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PEMODELAN MATEMATIK PENYEBARAN 

JANGKITAN HANTAVIRUS   

 

ABSTRAK 

 

Hantavirus adalah ejen jangkitan penyakit yang boleh menyebabkan kematian 

di kalangan manusia. Hantavirus berperumahkan tikus tanpa memberi kesan kepada 

perumah itu sendiri. Banyak usaha telah dilakukan oleh para penyelidik untuk 

membangun dan menganalisa model matematik jangkitan hantavirus. Suatu model 

matematik mudah yang menjelaskan pembiakan jangkitan hantavirus ke atas tikus 

telah dicadang dan dibangunkan oleh Abramson dan Kenkre (2002) yang mana 

model tersebut mengambilkira ciri ruang dan masa bagi jangkitan ini. Model 

matematik Abramson dan Kenkre (2002) boleh  dimurnikan dan dibangunkan 

selanjutnya dengan mengambil kira pelbagai faktor. Ini kemudiannya akan 

membolehkan kita untuk menganalisis senario yang lebih realistik dan membantu 

untuk lebih memahami jangkitan hantavirus. Dalam tesis ini, kami melanjutkan 

model Abramson dan Kenkre (2002) untuk mendapatkan model baru bagi 

menerangkan pelbagai kesan. Kami membangunkan, menganalisis dan menyiasat 

model baru matematik berangka (melibatkan sistem persamaan pembezaan biasa 

(ODE) dan persamaan pembezaan separa (PDE) untuk mendalami kesan daripada 

penuaian populasi, biodiversiti, penghantaran dinamik dan tindak balas penyebaran. 

Penulis turut menyiasat kesan peringkat tinggi tidak linear ke atas jangkitan “refugia” 

bagi takungan penyakit berjangkit. Keputusan yang diperolehi oleh model Abramson 

dan Kenkre bagi ruang lanjutan menunjukkan bagaimana faktor persekitaran boleh 

membawa kepada kepupusan jangkitan di kawasan setempat dan kegigihan dalam 



 xxii 

kawasan setempat yang lain, di bawah syarat persekitaran yang bersesuaian, 

jangkitan akan berkembang. Kami turut meluaskan Abramson dan Kenkre model 

dengan memasukkan proses penuaian dan mengkaji kesan strategi penuaian yang 

berbeza ke atas pembiakan jangkitan hantavirus ke atas tikus. Kami turut 

mengubahsuai model biodiversiti Peixoto and Abramson (2006) untuk memasukkan 

kesan “alien” atau pemangsa dan mengkaji ramalan model. Apabila populasi tikus 

dan “alien” atau pemangsa dalam persaingan, populasi “alien” atau pemangsa 

memberi kesan pengurangan kekerapan jangkitan tikus. Penuaian populasi dan 

“alien”/pemangsa boleh digunakan untuk mengawal dan mengurangkan bilangan 

spesis yang bersaing untuk menstabilkan populasi pada keseimbangan yang 

berterusan. Hantavirus dihantar kepada manusia melalui gigitan dan calaran tikus 

yang dijangkiti. Berdasarkan kajian Li et al. (2009), kami membangunkan model 

baru matematik untuk penghantaran dinamik hantavirus dalam manusia sebagai 

perumah dan tikus sebagai vektor. Kami mendapatkan nombor asas pembiakan, 0R  

dan menunjukkan bahawa peningkatan kekerapan gigitan dan cakaran apabila 

populasi tikus yang dijangkiti yang terlalu tinggi akan menyebabkan risiko 

peningkatan  penyebaran jangkitan hantavirus kepada populasi manusia. Kami turut 

menggunakan teknik eksperimen berangka untuk mengkaji kesan mekanisme 

resapan, terutamanya pemalar resapan, D, ke atas fenomena kepupusan dan 

kegigihan tikus dan "alien" (sebagai pemangsa) untuk penyebaran jangkitan 

hantavirus dalam ruang satu dimensi. Dengan menganalisis ciri-ciri persamaan yang 

sesuai, kestabilan tempatan bagi keseimbangan dikaji yang melibatkan sistem ODE 

dan PDE. Dengan teorem kestabilan Liapunov, kami memperolehi syarat untuk 

asimptot kestabilan global kawasan "interior", "trivial", bebas penyakit dan 

keseimbangan yang endemik bagi sistem ODE. Penyelesaian model-model 
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matematik telah memberikan lebih kefahaman tentang  faktor yang mempengaruhi 

jangkitan hantavirus dan faktor-faktor tersebut diterangkan dengan lebih terperinci 

dalam tesis ini. Model-model yang telah dibangunkan, dianalisis dan disiasat secara 

berangka dalam tesis ini yang boleh menjadi asas untuk penyelidikan selanjutnya. 
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MATHEMATICAL MODELING OF THE SPREAD  

OF HANTAVIRUS INFECTION  

 

 

ABSTRACT 

 

 Hantaviruses are infectious agents that can cause diseases resulting in deaths 

of humans. Hantavirus are hosted by rodents without affecting the hosts themselves. 

