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PENGOPTIMUMAN PEMBENTUKAN NANOTIUB KARBON DAN 

PERANAN WAP AIR DALAM PENGURAIAN BERMANGKIN METANA 

ABSTRAK 

Nanotiub karbon (CNT) disintesis menggunakan mangkin CoOx-MoOx/AhOJ 

melalui penguraian metana dalam sistem reaktor tiub kuarza mendatar. Untuk 

memastikan kajian proses dan proses pengoptimuman dijalankan dengan sistematik, 

penyelidikan ini dijalankan dengan menggunakan rekabentuk ujikaji statistik (DoE). 

Kesan enam pembolehubah proses (suhu tindak balas, masa tindak balas, jumlah 

mangkin, pemuatan logam, kadar aliran metana dan kadar aliran nitrogen) pada kadar 

hasil karbon dan nisbah fr/lc CNT yang dihasilkan adalah disiasat dengan 

menggunakan kaedah faktorial berperingkat peleraian III (FFD) berganding dengan 

metodologi permukaan sambutan (RSM), iaitu rekabentuk Box-Behnken (BBD). 

Suhu tindak balas, masa tindak balas dan pemuatan logam dikenalpastikan sebagai 

pembolehubah penentuan yang mempengaruhi hasil karbon dan nisbah h/lc CNT, 

seperti yang dikenalpasti dengan menggunakan 2fj[3 FFD; maklumat ini seterusnya 

digunakan untuk membina permukaan sambutan dengan mengguna BBD. Keadaan 

optimum diperolehi pada suhu tindak balas 762°C, masa tindak balas selama 2.3 jam 

dan 27% pemuatan logam, dengan kadar hasil karbon sebanyak 350% dan Ir/lc 

bernilai 0.595. Kemudian, kesan wap air terhadap aktiviti mangkin dan hayat 

mangkin disiasat, berdasarkan analisis gas efluen. Kemasukan jumlah wap air yang 

bersesuaian, iaitu 133.3 ppm ke dalam ambien tindak balas didapati meningkatkan 

dan menampung aktiviti mangkin melalui proses punaran karbon amorfus yang 

menyalut permukaan tapak aktif, mengakibatkan penukaran metana dan hasil karbon 
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metana dan hasil karbon yang lebih tinggi. Aktiviti mangkin kekal selepas tindak 

balas selama 2 jam, dan kadar hasil karbon meningkat kepada 1076%. Tambahan 

pula, didapati bahawa CNT mempamerkan bentuk struktur dan morfologi yang lebih 

baik dan tanpa karbon amorfus yang melekat melalui cerapan gambar mikroskop 

· elektron pancaran peleraian tinggi (HRTEM). Walau bagaimanapun, tumbuhbesaran 

CNT terbantut apabila wap air terlalu banyak. Bekalan wap air berterusan dengan 

jumlah yang bersesuaian adalah lebih baik untuk menghasilkan CNT yang 

mempunyai hablur yang lebih baik. Kajian ini diakhiri dengan demonstrasi 

penguraian gas asli untuk penghasilan CNT atas mangkin yang sama pada keadaan 

optimum. Hayat mangkin didapati lebih panjang berbanding penguraian metana, dan 

karbon berfilamen dihasilkan, ialah campuran CNT dan nanofiber karbon (CNFs). 

Penemuan ini mencadangkan satu kaedah altematif dengan kos yang efisien untuk 

penghasilan bersama CNT, CNFs dan hidrogen tanpa menggunakan punca karbon 

berketulenan tinggi. 
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OPTIMIZATION OF CARBON NANOTUBES FORMATION AND THE 

ROLE OF WATER VAPOR IN CATALYTIC DECOMPOSITION OF 

METHANE 

ABSTRACT 

Carbon nanotubes (CNT) were synthesized over CoOx-MoOxf AhOJ catalyst 

via decomposition of methane in a horizontal quartz tube reactor system. In order to 

have a systematic process study and process optimization, this research study was 

carried out by using statistical design of experiments (DoE). The effects of the six 

process variables (reaction temperature, reaction time, catalyst amount, metal loading, 

methane flow rate and nitrogen flow rate) on the carbon yield and the lr/10 ratio of 

as-produced CNT were investigated using Resolution III fractional factorial design 

