a light source strikes the beam splitter and is split into two parts. The beam 
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splitter allows 50% of the radiation to be transmitted to the translatable mirror M1. 

The other 50% of the radiation is reflected back to the fixed mirror M2. Both these 

mirrors, M1 and M2, are highly silvered on their front surfaces to avoid multiple 

internal reflections. After returning from M1, 50% of the light is reflected toward the 

frosted glass screen. Likewise, 50% of the light returning from M2 is transmitted to 

the glass screen. The two beams are superposed and one can observe the interference 

fringe pattern on the screen. The character of the fringes is directly related to the 

different optical path lengths traveled by the two beams and therefore is related to 

whatever causes a difference in the optical path lengths (Iyer, 2006). 

 Precise distance measurements can be made with the MI by moving the 

mirror and counting the interference fringes which move by a reference point. The 

distance, d associated with m fringes is: 

 ݀ ൌ ௠ఒ
ଶ

        (1.1)  

 

1.1.1.1 Interference of Coherent Electromagnetic Waves  

Principle of superposition states that when two Electro-Magnetic (EM) waves 

simultaneously propagate through the same region of space, the resultant electric 

field at any point in that region is the vector sum of the electric field of each wave. If 

two beams emanate from a common single source, but travel over two different 

geometrical paths to a destination spot or a detector, the field at the corresponding 

spot will be determined by the optical path difference, which we will denote by:  

 Δ ݔ  ൌ ଶݔ  െ ݔଵ               (1.2) 
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So if two waves of the same frequency, ω, but of different amplitude and different 

phase impinge on one point they are superimposed, or interfere, so that: 

ݕ    ൌ )    (1.3) ܽଵ sinሺ߱ݐ െ ଵሻߙ ൅ ܽଶsin ሺ߱ݐ െ ଶߙ

ଵ ଶ ଵ ଶ

ݕ ൌ ݐsin ሺ߱ ܣ െ ሻߙ

where Δ߶ is the phase difference which is given by: 

Δ߮ ൌ  ܽଵ െ ܽଶ ൌ  
ଶగ
ఒ

where ܽ  and ܽ  are the amplitudes of both the waves and ܽ  and ܽ  are the phase 

angles at any time, t. 

The resulting wave can be described as 

        (1.4) 

with A being the resultant amplitude and ߙ the resultant phase. 

ܣ ൌ  ܽଵ  ଶ ൅ ܽଶ   ଶ ൅ 2ܽଵܽଶ ܿݏ݋Δφ      (1.5) 

 Δ(1.6)      ݔ 

where ߣ is the wavelength of the light source used. 

 

r Inducing Interference 

In order for optical interference to occur, several conditions are required to present 

1.1.1.2 Condition Requirement fo

and fulfill. First of all, the light source must be monochromatic, which means the 

light beam must only possess a single wavelength (λ) or frequency. Under the usual 

condition, the light sources must also remain spatially coherent (constant phase 

difference) with each of them. Amplitudes of two waves having interference are 

required to be approximately equal to each other so that general illumination can be 
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avoided. Light interference will result in two different phases, namely constructive 

interference and destructive interference. 

Constructive interference occurs when  

  Δ߮      (1.7) ൌ ݉, ߨ2݉ ൌ 0, 1 ି
ା , 2ିା , 3ିା

Δ߮ ൌ   ଶగ
ఒ

Based on the different light paths, the phase difference is: 

 Δݔ ൌ   ଶగ
ఒ
 2݀ cos ߠ

2݀ cos ߠ ൌ ݉; ߣ݉ ൌ 0, 1 ି
ା , 2ିା , 3ିା

ߣ 

will be formed for that wavelength. 

On the other hand, the condition for destructive interference is met when the 

௠

      (1.8) 

Comparing both equations: 

     (1.9) 

in which circles are produced for a fixed value of  ݉ and ݀ since ߠ remains constant 

for a perfect beam alignment scenario. In the case of realistic situation where there 

will be always some slight misalignment of superposition beams, straight “fringes 

with equal thickness” will appear instead of the circular fringes. So if both the optical 

path lengths are the same or if these two paths differ by an integral number of 

wavelengths , the condition for constructive interference is met. Thus, bright fringes 

two optical paths differ by an odd integral number of half wavelengths 
ଶ
 ߣ

݉ ൌ 0, 1 ି
ା , 2ିା  , 5ିା  and so on. Thus, dark fringes will be formed and destructive 

interference occurs at: 