Many efforts have been carried out by researchers to develop and analyze 

mathematical models of hantavirus infection. A simple mathematical model 

describing the spread of the hantavirus infection in rodents has been proposed and 

developed by Abramson and Kenkre (2002) wherein the model takes into account the 

temporal and spatial characteristics of this infection. The mathematical model of 

Abramson and Kenkre (2002) can be refined and developed further to take into 

account various other factors. This would then enable us to analyse more realistic 

scenarios and assist in the greater understanding of hantavirus infection. In this thesis 

we extend the model of Abramson and Kenkre (2002) so as to obtain new models 

describing various effects. We develop, analyse and investigate numerically new 

mathematical models (involving systems of ordinary differential equation (ODE) and 

partial differential equation (PDE)) to factor in the effects of population harvesting, 

biodiversity, transmission dynamic and reaction-diffusion. We also investigate the 

effects of high-order nonlinearities on the shapes of infection refugia of the reservoir 

of an infectious disease. The results obtained by Abramson and Kenkre spatially 

extended model show how environmental factors could lead to the extinction of the 

infection in localized areas and its persistence in other localized areas from which, 

under favorable environmental conditions it can spread again. We extend Abramson 



 xxv 

and Kenkre model to include the process of harvesting and study the impact of 

different harvesting strategies in the spread of the hantavirus infection in rodents. We 

also modify the Peixoto and Abramson (2006) biodiversity model to include the 

effect of aliens or predators and study the predictions of the modified model. When 

rodent and alien or predator populations are in competition, the alien or predator 

populations have the effect of reducing the prevalence of infection. Population 

harvesting and aliens/predators may be used for control and reduce the number of 

competing species to stabilize the populations at a persistent equilibrium. Hantavirus 

is transmitted to humans through rodent bites and scratches of infected rodents. 

Based on Li et al. (2009), we develop a new mathematical model for the transmission 

dynamics of hantavirus in the human as host and the rodent as vector. We obtain the 

basic reproductive number, 0R  and show that an increasing frequency of bites and 

scratches when the population of infected rodent is too high will cause increasing 

risk of spread of the infection to human population. We also employed the numerical 

experiments technique in order to study the effect of diffusion mechanism, 

particularly the diffusion constant D, on the extinction and persistence phenomena of 

rodent and alien (as predator) for the spread of the hantavirus infection in one-space 

dimension. By analysing the corresponding characteristic equations, the local 

stability of the equilibriums are investigated  involving systems of ODE and PDE. 

By the Liapunov stability theorem, we obtain the condition for the global 

asymptotical stability of the interior, trivial, disease-free and the endemic 

equilibriums for the systems of ODE. The solution of the mathematical models has 

enabled greater understanding of the various factors that influence hantavirus 

infection and they are described in greater detail in this thesis. The models that have 
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been developed, analysed and investigated numerically in this thesis can be the basis 

for further research. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 INTRODUCTION  

 

Hantaviruses are carried by rodents and can be transmitted via aerosolized 

excreta to  humans beings, causing hemorrhagic fever with renal syndrome (HFRS) 

or hantavirus pulmonary syndrome (HPS). Over 300 viruses belong to the hantavirus 

class of viruses family but only a few species are harmful to humans. Hantaviruses 

are carried by different rodent species; principally each virus genotype has a specific 

rodent host. Hantavirus infection in a rodent host usually is asymptomatic and 

persistent (Kaukinen, 2004). Asymptomatic hantavirus infection is defined as 

laboratory evidence of acute hantavirus infection (presence of hantavirus-specific 

immunoglobulin M (IgM) antibodies) in persons with no documented concurrent 

illness (Toro et al., 1998).  

 

Mathematical modeling of the spread of epidemics is important and offers 

useful insights and possibly predictive capabilities. The hantavirus infection is 

carried by rodents that move from location to location, and is transmitted to other 

rodents through what are probably aggressive encounters (fights). The rodents do not 

die nor are otherwise impaired from the contraction of the virus. There is no “vertical 

transmission” of the disease, i.e., there are no rodents born infected. Humans infected 
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by the rodents virus have no feedback effects on the rodents in the infection process 

(Kenkre et al., 2007).  