(FFD) coupled with response surface methodology (RSM), i.e. Box-Behnken design 

(BBD). Reaction temperature, reaction time and metal loading were identified to be 

the decisive process variables influencing the carbon yield and the intensity _radio of 

D~peak and G-peak in Raman spectra (Jolla ratio), as distinguished using a 2fj/3 FFD; 

then BBD was exploited to construct a response surface from the decisive process 

variables. The optimum parameter set was found at a reaction temperature of 762°C, 

2.3 h reaction time and metal loading of 27%, with the carbon yield and Idla of 350% 

and 0.595, respectively. The effect of water vapor on catalytic activity and catalyst 

lifetime was investigated afterwards, based on analysis of the effluent gas. The 

introduction of an appropriate amount of water vapor, i.e. 133.3 ppm into the 

reaction ambient enhanced and sustained the catalytic activity by etching the 

amorphous carbon coated on active sites surface, led to higher methane conversion 
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and carbon yield as well. The catalytic activity was sustained after 2 h reaction and 

the carbon yield increased to 1076%. Furthermore, it was found that the CNT 

exhibited better structure and morphology without the adherence of amorphous 

carbon, as observed from HRTEM image. However, the CNT growth is suppressed 

when the water vapor was over supplied, due to the water induced oxidation of active 

sites. A continuous supply of controlled amount water vapor is preferable in order to 

produce CNT with higher crystallinity. This research work is ended with the 

demonstration of natural gas decomposition over the said catalyst at optimized 

conditions for the production of CNT. The catalyst lifetime was found longer 

compared to· decomposition of methane, with the formation of filamentous carbon, 

i.e. a mixture of CNT and carbon nanofibers (CNFs). The findings suggest an 

alternative cost effectively route for co-producing CNT, CNFs and hydrogen without 

using high purity carbon source. 
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CHAPTER ONE: 

INTRODUCTION 

This chapter provides an overall introduction to the research project. Brief 

definition of nanotechnology and carbon nanotubes (CNT) is outlined at the 

beginning of this chapter. Apart from that, information of methane and natural gas 

used as feedstock in this study are given as well. Finally, this chapter concludes with 

problem statement, objectives and thesis organization of thesis content. 

1.1 Nanotechnology 

The general concept of nanotechnology has been discussed tentatively by 

scientists since the late nineteenth century. However, most scientists date the first 

specific reference to the classic take by American physicist Richard Feynman gave in 

1959 at the annual meeting of the American Physical Society at the California 

Institute of Technology (Caltech) (Feynman, 1960). The term nanotechnology was 

defined in the mid-1970s by a Japanese electrical engineer named Norio Taniguchi as 

follows: "'Nano-technology' mainly consists of the processing of, separation, 

consolidation, and deformation of materials by one atom or by one molecule." 

(Taniguchi, 1974). In the 1980s, the basic idea of this definition was explored in 

much more. depth by the American engineer Eric Drexler in his 1986 best-seller 

Engines of Creation: The Coming Era of Nanotechnology (Drexler, 1986), promoted 

the technological significance of nano-scale phenomena and devices, and this book is 

considered the first book on the topic of nanotechnology . 
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Nanotechnology can be defined as the creation of functional materials, 

devices, and systems through the manipulation of matter on the nanometer (nm) 

length scale (less than 100 nm). In the case of nanotechnology, the prefix 'nano' 

signifies a billionth of a meter, or 10-9 of a meter. Therefore, nanotechnologies focus 

on the design, characterization, production, and application of nanoscale systems and 

components. Figure 1.1 presents a diagram showing the region that belongs to 

nanotechnology. 

r-----------, 
I 

Water 1 Glucose Antibody Virus Bacteria Cancer cell A period 

• 

~: Nanodevices: 
I Nanopores,. Dendrimers, Nanotubes, 

1 
1 Quantum clots, and Nanoshels 
I 

I_ - - - - - - - - - - -I 

Tennis ball 

Figure 1.1. The diagram showing the nanotechnology region (FDA, 2010). 