Δ߮ ൌ   ሺ2݉ ൅ 1ሻ,ି
ା  ݉ ൌ 0, 1, 2 ,3      (1.10) 

 

where 
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1.1.1.3 Interference of Two or Multiple Incoherent Waves 

Optical interference can also occur in the case of two out-of-phase waves 

superimpose with each other, given under special condition. Consider the case of two 

frequencies with wavenumbers ݇  and ݇  that together follow two different paths 

with a difference of Δݔ. The sum of the waves with different amplitudes at point ݔ 

along the x -axis is given by: 

ଵ ଶ

 ்ܧ ൌ ൫݁௜௫௞భ ൅ ݁௜ሺ௫ା୼௫ሻ௞భ൯ܧଵ ൅ ሺ݁௜௫௞మ ൅ ݁௜ሺ௫ା୼௫ሻ௞మሻܧଶ

  ாమ
ாభ

  (1.11) 

If ܽ ൌ  and define ݇ߜ ൌ   ሺ௞భି௞మሻ
ଶ

, after doing a lot of algebra, the intensity ሺܧ  

can be write as: 

்
ሻ ்ܧڄ   

2ሺ݈ ൅ ܽ ൅ ܽଶ ൅ ܽ cos ݔ∆݇ߜ 2 ൅ ሺ1 ൅ ܽሻሺcos ݇ଵ∆ݔ ൅ ܽ cos ݇ଶ∆ݔሻሻ

 

1.2 Refraction and Refractometry 

Refraction is a surface phenomenon involving the bending of a wave such as light 

due to the change in its transmission medium. It involved changes in speed of 

travelling waves from one medium to another due to difference in refractive index 

(RI) of both medium. When the ray of light is refracted at the interface of two 

different medium, the transmitted ray remains within the plane of incidence. The 

refracted ray is bent towards the normal of the plane when the second medium is 

denser. Sine of refraction is directly proportional to sine of incidence (Pedrotti, 

Pedrotti, & Pedrotti, 1993). The phenomenon of refraction is explained by Snell’s 

Law. Figure 1.9 shows some of the optical phenomena caused by refraction.  

(1.12) 
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Figure 1.9 Bending of light when entering prism depicting refraction. 

 

1.2.1 Refractive Index  

In the world of optics, RI or index of refraction defined as the relative ratio of speed 

of light, c travelling in a vacuum space medium to the speed of light travelling in a 

possibly higher density specified medium (Hecht, 2002). RI usually applies on 

material of the medium to measure the speed of light with given wavelength 

travelling inside. Refractive index, n is defined as: 

݊ ൌ ௖
௩
        (1.13) 

where n is the absolute RI of the medium, c is the speed of light, and v is the speed 

light travelling in the specific medium. The term of absolute RI is used for referring 

RI of the material in relative to speed of light travelling in true vacuum space, as 

opposed to relative RI provided  for a boundary of two non-vacuum medium 

(ChemBuddy, 2011). As the value of RI increasing, the slower the light wave 

propagates inside the corresponding medium.  

  Generally, RI for most of the solids and aqueous solutions depend on the 

density of their composition material. The higher the density is for the material, the 

higher RI they possess. RI is also a temperature dependent variable. In most of the 
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cases for gas and aqueous substances, RI shares an inverse proportional relation with 

temperature parameter.  

 

1.2.2 Snell’s Law 

Snell's law, which refers to the law of refraction is optical context, is used to describe 

the relationship between the angles of refraction and incident of waves passing 

through two different medium with different RI.  Electromagnetic wave, such as light, 

abides Snell’s Law when it travels from one lesser density medium to another higher 

density medium (Schechter, 1977).  

Historical development of Snell’s Law started from Claudius Ptolemaeus, or 

more commonly known as Ptolemy, with his discovery of refraction angles relativity 

for models involving small angle values (Harland, 2007). Then, the law of refraction 

was pioneered by Ibn Sahl, who was the first to publish an accurate description of it 

in his work “On Burning Mirrors and Lenses” (Rashed, 1990) by making use the 

derivation of formula to adjust lens’ shape for focusing light with no geometric 

aberration. In 1678, Huygens–Fresnel principle is used to explain Snell’s Law by 

Christiaan Huygens. 