 

Abramson and Kenkre (2002) stated that the Sin Nombre virus (a type of 

hantavirus) was the infectious agent that caused an outbreak of hantavirus pulmonary 

syndrome in the North American Southwest in 1993. Each hantavirus is hosted by a 

single rodent species which become infected. The rodent does not lose its infection 

and infects human that come into contact with it or its excreta. A mathematical 

model was introduced by Abramson and Kenkre (2002) which incorporates decay by 

death of the rodent population, the increase by birth the effect of the environment to 

stabilize the population and rodent movement by diffusion. Two characteristics of 

hantavirus infection have been observed in the field can be replicated from the 

simulation results of the mathematical model developed by Abramson and Kenkre 

(2002). One is that the infection can completely disappear from the rodent population 

if environmental conditions are inadequate and only to reappear when environmental 

conditions change. There is also a spatial characteristic in that there are indications of 

focality of the infection. These “refugia” of the rodent population can expand or 

contract, carrying the infection to other places (Abramson and Kenkre, 2002). There 

are certain aspects of the mathematical model of Abramson and Kenkre (2002), in 

particular relating to the refugia, which can be investigated further. 

 

Population harvesting is defined as the removal of a constant number of 

individual from a population during each time period (Miner and Wicklin, 1996). 

Such a policy has been used to stabilise population in the environment with limited 

resources or environmental parameter. Hantavirus can cause diseases which have 
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been proven to be fatal in humans. It would seem somewhat natural to investigate the 

effect of population harvesting on the spread of hantavirus infection.   

 

Biodiversity or biological diversity can be considered of three levels: genetic 

diversity, species diversity and ecosystem diversity. Solomon et al. (2005) states that 

biodiversity is decreasing worldwide. In real-life, rodents not only share resources 

among themselves, but they also share with other species (so called “alien” species). 

The competition between rodents and “alien” species should be taken into account. 

Some research that have been conducted indicate that biodiversity play an important 

role to control the spread of hantavirus (Mills, 2006; Peixoto and Abramson, 2006). 

In this thesis, we will investigate the effect of biodiversity on the spread of 

hantavirus infection and propose a suitable mathematical model based on the Peixoto 

and Abramson (2006) model.  

 

The transmission of hantavirus infection is clearly important. But not much 

effort had been done by researchers to study the transmission of hantavirus infection. 

The transmission of hantavirus to humans occur mainly through rodent bites and 

scratches of infected rodent. Therefore, we propose a mathematical model for the 

transmission of infection of hantavirus with the human as host and the rodent as 

vector. In addition, we will investigate the effect of human population on the spread 

of hantavirus infection. 

 

The problem of spatial effects is an important problem in ecology which can 

lead the emergence of several types of spatial phenomena. Reaction-diffusion 

systems can be utilized to elucidate such phenomena for the effects of habitat 
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geometry and heterogeneity of environment on the extinction, persistence and 

coexistence of animal species. Many efforts had been done by researchers to study 

this phenomenon. Related studies on this phenomenon can be found in Mohd and 

Abu Hasan (2012), Cantrell and Cosner (2003), Seno (1988) and Van Kirk and 

Lewis (1997). According to Tatum (2010), reaction-diffusion model is a system of 

mathematical equations that describe how the concentrations of one or more 

substances are affected by reaction and diffusion processes. We will also focus our 

study on the effect of reaction-diffusion on a biodiversity of hantavirus infection. In 

particular, we will consider how the spatial effect of diffusion can influence rodents 

and alien (as predator) species in a finite habitat. 

 

There are clearly several aspects of hantavirus infection which deserve 

further investigation. A detailed discussion of the issues will be carried out in the 

relevant chapters which follow. 

 

1.2 OBJECTIVE 

 

As mentioned, Abramson and Kenkre (2002) introduced a mathematical 

model for hantavirus infection and Peixoto and Abramson (2006) were the first to 

discuss the effects of biodiversity.  

The objectives of this thesis is to 

  analyse  model of the spread of  hantavirus infection which models   the 

 effect of population hantavirus infection. Numerical experiments 

 will be conducted on the basic model of Abramson and Kenkre (2002) 

 to bring out the salient points of the basic model and to verify the 
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 theoretical conclusions of Abramson and Kenkre (2002) and to 

 provide the backdrop for this thesis.  

 highlight virus relation to refugia to the model of Abramson and Kenkre 

(2002) and also analyse the spatial extension model of hantavirus 

infection. Numerical experiments will be conducted on the spatial 

extension of the Abramson and Kenkre (2002) model to bring out the 

salient points of the model and to verify the theoretical conclusion.  

 develop and analyse the new mathematical model which includes the 

effect of population harvesting and study the predictions of the model. 

Numerical experiments will be conducted on a new mathematical model 

which extends the work of Abramson and Kenkre’s (2002) model.   

 develop and analyse a model which assumes the aliens in the model not 

only compete with rodents but are predators of rodents. Numerical 

experiments will be conducted on the biodiversity model of Peixoto and 

Abramson (2006) to highlight certain features of the model.  

 develop and analyse a mathematical model for the transmission 

dynamic of hantavirus infection. Numerical experiments will be 

conducted on the transmission dynamic model. 

 develop and analyse a mathematical model for the reaction-diffusion on 

a biodiversity of hantavirus infection. Numerical experiments will be 

conducted on the reaction-diffusion model to illustrate the analytical 

results observed.  
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1.3 METHODOLOGY 

 

This thesis develops mathematical models based on systems of differential 

equation. These mathematical models build on the model for hantavirus infection 

developed by Abramson and Kenkre (2002). Then, the models are analysed using 

standard qualitative approaches. The systems of differential equations are solved 

using numerical methods and numerical experiments are conducted to study the 

behaviour of the mathematical models. 