Nanotechnology is a multidisciplinary field encompassing biology, chemistry, 

physics and engineering. There are two main approaches used in nanotechnologies, 

namely "bottom- up" and "top- down" approaches. In the "bottom-up" approach, 

materials and devices are built from molecular components, which assemble 

themselves chemically by principles of molecular recognition. This level of control 

enables an unlimited creation of new materials and new devices. This approach is 

usually performed by using catalysts to induce chemical synthesis, or the bonding of 
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atoms and molecules to produce new materials. Meanwhile, in the "top-down" 

approach, nano-objects are constructed from larger entities without atomic-level 

control. Materials reduced to the nanoscale can show ditTerent properties compared 

to what they exhibit on a macroscale, enabling unique applications. One example is 

the increase in surface area to volume ratio alters mechanical, thermal and catalytic 

properties of materials. 

Without any doubt, the 21st century will be a period of significant progress 

for nanotechnology. Between 1997 and 2005, the investment in nanotech research 

and development by governments around the world soared from $432 million to 

about $4.1 billion, and corresponding industry investment exceeded that of 

governments by 2005. By 2015, products incorporating nanotech will contribute 

approximately $1 trillion to the global economy (Roco, 2006). It is strongly believed 

that nanotechnology will complement and change life science, medicine technology, 

environmental technology, material science and so on to a new expanse in a near 

future. 

1.2 The element carbon 

1.2.1 Allotropes of carbon 

Carbon, without any doubt is one of the most well known elements on Earth, 

as can be seen by the fact that it is the basis of life in this planet. Carbon has an 

electronic configuration of 1s2 2s2 2p2
, in which the 2s2 2p2 orbits are normally 

hybridized to form 4 degenerate orbitals (sp3 hybridized atom). This enables the 

carbon atom to form 4 identical covalent bonds to other atoms. Common carbon 

3 



compounds in the environment include the gases carbon dioxide (C02) and methane 

(CH4) (Cleveland, 2008). 

Due to the different molecular configurations can be formed by carbon, it 

exists in several forms called allotropes. Before 1991, the known allotropes of carbon 

include diamond, graphite, fullerene and amorphous carbon. In 1991, Sumio Iijima 

from the NEC Laboratory in Tsukuba, Japan, discovered another form of carbon, 

which composed entirely of sp2 bonds, similar to graphite. The discovered carbon 

was in the form of tubular and the centre core of the tubular carbon was hollow 

(Iijima, 1991 ). Due to the nano-size and hollow core of this tubular carbon structure, 

the name of "Carbon Nanotube (CNT)" was given. Since then, CNT attracted intense 

study from researchers all over the world. The allotropes of carbon are shown in 

Figure 1.2. 
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Figure 1.2. The allotropes of carbon family (Wu, 2009). 
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1.2.2 Carbon nanotubes 

Carbon nanotubes (CNT), the focus of this study, have a nanometer-scale 

hollow tubular structure. While the diameter of a CNT is in the order of a few 

nanometers, their length can be in the order of several micrometers. There are two 

major types of CNT, namely single-walled carbon nanotubes (SWCNT), which 

consist of one tube of graphite, and multi-walled carbon nanotubes (MWCNT), 

which consist of a number of concentric tubes, cylinders inside the other cylinders. 

The diameter of SWCNT is very small (typically ~ 1 nm), while the outer diameter of 

MWCNT ranges from 2.5 to 30nm (Harris, 1999). Nevertheless, the largest 

outermost tube in a MWCNT was found to be hundreds of nm (Meyyappan, 2005). 