The equation of Snell’s Law is known as: 

ൌ  ௩భ
௩మ
ൌ   ௡భ

௡మ

ୱ୧୬ఏభ
௦௜௡ఏమ

        (1.14) 

where θ is the angle measured from the normal, v is the velocity of light in the 

respective medium (in ms-1) and n is the RI of the respective medium. Simplifying 

the equation terms will yield: 

݊ଵ sin ଵߠ ൌ ݊ଶ sin  ଶ       (1.15)ߠ
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which is the more widely known of expression form for Snell’s Law.  

When light travels from one initial medium to another transmitted medium, 

the velocity of light tends to change so that the ratio of sine of incidence ray and 

refraction rays is kept constant as shown in Figure 1.10 (Schechter, 1977). This 

explains why RI of the transmitted medium and the refracted angle of light are 

inversely proportional, meaning that as the RI of transmitted medium increase, the 

output refracted angle decrease with respective to normal plane due to the constant 

ratio had to be maintained.  

 

Figure 1.10 Propagation of light path obeys Snell’s Law. 

 

However, when incidence rays in a medium of higher RI pass through to a 

medium of lower RI exceeds critical angle, θc (൒ ), total internal reflection (TIR) 

occurs. When TIR phenomenon occurs, incidence rays will get deflect and bounce 

off from the boundary surface between two mediums instead of transmit through into 

another medium. 

90°
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Figure 1.11 Total internal reflection occurred when incident light travel from a 
medium of lower RI (n1) to another medium with higher RI (n2) with incident angle 
equal or larger than critical angle θc. 

 
As shown in Figure 1.11(a), transmitted light reflect and travel perpendicular 

to normal line when incident angle equal to critical angle θc..While for 1.11(b), 

incident light undergoes TIR at the boundary of two medium when incident angle is 

larger than to critical angle θc. 

 

1.3 Aqueous Sucrose Solution  

Aqueous sucrose solution is chosen as a RI samples in this research work due to its 

transparency properties which allow light beam to go through, and customizable RI 

based on different level of liquid concentration. Besides that, the easy availability 

and high solubility characteristic as a material also makes it a good choice of sample. 
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1.3.1 Physical Properties 

Sucrose is a white, odorless, crystalline powder that comes with the sweet taste. It is 

commonly known as saccharose or generally called as table sugar or cane sugar. The 

official molecular formula of sucrose is C12H22O11.  It is a disaccharide composed 

from monosaccharides which are glucose and fructose. The IUPAC name is 

(2R,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-bis(hydroxymethyl)oxolan-

2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol. Figure 1.12 shows the molecular 

structure of sucrose. From Figure 1.12, it shows that sucrose molecules do not 

contain a free anomeric carbon atom. The physical properties of sucrose are shown in 

Table 1.1. 

 

Figure 1.12 Molecular structure of sucrose. 

When sucrose solids dissolves in water, molecular solids dissociated and the 

weak glycosidic bond are broken, causing the sucrose molecule merged into water 

solution (Bodner, 2014). The equilibria for the process is: 

CଵଶHଶଶOଵଵ ሺsሻ
HଶO
՜  CଵଶHଶଶOଵଵ

Solubility of sucrose solids improve proportionally with the increase in 

temperature. This is proven when the solubility of sucrose solids in water is 

 (aq)     (1.16) 
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approx

Physical properties of Sucrose  Parameter 

imately 2.04 g/mL at 20°C (room temperature), increase exponentially to 4.87 

g/mL at temperature of 100°C (StasoSphere, 2014). 

Table 1.1 Physical properties of sucrose solution. 

Molar mass  342.30 g/mol 

Density (solid form) 1.587 g/cm3 

mposition point  caramel, decompose into 

 glucose and fructose) 

Melting/Deco 186 °C (to form

1 molecule of

Solubility in water 2000 g/L (25 °C) 

     

1.3.2 Refractive Index and Concentration 

As a substance, aqueous sucrose solution has specific RI depending on the sugar 

 Due to rapid development in RI study composition concentration and temperature.

with high correlation accuracy between each research effort, official reading scale for 

RI measurement of aqueous sucrose has reached to an advancement region of five 

decimal places (Charles, 1965). RI values of sucrose solutions are in direct 

proportion relation with its concentration in term of dissolved solids in soluble 

reagent. As shown in Figure 1.13, RI of sucrose increase from approximately 1.3344 

sat 1 %Brix to 1.4906 at 80 %Brix, given the constant temperature condition at 20°C.   
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Figure 1.13 Graph depicts relationship between RI and concentration level (%Brix or 
w/w) of aqueous sucrose solution at 20°C (Hansen, 2003). 