 

 In the next section, we will discuss the selected numerical simulation 

technique, namely Runge-Kutta method and Forward Time Central Space (FTCS) 

Scheme. The details of each method are given as follows: 

 

1.3.1 RUNGE-KUTTA METHOD 

 

 The Matlab function ode45 was used in all of our numerical experiments. 

ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair 

and it  is a one-step solver. ode45 is faster and more accurate but it uses large step 

sizes that can produce a solution plot (Palm, 1999). Computer simulations will be 

used for various parameter values. The Runge-Kutta method is discussed as 

exhibited below. 

 

The Runge-Kutta method is an iterative methods for the solutions of ODEs. 

The Runge-Kutta-Fehlberg (RKF45) developed by Fehlberg (1969), based on the 

class of Runge-Kutta methods is a way to resolve the mathematical modeling 
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problem.  It has a procedure to determine if the proper step h is being used. At each 

step, two different approximations for the solution are made and compared. If the 

two answers are in close agreement, the approximation is accepted. If the two 

answers do not agree to a specified accuracy, the step size is reduced. If the  answers 

agree to more significant digits than required, the step size is increased. The Runge-

Kutta-Fehlberg algorithm uses both a fifth and a fourth-order Runge-Kutta methods. 

The error of the Runge-Kutta-Fehlberg algorithm is estimated by subtracting these 

two values and can be used for adaptive step sizing. The updated formula for the 

fifth-fourth order Runge-Kutta-Fehlberg algorithm is shown below (Mathews and 

Fink, 2004).    
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where y is a fourth-order Runge-Kutta and z is a fifth-order Runge-Kutta. An 

estimate of the error can be obtained by subtracting the two values obtained. If the 

error  exceeds  a  specified  threshold, the  results  can be recalculated using a smaller 
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step size. The approach to estimating the new step size is shown below. 
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where ET is the error tolerance.  

 

In addition, the fourth-order Runge-Kutta method has the error per step on the 

order of 5h  while the total accumulated error has an order of 4h  (Christodoulou, 

2009). Goh et  al. (2009) stated that the fourth-order Runge-Kutta method provides 

solutions in discretized form, only at two ends of the time interval. It is a good choice 

because it is quite accurate, stable and easy to program. Meanwhile, the fifth-order 

Runge-Kutta method has the error per step on the order of 6h  while the total 

accumulated error has an order of 4h  (Christodoulou, 2009). The Runge-Kutta-

Fehlberg has the error per step on the order of 4h  while the total accumulated error 

has order of 5h (Filiz, 2014). Therefore, the Runge-Kutta-Fehlberg method has a 

smaller error compared to the other order of Runge-Kutta method. 

 

 We simulate the solutions of all of our numerical experiments using this 

method in Chapter 3, 5, 6 and 7. 
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1.3.2 FORWARD TIME CENTRAL SPACE (FTCS) SCHEME  

 

 We will solve the spatial extension of the Abramson and Kenkre (2002) 

model by using the Forward Time Central Space (FTCS) Scheme finite-difference 

method. The finite-difference method is a numerical method based on subdividing 

the domain of the problem by introducing a mesh of discrete points for each of the 

independent variables. Computer simulations using Matlab will be used for various 

parameter values. In the following discussion a basic approach will be taken to 

introduce the FTCS scheme. 

 

 In this section, we introduced the Forward Time Central Space (FTCS)  

scheme. The FTCS scheme is an explicit method. The basic idea to solve the spatial 

extension partial differential equation using FTCS scheme is to approximate the 

differential equations by a system of algebraic equations. It is a first order accurate in 

time   accurate hO  and second order accurate in space   accurate 2hO . This 

scheme is simple to code and easy to use because it does not require solution of a 

system of simultaneous equation, but this scheme is not unconditionally stable, 

meaning that if one choose too large a time step ,t  the scheme will produce chaotic 

and meaningless solution. For FTCS scheme to be stable, the time step t  must be 

chosen such that  2
2

1
xt   where x is a step size. The FTCS scheme is 

consistent with the original equation since the truncation error vanishes in the limit of 

small x and t . 
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  Another important fact to note is that the FTCS scheme is obtained based on 

subdividing the domain problem. This is done by introducing a mesh of discrete 

points for each of the independent variables.   