CNT are basically rolled sheets of graphite, and for MWCNT, the interlayer spacing 

is approximately 3.4A (Terrones et al., 1997). Its body contains hexagonal rings and 

end cap with certain number of pentagonal rings, as illustrated in Figure 1.3. 

Pentagonal 
rings 

Figure 1.3. Structural model of a carbon nanotube (CNT) with a capped tip 
(Saito, 2004). 
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It is noteworthy that the electronic structure of individual SWCNT can be 

calculated. According to the calculations, SWCNT might be metallic or 

semiconducting depending upon their chirality (helicity) and diameter (Saito et al., 

1992b; Saito et al., 1992a; Terrones, 2003). Depending on the direction of hexagons, 

nanotubes can be classified as either zigzag, annchair or chiral nanotubes, as 

illustrated in Figure 1.4. Different configurations of nanotubes have different 

electronic properties, either metallic or semiconducting. 

Figure 1.4. CNT presented at (a) armchair, (b) zigzag and (c) chiral configuration 
(MRSEC, 201 0) 

1.3 Natural gas and methane 

Natural gas is a combustible gaseous fossil fuel, often found in underground 

reservoirs and comprised of methane and other hydrocarbon compounds. It attracts 

less attention compared to petroleum. But in recent year, it has been marked as the 

dawning of natural gas era and regarded as the fuel of the future (Krauss, 201 0). 

Table 1.1 shows the composition of typical natural gas and natural gas found in 
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Malaysia reservoir. From the table, one can see that methane is the major component 

of natural gas. This simplest form of hydrocarbon is odorless, colorless and 

flammable gas with the chemical formula CH4. 

According to the Energy Information Administration (EIA) 2009 report, 

.. Malaysia held 83 trillion fe of proven natural gas reserves as of January 2009 (EIA, 

2009). Therefore, various routes for effective utilization of natural gas have been 

considered for its conversion to value-added product, such as the production of 

carbon nanofibers (CNFs) and CNT by methane decomposition. It is worth 

mentioning that methane decomposition not only produces CNFs or CNT, but also 

produces COx- free hydrogen as side product which can be utilized in proton-

exchange membrane (PEM) fuel cells, oil refineries and methanol production. 

Table 1.1. Composition of natural gas (NaturalGas, 2007; GasMalaysia, 2009). 

Components Typical Malaysia 
Methane CH4 70-90% 92.73% 

Ethane C2H6 4.07% 

Propane C3Hs 0-20% 0.77% 

Butane C4H10 0.14% 

Carbon dioxide C02 0-8% 1.83% 

Oxygen 02 0-0.2% N.A. 

Nitrogen N2 0-5% 0.45% 

Hydrogen sulphite H2S 0-5% N.A. 

Rare gases Ar, He, Ne, Xe Trace N.A. 

Other hydrocarbon N.A. 0.01 
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1.4 Hydrogen 

Hydrogen is the lightest element on the periodic table with atomic number 1. 

It is extensively used in the petroleum and chemical industries. In a petrochemical 

plant, hydrogen is used for hydrodealkylation, hydrodesulfurization, and 

hydrocracking for refining of crude oil for wider use. In the food industry, hydrogen 

is used to hydrogenate oils or fats, which permits the production of margarine from 

liquid vegetable oil. Hydrogen is used to produce methanol and hydrochloric acid, as 

well as being used as a reducing agent for metal ores. More recently, using hydrogen 

as a clean fuel has been discussed. It is because when hydrogen is combusted, heat 

and water are the only products. Therefore, the use of hydrogen as fuel can greatly 

reduce green house gas emissions. 

Future shortage of petroleum supply and solid fuels, such as coal and biomass, 

coupled with the increasing awareness of green house gas emissions increase the 

shift towards the alternative fuels sector. Hydrogen, in particular, driven by the 

penetration of efficient end-use technologies, is expected to increase its share 

dramatically, accounting for approximately 49 percent of the global final 

consumption by the end of the 21st century' and becomes the main final energy 

carrier (Barreto et al., 2003). 