 

 Temperature factor plays a major role in affecting absolute RI of aqueous 

sucrose solution due to expansion of volume in water when the temperature 

increased. Figure 1.14 shows the relation between RI of water and temperature in 

degree celcius. Under normal circumstances and conditions, RI of water decrease 

when temperature of water increase. 

 
Figure 1.14 Temperature dependence of RI (Subedi et al., 2006). 
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1.4 Problem Statement 

RI and concentration of an aqueous solution, especially water sucrose is not 

something uncommon to us in everyday life, however, the determination of their 

relationship and accurate measurement of both the properties are not easy to be 

carried out under normal circumstances. They involve sophisticated process and 

instruments that comes with high cost and low availability, which cause difficulty 

even for average research practitioner to get the hands on. Precise measurement of 

water sucrose concentration is essential to prevent overtaking of sugar level in our 

human body, which is detrimental to our health as they can cause diabetes and other 

associated chronic diseases. 

 

1.5 Scope of Research 

This research work emphasizes on the study of interferometry fringes produced in 

the function of various water sucrose solutions concentrations to determine the 

absolute RI of it. RI of the water sucrose solutions are determined by the analysis of 

interference fringes characteristic using image processing software and the accuracy 

of the measurement is justified by mathematical method of linear regression equation. 

Verification of measurement system reproducibility is conducted at the final phase to 

improve the reliability of it. 

 

1.6 Research Objectives 

This research study aims to achieve the following objectives: 
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1. To develop a simple, non-destructive, and user friendly interferometric based 

device/system for measurement of RI and aqueous solution concentration using 

Michelson Interferometer as fundamental design basis.  

2. To determine the correlation and relationship between water sucrose solution 

concentration and RI in two-way vice versa approach. 

3. To investigate and validate the interferometry method of analysis involving 

measurement of dark fringes separation and bright fringes thickness 

 

1.7 Novelty of This Study 

Studies on the interference fringes properties by the water sucrose solutions will lead 

a discovery of possible new method to analyse and determine the RI as well as 

concentration degree (%Brix), which will enhance the accuracy and efficiency of the 

measurement process. Foundation knowledge of MI system and interference fringes 

quality acquired through this study may serve as a “step-stone” toward development 

of interferometer-based holography system.   

 

1.8 Thesis Outline  

This thesis consists of five chapters. Chapter 1 introduces the theoretical background 

involved mainly on optical phenomena and also an overview of the research work 

conducted. It also includes the problem statements, research objectives, scope of 

research and the novelty of this work. Chapter 2 presents the literature review which 

consists of the past and recent works in relative to RI measurement of various 

subjects in the form of solids, liquids, and gases. Various measurement and analysis 

approaches are discussed as well. Methods, instruments and work procedures of this 
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research work are discussed in chapter 3. Chapter 4 presents the results and in-depth 

data analysis of this study, along with the discussion and validation of the results 

obtained. Chapter 5 sums up all the progress and output of this study, with additional 

recommendations for future developments.   
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CHAPTER 2 

LITERATURE REVIEW AND THEORY 

In this chapter, information and in-depth review of relevant research articles 

are mentioned. Discussion of various available interferometers and interferometry 

techniques to measure absolute RI, group RI, temperature, liquid flow rate and 

humidity are included. In addition, common latest models of fibre-optic 

interferometry sensors using in-fibre interferometer build are presented as well. 

 

2.1 Overview of Refractive Index and Concentration Measurement   

In optics, the RI or index of refraction is a dimensionless number that describes the 

propagation of electromagnetic radiation through a medium. The RI is a fundamental 

physical property of substances, which is dependent on chemical composition, 

electromagnetic radiation wavelength, humidity and ambient temperature. Precise 

measurement of RI can be used to derive the aforementioned physical parameters 

and monitor chemical modifications, which is particularly useful in analytic 

chemistry and biochemistry studies. Researchers are able to determine solute 

concentration in aqueous solutions or control the adulteration of liquids. Knowledge 

of the RI of aqueous solutions of salts and biological agents is of crucial importance 

in applications of evanescent wave techniques in biochemistry.  

One of the most common techniques of RI and aqueous solution 

concentration measurement is using liquid prism. The involved method shows the 

measurement of deviated angle and path after incident laser light passed through the 

prism, where the incident light will get refracted to a degree depending on the RI of 

the testing sample (Sateesh, 2013; Yunus & Rahman, 1988). 
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Chemical modifications may able to be detected by measurements of RI (Fan, 

1998). The RI of sucrose, sodium chloride, glucose and caster sugar solutions for a 

range of density varying from distilled water to a saturated condition were measured. 