  

 In Chapters 4 and 8, the numerical experiments study of spatial extension 

model developed by Abramson and Kenkre (2002) and the reaction-diffusion model 

is conducted via this method. 

 

The results of numerical experiments are displayed in graphical and tabular 

form so as to enable us to make conclusions.  

 

1.4 THESIS OUTLINE 

 

 In chapter two, we study and discuss the literature related to the basic model 

of Abramson and Kenkre (2002), spatial extension model developed by Abramson 

and Kenkre (2002) as well Kumar et al. (2010), the background of biodiversity 

models, the Peixoto and Abramson model, one rodent, one alien (as predator) model 

and their parameters, the vector-host model developed by Li et al. (2011) to quantify 

spread of disease by estimating average number of secondary infections in wholly 

susceptible population. Finally, we will study and discuss  research related to the 

Lotka-Volterra predator-prey model conducted by Mohd and Abu Hasan (2012) and 

their parameters. The discussion of the six objectives considered are presented in 

section 2.2 through section 2.7, respectively. 
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 In chapter three, we study the basic mathematical model of Abramson and 

Kenkre for hantavirus infection and we will carry out some simulations to highlight 

certain features of the model. By the term “basic mathematical model“ (as opposed 

to mathematical model) we mean that we are ignoring spatial extension in the 

mathematical model of Abramson and Kenkre (2002). 

 

 We will then discuss some aspects of the spatial extension of the basic model. 

To facilitate this, we will need to consider the (full) mathematical model of 

Abramson and Kenkre (2002). The basic mathematical model is a system of ordinary 

differential equations (ODEs) with the dependent variable being the susceptible 

rodent sr , infected rodent ir  and the independent variable being time whilst the 

mathematical model of Abramson and Kenkre  is a system of partial differential 

equations (PDEs) with the dependent variable being sr , ir  and the independent 

variable being time and spatial variable x. This will be done in chapter four. 

 

 In chapter five, we conduct a literature study related to population harvesting 

and extend the basic model of Abramson and Kenkre to include the process of 

harvesting. We study both theoretically and computationally the impact of different 

harvesting strategies on the spread of the hantavirus infection.  

 

 In chapter six, we discuss the role of biodiversity in hantavirus infection with 

our primary source of reference being a paper written by Peixoto and Abramson 

(2006). This paper assumes that the other species (aliens) which inhabit the 

ecosystem with rodents are competitors for resources but are not predators. We 

modify the Peixoto and Abramson (2006) biodiversity model to include the effect of 
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aliens as predators. We analyse the modified model and also study the predictions of 

the modified model.  

 

 Human infection model is used to study the effect of the human population on 

the spread of the hantavirus infection. Hantavirus is a serious disease to human 

because it is easily transmitted by exposure of bite and scratch from the infected 

rodent. Therefore, we extend the Li et al. (2011) human infection model to include 

the effect of human population. In chapter seven, we develop and analyse a 

hantavirus model which incorporates infection. 

 

 In chapter eight, we will utilize the reaction-diffusion systems in order to 

study the spatial effects such as movement of the rodents and alien (as predator) 

populations from one spatial location to another in a finite habitat. Therefore, we 

modify the Peixoto and Abramson (2006) biodiversity model to include the effect of 

aliens as predators and spatial effects of diffusion. The spatial effects mean that, it 

includes the effects of habitat geometry and heterogeneity of environment on the 

extinctions, persistence and coexistences of species. We focus our study on the 

effects of diffusion mechanism, particularly the diffusion constant D, on extinction 

and persistence phenomena of the modified model via analytical and numerical 

experiments.  

  

 Finally, in chapter nine, we present the conclusions of the research and 

discuss possible avenues for further work in hantavirus infection. 
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CHAPTER 2 

 

LITERATURE REVIEW  

 

 

2.1 INTRODUCTION  

 

 The discussion of  literature review in this thesis is focused on the issues we 

have listed in the objective and scope in section 1.2. In section 2.2 and 2.3, literature 

review related to first and second objectives considered in this thesis via; 

mathematical modeling of hantavirus infection and the effect of spatial extension in a 

Abramson and Kenkre model of hantavirus infection is discussed. The discussion of 

modeling population harvesting of rodents for the control of hantavirus infection is 

further extend to AK model in section 2.4. This is related to the third objective of this 

thesis. Then, in section 2.5, literature review about the effect of biodiversity on the 

spread of hantavirus infection is discussed. This is related to the fourth objective of 

this thesis.  Then, literature review related to fifth and sixth objectives considered in 

this thesis via; modeling the transmission dynamics on the spread of the hantavirus 

infection and the effect of reaction-diffusion on a biodiversity model of hantavirus 

infection in section 2.6 and section 2.7, respectively.  
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2.2 MATHEMATICAL MODELING OF HANTAVIRUS INFECTION 

 