1.5 Problem Statement 

After nearly two decades from the discovery of CNT usmg vanous 

technologies, significant progress in their synthesis and applications has been 

demonstrated. Common methods employed for the production of CNT are the arc-

discharge, laser ablation and catalytic chemical vapor deposition (CCVD). Among 
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these methods, CCVD method seems to be the most attractive method, given the 

potentiality for large scale production of CNT. By altering the operation parameters 

ofCCVD process, the types and morphology ofCNT such as MWCNT, SWCNT, Y­

junction CNT, specific diameter, etc. can be controlled through tailor-made catalyst 

and increases the CNT yield by optimizing the process conditions. 

On the other hand, the demand of hydrogen is expected to increase due to the 

increased utilization of proton exchange membrane (PEM) fuel cells as an alternative 

to internal combustion engines. To date, production of hydrogen is primarily 

achieved via steam reforming, partial oxidation, and auto thermal reforming of 

natural gas or stream reforming of methanol (Chin et al., 2006). However, CO is 

formed as by-product in these processes and must be subsequent removed. Moreover, 

the energy requirement for these processes is relatively high compared to catalytic 

decomposition of hydrocarbon (Ammendola et al., 2009). Therefore, decomposition 

of methane via CCVD method is currently being studied and has been proposed as an 

alternative route for the production of COx-free hydrogen. At the same time, the 

process involves the p:t_:oduction of a very valuable product, which is. CNT . 

In previous work, an efficient catalyst, i.e. Co0x-Mo0x/Ab03 and the process 

for the production of CNT in a vertical reactor were developed (Chai, 2008). The 

CNT produced in the laboratory are same quality as the commercial CNT products 

produced by the companies in USA and UK (50-80% CNT, the remainder being 

amorphous carbon and residual metal catalysts) (NanoLab, 2010). Nonetheless, there 

are a few problems need to be overcome before the commercialization of CNT can 

be realistic. One of the restrictions is the amount of CNT produced for each run is 

very limited, due to the limitation caused by the use of vertical reactor. Only a small 
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amount of catalyst was used to avoid pressure buildup when synthesizing CNT, 

hence producing a very small amount of CNT. In this regard, it is of necessity to 

overcome this issue in order to obtain higher amount of CNT. 

In the present research work, the use of horizontal reactor for the co­

production of CNT and COx-free hydrogen was proposed. In a vertical reactor, a 

sudden pressure buildup in the reactor is often occurred, especially when a large 

amount of catalyst is used. It is due to the growth of CNT clogging the flow of gases 

through the catalyst bed. On the contrary, this problem is very unlikely to happen in a 

horizontal reactor. Other than that, more catalyst can be loaded and therefore it is 

expected more CNT will be produced per batch. Another advantage of horizontal 

reactor is the ease to set up and operate, which makes horizontal reactor easier to 

scale up for larger production. Optimization study of the synthesis of CNT in a 

horizontal reactor was carried out too in order to maximize the yield of CNT and 

with satisfying quality. 

The rapid deactivation of catalyst is another common problem often 

encountered by researchers in the production of CNT by catalytic decomposition of 

hydrocarbons. In a CCVD process, hydrocarbons are catalytic decomposed, and the 

active sites of the catalyst are gradually covered by amorphous carbon, resulting the 

deactivation of catalyst. In this regard, the low life span of the catalytic activity has 

been the bottleneck preventing large scale production of CNT. In order to enhance 

the catalytic activity and to increase the sustainability of the catalyst, a weak oxidizer 

was suggested to remove the amorphous carbon covered on the active sites, thus 

prolonging the catalytic activity. Water vapor is a suitable weak oxidizer, as reported 

by Hata and coworkers (Hata et al., 2004). In the present study, the role of water 

vapor in enhancing the catalytic activity and lifetime was studied. 
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Since the discovery of CNT in 1991, the decomposition of high purity 

hydrocarbon, e.g. methane, ethylene, acetylene, etc, for CNT production is well 

reported in the past decades. However, these high purity carbon sources are costly 

and the supply is limited. On the other hand, low cost carbon sources such as natural 

gas and liquefied petroleum gas are present abundantly in Malaysia. In this regard, 

the possibility of replacing high purity carbon source by natural gas as the carbon 

source in CNT production was studied. 