Through the refraction measurement, the concentrations of the medium can be 

determined (Yunus & Rahman, 1988). In the process of conducting the studies, 

possible sources of error are (i) temperature fluctuation during measurements on the 

samples, (ii) error in making up the solutions, and (iii) error in measurements of X 

and L (Ananth & Kleinbaum, 1997).  

 In some of the developed measuring device, the laser beam used as the light 

source is optically connected to a linear image sensor through a thin-walled 

cylindrical cuvette containing the liquid. Light beam undergoes vector displacement 

from their initial geometrical path, and captured by photodiode to measure the rate of 

displacement in order to determine the RI (Nemoto, 1992). However, such device 

suffers a rather low resolution and sensitivity of the optical measuring element, 

whose improvement requires enlargement of the dimensions of the device. Compared 

with conventional cuvette-type devices for measuring the RI of the liquids, the 

developed optical systems has proven to be more suitable and promising for the 

design of compact, accurate and stable devices for the control and analysis of both 

immobile and flowing liquids (Vilitis, Shipkovs, & Merkulov, 2009). Further 

development of RI measurement system based on beam displacement by angle 

concept has been done by Zhang et al., (2014), Shurulinkov et al., (1999), and 

Shelton, (2011) featuring an addition rotational and translational stage holding 

cuvette full with measuring samples to enable more manipulating variable control 

over RI measurement by changing the incident angle of beam light, opting for 

different angle displacement degree depending on the samples. 
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2.2 Interferometer Systems for Parameters Measurement 

An interferometer is an optical device which utilizes the effect of interference to 

observe measurements. It typically starts with an input beam, splits it into two 

separate beams with a beam splitter, exposes some of these beams to external 

influences i.e. length changes or RI changes in a transparent medium, and 

recombines the beams on another beam splitter. The spatial shape power of the 

resulting beam is then used for parameter measurement and calculations. The ability 

of interferometers to detect small differences of optical path lengths in substances 

make them as some of the great devices to measure RI differences (Chen, Yang, & 

Chang, 2007).  

Updated version of an in-depth review work by Bommareddi regarding 

interferometer variants for measurement of changes in RI, temperature, concentration 

of materials for application in crystal growth rate, roughness, thermodynamic 

entropy exchange of materials in solid form, and etc. has been providing 

comprehensive knowledge of interferometry application, connecting other branches 

field of Physics (Bommareddi, 2014). The following section discusses the popular 

configurations of interferometers.   

 

2.2.1 Fabry-Pérot Interferometer 

A basic schematic of the Fabry-Pérot Interferometer (FPI) is illustrated in Figure 2.2, 

its structure consisting of two parallel mirrors, allowing for multiple round trips of 

light. Coupled with highly reflective mirrors, the FPI configuration can have very 

sharp resonances, i.e. exhibit high transmission only for optical frequencies that 
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match certain values. Based on precise measurements of the resonant frequencies, 

distances can be determined at higher resolutions than the original wavelength. 

 

Figure 2.1 Fabry-Pérot Interferometer 

FPI RI sensors have two main measurement types: one based on the 

wavelength shift of the sensor; the other based on the Fresnel reflection at the fibre’s 

cleared end. Recent studies utilize both to simultaneously measure RI and 

temperature. Wang and Wang, (2012) spliced together a single-mode fibre and a 

photonic crystal fibre while using an in fibre ellipsoidal air-microcavity as the sensor 

head. The reflection intensities between the interfaces of between air-fibre, fibre-

fibre, and solution fibre are used to determine the RI; while the amount of spectrum 

wavelength shifts due to thermo-optic properties of the fibre determine the 

temperature. Zhang et al., (2014) demonstrated an end-of-fibre polydimethylsiloxane 

(PDMS) cap based FPI operating on the same principle. The PDMS cap provides 

advantages of hydrophobicity, good transparency, non-toxicity, and ease of synthesis; 

while allowing detection probe scans for biochemical application. 

 Another common FPI based interferometry sensor is through the dual-

wavelength interference method, the thickness and the RI of transparent plate can be 

measured. The transmitted intensity versus angle of incidence is analyzed in this 

study through the fringes caused by the Fabry-Perot type interference. By using two 
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