Hantaviruses are viruses carried by certain kinds of rodents. The viruses can 

be killed by most household disinfectants. Hantaviruses represent significant 

pathogens and can cause hemorrhagic fever with renal syndrome (HFRS) or 

epidemic nephritis (EN) and hantavirus cardiopulmonary syndrome (HCPS). Both 

diseases are characterised by endothelial dysfunction. Endothelial dysfunction, in 

turn, is characterised by increased permeability caused either by direct endothelial 

infection or by indirect effects like the production of various cytokines by activated 

leukocytes (Kraus, 1973). The Hantaan Viruses, Puumula virus, Dobrava virus and 

Seoul are variations of hantaviruses that can cause HFRS. HPS is a medical disease 

caused by several hantaviruses in North and South America (www.cfsph.iastate.edu/ 

Factsheets/ pdfs/ hantavirus.pdf., accessed 12 September 2008). 

 

 Hantaviruses live within various species of rodents (i.e. rats and mice) 

without causing any symptoms and are transmitted to humans by direct or indirect 

contact with the urine, excreta or saliva from infected rodents (Yusof, 2008). The 

mortality rate associated with HFRS ranges from approximately 0.1 to 3% for 

Puumala virus infections, to more or less 5 to 15% for HFRS caused by Hantaan and 

Dobrava virus and around 1% with Seoul virus infections. The mortality rate for HPS 

caused by Sin Nombre and New York virus is estimated to be 40 to 50% (Christie 

and Guadagno, 2003). 

 

  

http://www.cfsph.iastate.edu/
http://factsheets/
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 There are three most common symptoms of HFRS mentioned in the name of 

the disease. Fever is one while the second symptom is malfunction of the kidneys. 

The final symptom is a low platelet count. Platelets are blood cells that promote the 

clotting of blood (Yusof, 2008). 

 

 Lerner and Lerner (2003) stated that HPS develops in four stages. The first 

stage is the incubation period where usually patients may exhibit no symptoms. The 

warning signs stage is when the patient begins with a fever, muscle aches, backache, 

and abdominal upset. Meanwhile the patient slips into the cardiopulmonary stage 

rapidly, sometimes within a day or two of initial symptoms; sometimes as long as 10 

days later. There will be a drop in blood pressure, shock, and leaking of the blood 

vessels of the lungs, which results in fluid accumulation in the lungs, and subsequent 

shortness of breath. Finally, the convalescent stage: there is a rapid recovery, usually 

within a day or two. However, abnormal liver and lung functioning may persist for 

six months. 

 

 In this thesis, we have chosen to examine the mathematical model of 

hantavirus infection, in particular, the Abramson and Kenkre model because not 

many researchers discussed the phenomenon of the spread of hantavirus infection 

and its solution. Based on year 2000 data, the mortality rate associated with HFRS 

ranges from approximately 5 to 15% for Hantaan and the mortality rate for HPS 

caused by Sin Nombre virus is estimated to be more than 45% (Faulde et al., 2000). 

It has a high mortality disease and we would like to be one of the researchers who 

contribute to research about hantavirus. Another  reason  is  because  this  fascinating  
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subject has a lot of aspects that are still unexplored. We feel fascinated by all these 

aspects may be one day the researches can help reduce or eliminate virus and the way 

disease is transmitted can be stopped.  

 

 The construction of the basic model of Abramson and Kenkre (AK)  

incorporates decay  by death of the mice population, the increase by birth and effect 

of the environment to stabilize the population (Goh et al., 2009). This model is able 

to successfully explain several field observations as environmentally controlled 

phase transitions, thus providing an analytical support to biological hypotheses such 

as the trophic cascade (Abramson, 2007b). 

 

Abramson and Kenkre formulated a simple mathematical model to analyse 

the spatio-temporal patterns in the spread of hantavirus. Results derived from their 

paper show environmental conditions strongly affect the dynamics and persistence of 

the infections. 

 

The basic model of Abramson and Kenkre proposed a single rodent species 

without movement (i.e. no spatial extension and only temporal variable is present). 

Here the total population rodents are divided into two groups, one is susceptible and 

another is infected. The model is: 
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 … (2.1) 

where sr and ir  are the populations of susceptible and infected rodents, respectively, 
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where      trtrtr is   is the total population of rodents. For abbreviation, we shall 

refer to this model (equation (2.1)) as the basic AK model. 

 

Birth: b is birth rate of rodents, the multiplication of b and r represents the births of 

rodents, all of them born vulnerable to the infection at a rate proportional to the total 

population assuming that all rodents contribute equally to the reproduction process.  

 

Deaths: c  represents the natural death rate. The infection does not cause deaths 

among rodents.  