After summarizing the problems encountered in the synthesis of CNT, an 

optimization study on the production of CNT in a horizontal reactor was conducted, 

followed by the investigation of the role of water vapor in enhancing the catalytic 

activity and prolonging its lifetime for the production of CNT. Lastly, the 

decomposition of natural gas for the co-production of CNT and hydrogen was 

demonstrated. 

1.6 Objectives 

The present study has the following objectives: 

1. To study the effects of reaction parameters on carbon yield and characteristic 

of produced CNT, and to determine the decisive process variables on 

production of CNT over CoOx-Mo0xfAb03 catalyst in a horizontal quartz 

tube reactor. This is followed by optimizing the decisive process variables 

usmg response surface methodology (RSM) coupled with Box-Behnken 

design. 

2. To evaluate the activity and lifetime of CoOx-MoOxfAb03 catalyst in water 

assisted methane decomposition, including the effect of water vapor 
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concentration and timing of water vapor introduction on the morphology of 

as-grown CNT. 

3. To examine the decomposition of natural gas over CoOx-MoOx/ Ab03 

catalyst at optimum condition for co-production of CNT and hydrogen. 

4. To investigate the structural and morphology of as-produced CNT by 

performing various characterization on produced CNT. 

1. 7 Scope of the Study 

This research study consists of three major sections; (i) process study of 

methane decomposition over CoOx-MoOx/ A}z03 catalyst, and then followed by 

optimization study of decisive parameters affecting the carbon yield and 

characteristic of the as-produced CNT in a horizontal reactor; (ii) investigation on the 

role of water vapor in enhancing catalytic activity and lengthening catalyst lifetime, 

as well as its effect on carbon yield and morphology of as-grown CNT; and (iii) 

utilization of natural gas as the carbon source for the production of CNT. The 

effluent gases are analyzed using an online-gas chromatograph ( online-GC), and the 

CNT produced are characterized in order to determine the carbon yield and 

morphology of the CNT grown. These samples are characterized using thermal 

gravimetric analyzer (TGA), scanning electron microscopy (SEM), transmission 

electron microscopy (TEM), high-resolution TEM (HRTEM) and Raman 

spectroscopy. 

Firstly, a preliminary study is conducted to examme the suitability of a 

horizontal quartz tube reactor for methane decomposition. Initially, the preliminary 
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study is conducted without catalyst, followed by the catalytic decomposition of 

methane over Co0x-Mo0x/Alz03 catalyst. This is to determine the capability of 

Co0x-Mo0x/Al20 3 catalyst to decompose methane in a horizontal quartz tube reactor 

and to ensure the reactor material will not decompose methane at the reaction 

temperature. 

Next, reaction process study is carried out to study the synthesis of CNT via 

catalytic decomposition of methane in a wide range of operating conditions; reaction 

temperature, reaction time, catalyst weight, metal loading, methane and nitrogen 

flow rates. The effect of these process parameters on the yield and quality of as-

produced CNT are studied to determine the process variables that are significantly 

influencing the said responses. The determined decisive variables are then optimized 

to achieve high carbon yield with satisfactory characteristic. The process 

optimization is carried out using RSM coupled with Box-Behnken design. In the 

present study, the process optimization is performed with the aid of Design Expert 

v6.0.6. software. 