 

Competition: 
k

rrs  or 
k

rri  represents a limitation process in the rodent population 

growth due to competition for resources shared between sr  and ir .  In the basic 

model k depends on time and is a “environmental parameter".  Higher values of k 

represent higher availability of water, food, shelter and other resources for the 

rodents that rodents can use to thrive. According to Campbell et al. (2008), k is the 

maximum number of rodents which can be accommodated within a defined space or 

habitat and environment that can support them over an indefinite period of time. It is 

determined by the availability of nutrients, water, shelter and breeding sites. If k is 

increased the number of the population tends to increase to take advantage.  

 

Infection: s iar r  represents the number of susceptible rodents that get infected due to 

an encounter with an infected rodent (e.g. bites from fights) at a rate a (assumed 

constant). The value a is known as the “aggression parameter”.  The infection is 

chronic, infected rodents do not die of it, infected rodents do not lose their 
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infectiousness for their whole life. For these reasons, this single term was deemed by 

AK to adequately describe the infection dynamics of the two subpopulation. 

  

 According to AK, there is a critical value of environmental parameter 

 












cba

b
kc  that separates two distinctive regimes. If the environmental 

parameter k is smaller than ck , ir  tends to zero and the infection dies away. If 

ckk  , the infection thrives since there is an increase in edible resources. As the 

environmental parameter will vary with time, the system will undergo transitions 

from one state to another. This corresponds to the observed sporadic appearance and 

disappearance of the infection mentioned in the introduction. 

 

 Abramson and Kenkre extended the basic AK by taking into account the 

rodent movement by diffusion (Goh et al., 2009). This model is called the spatial 

extension of the AK. Results from the movement of the rodents population over the 

terrain and diversity of the landscape, resulting in the uniform distribution of the 

rodents occurring in an ecosystem. In consequence, the diffusion can affect a variety 

of different quantities. 

 

The basic model can be spatially extended to take into account of the 

movement of rodents in one-dimension by including a diffusive term. The dimension 

of a space is informally defined as the minimum number of coordinates needed to 

specify any point within it. This model is one-dimension partial differential equation 

(PDE) because it has one spatial derivative in x. Equation (2.2) is the spatial 
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extension of the AK model. The extended Abramson and Kenkre model is of the 

form : 
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 … (2.2) 

where sr
2  and ir

2  are the second partial derivatives of the populations of 

susceptible and infected rodents respectively where sr  and ir  are now function of x 

and t. D is diffusion constant and is expected to be different for susceptible and 

infected rodents. The analysis by Abramson and Kenkre (2002) for small and 

moderate values of the diffusion constant shows that the infected population survives 

in the regions of high environmental parameter and becoming extinct in the rest. 

These “islands” of infection become reservoirs or refugia of the virus and it is from 

these locations that the disease will spread when environmental conditions become 

favourable.  

 

Abramson and Kenkre (2002) did not describe the spread of hantavirus via 

numerical experiments but only presented the characteristics of the basic model. In  

chapter 3, we analyse the effects of hantavirus infection through illustrations and 

highlight some of the characteristics of the basic AK (i.e. equation (2.1)) model using 

numerical experiments. 
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2.3 EFFECTS OF SPATIAL EXTENSION IN THE ABRAMSON AND 

 KENKRE MODEL OF HANTAVIRUS INFECTION 

  

 Recall that model (2.2) which is the spatial extension of the AK (2002) with 

diffusive term of single rodent species. The model is of the form 
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where sr  and  ir  are  the  populations  of  susceptible and  infected  rodents, 

respectively, where      trtrtr is   is the total population of rodents. The value a 

is the transmission rate responsible for infection, b is the birth rate, c  is the natural 

death rate and the resources (food, water, vegetation) are described by k which is 

generally time and space dependent. k is also can be called as environmental 

parameter. According to Kumar et al. (2010), 2  is the one-dimensional Laplacian 

i.e. 
2

2

x


. Yates et al. (2002) stated that Abramson and Kenkre model are associated 

with characteristic features of any population that plays the role of the reservoir of an 

infectious disease. The unit for diffusion constant, D, is metre
2
 per day. D is a 

diffusion constant with which susceptible and infected rodents moves over the 

terrain. According to Abramson et al. (2001), diffusion is defined as typically a limit 

of a more coherent motion interrupted by scattering events which is valid when the 

scattering events are extremely frequent.  
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Using numerical methods, Abramson and Kenkre (2002) considered first a 

one-dimensional spatial landscape, consisting of a spot of high environmental 

parameter  ckk   in the center of a larger region of low environmental 

parameter  ckk  . A steady state is attained in which the infected population is 

focused at the spot of higher k in an arbitrary initial condition of the population. This 

spot constitutes a “refugium”. For a two-dimensional landscape, the susceptible 

rodent population occupies the entire landscape, with a nonhomogeneous density. 

The infected population survives in a patchy pattern when the values of the diffusion 

coefficient is small and moderate, only in the regions of high environmental 

parameter k, becoming extinct in the rest. These “islands” of infection become 

reservoirs of the virus or “refugia”, which are the places of highest risk for human 

exposure and contagion. Abramson and Kenkre (2002) noted that this is precisely 

what was observed in the field. 

 

 Kumar et al. (2009) and Kumar et al. (2010) have conducted research on the 

Abramson and Kenkre model (which incorporates spatial extension).  Kumar et al. 

(2009) studied the Allee phenomenon which causes an imperfect pitchfork 

bifurcation instead of the transcritical bifurcation in the spread of an infectious 

disease. They state that the bifurcation is imperfect as the system under study is not 

symmetric under reflection. A most relevant result involved the environmental 

spatial inhomogeneities (modulations) which provides a linkage between the 

landscape structure of species’ resource habitats and the matrix surrounding it 

(Kumar et al., 2009). The bifurcation they discovered was more evident when 

calculating the mean value of the population densities. They showed the existence of 

a critical value of the spatial modulation wave number where the behaviour of the 
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systems completely changes, displaying bistable behaviour that depends on the initial 

conditions. Kumar et al.’s (2010) study of infection of hantavirus is classified by 

spatially dependent environmental issues. The purpose of their research was to 

provide the mathematical basis for understanding constraints and behaviours of 

rodents with hantavirus interaction through time. 

 

 By referring to Abramson and Kenkre model, Kumar et al. (2010) states that 

the infection population ir  decreases with a decrease in a region of length L and 

vanishes completely at the critical value of the region of length cL  which means 

critical length. Kumar and Kenkre (2011) stated that the critical length of the 

favorable segment corresponds to the situation that the random walker traverses the 

length of the segment diffusively in the time necessary for growth, and falls prey to 

the harsh conditions outside the segment. Meanwhile the susceptible population sr , 

does not vanish even for the value of region of length equal to zero  0L . Only the 

infection population ir  exhibits a transition. The transition means that, if it were 

desirable to achieve the disappearance of refugia in a given landscape, it would not 

be necessary to drop the environment resources below the critical value expected in 

the absence of rodent diffusion.  

 

 Note that in the absence of diffusion  022  iiss rDrD , we will get the 

basic model of Abramson and Kenkre (2002):  

 s s
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The papers of Abramson and Kenkre (2002) and Kumar et al. (2010) were 

rather theoretical in nature and not much numerical evidence was presented. Hence, 

this study will explore and validate the use of more substantial numerical evidence in 

detail in Chapter 4. 

 

2.4  MODELING POPULATION HARVESTING OF RODENTS FOR THE 

 CONTROL OF HANTAVIRUS INFECTION 

 

 There have been recent works on population harvesting by Bairagi et al. 

(2009) and Matsuoka and Seno (2008).  According to Bairagi et al. (2009), 

epidemiology can encroach into ecology and change the system dynamics 

significantly. In population ecology, predator-prey interaction in presence of 

parasites can produce more complex dynamics including switching of stability, 

extinction and oscillations. Bairagi et al. (2009) states that harvesting can play a 

crucial role in a host-parasite system and reasonable harvesting can remove a parasite 

from their host. In their paper, the role of harvesting in a predator-prey-parasite 

system has been studied. Their study shows that impulsive harvesting can control the 

cyclic behavior of the system populations leading to the persistence of all species and 

obtain disease-free stable equilibrium. 

 

Matsuoka and Seno (2008) analyzed a time-discrete mathematical model of 

host-parasite population dynamics with harvesting, in which the host can be regarded 

as a pest. A portion of the host population is harvested at a moment in each 

parasitism season with the principal target being the host. However, the parasite 

population may also be affected and reduced by a portion. They investigate the 
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condition under which the harvesting of the host results in an eventual increase of its 

equilibrium population size.  

 

Xia et al. (2009) have researched the effects of harvesting and time delay on 

two different types of predator-prey systems with delayed predator specific growth 

and Holling type II functional response. The predator-prey model is harvested at a 

constant rate given by 
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where r and z are the densities of the prey and predator population at the time t, 

respectively. The value   is the intrinsic growth rate of the prey, k is the carrying 

capacity of the prey; m is the maximum growth rate of predators; δ is the yield 

conversion factor for predators feedings on the prey, A is the half saturation constant 

for the predators which is the prey density at which the functional response is half 

maximal, D is the death rate of predators, rh  and sh  are constant harvesting rates for 

the prey and predators, respectively. 

 

Shi (2006) has developed a simple mathematical model associated with the 

seasonal or periodic harvesting model in time variable t. Shi (2006) added a simple 

periodic harvesting term   wth sin1  to the logistic equation, where 0h  is a 

parameter measuring the harvesting rate. For fixed time t, Shi (2006) assumed the 

harvesting is proportional to the size of the population. The periodic function 

  wtsin1  is non-negative with period 2 ; when 
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