Then, the research work is followed by investigating the role of water vapor 

in improving the catalytic activity and extending the catalyst span life. The effect of 

water vapor concentration, as well as the timing of water vapor introduction, on 

carbon yield and morphology of CNT produced is studied. Methane conversion is 

calculated based on the analysis of effluent gas by an online-GC, which is used to 

reflect the catalytic activity. Lastly, the decomposition of natural gas at the optimum 

condition is conducted to examine its competency in replacing high purity carbon 

sources for the production of CNT. 
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1.8 Organization of the Thesis 

This thesis consists of five chapters. Chapter One (Introduction) gives an 

outline of the overall research project covering brief definition of nanotechnology 

and CNT. Information of natural gas and methane used as feedstock and hydrogen as 

. by-product in this study are given as well. Problem statement is then defined after 

reviewing the existing limitations faced in the synthesis of CNT. Hence, this stresses 

on the need of this research project to overcome the limitations. The objectives of 

this research project are carefully set with the aim to solve the problems faced. Next 

the scope of this study is given. Finally, the organization of the thesis highlights the 

content and arrangement of each chapter. 

Chapter Two (Literature Review) summarizes the past research works in the 

area of this research. This chapter starts with a brief discussion on common CNT 

synthesis methods, followed by a highlight on the synthesis of CNT via CCVD 

method, including process variables and their influences on CNT yield, as well as 

CNT morphology. Then, reactor configurations commonly employed for 

hydrocarbon decomposition are reviewed, aiming to report the feasibility and 

advantages of using horizontal reactor for the production of CNT. After that, a short 

review on design of experiment is given to identify the suitable types of statistical 

method and model for this research project. Finally, this chapter ends with a 

discussion on water assisted CCVD. 

Chapter Three (Materials and Methods) discusses the experimental materials 

and the research methodology conducted in the present study. This chapter describes 

detailed information on the overall flow of this research work and also experimental 

methods used in conducting this research project. Besides, detailed information on 

14 



the materials and chemicals used in this study is also given. Finally, the analytical 

techniques and the conditions set for the equipment used for various 

characterizations for CNT are presented. 

Chapter Four (Results and Discussion) is the most important chapter of the 

thesis. It encompasses detailed discussion on the findings obtained in this study. The 

main topics in this chapter include a preliminary study, process analysis of CNT 

formation in a horizontal reactor, followed by optimization study for CNT 

production via methane CCVD to obtain maximum carbon yield and CNT with 

satisfying characteristics .. The effect of water vapor in methane decomposition is 

discussed afterward. Finally, the decomposition of natural gas over CoOx-

MoOxl Ab03 catalyst is demonstrated. 

Chapter Five (Conclusions and Recommendations) summarizes the results 

obtained in this research study. This chapter concludes the overall research findings, 

and some concluding remarks are also made. Then, suggestions to improve the 

present studies are made and possible future studies to be conducted are being 

proposed. These recommendations and suggestions are given after considering the 

significant findings, the conclusions obtained as well as the limitations and 

difficulties encountered in the present work. 
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CHAPTER TWO: 

LITERATURE REVIEW 

This chapter reviews the studies reported in the literature related to this 

research project. A brief introduction of the common synthesis methods for the 

production of carbon nanotube (CNT) is delivered in the beginning of this chapter. 

The production of CNT via catalytic chemical vapor deposition (CCVD) method and 

the effects of process variables on the as-produced CNT are further reviewed and 

deliberated. Additionally, review on the employment of statistical design of 

r experiment in process optimization is reported. Finally, this chapter ends with the 
! 
[ 

: discussion on water assisted production of CNT by CCVD of hydrocarbon. 

2.1 Synthesis methods of carbon nanotubes 

Ever since the discovery of CNT in 1991, its synthesis methods have gone 

through a significant evolution. The importance and extraordinary properties 

possessed by CNT have motivated many scientists to develop and improve the 

synthesis methods. In general, three major methods are well developed in 

synthesizing CNT. These methods, namely electric arc discharge, laser ablation and 

catalytic chemical vapor deposition (CCVD), will be further discussed in this section. 

2.1.1 Electric arc discharge method 

The electric arc discharge (EAD) is the first method used to produce CNT. 

EAD method is initially used to synthesize fullerenes (lijima, 1991). The schematic 

diagram of EAD for CNT production is shown in Figure 2.1. In this method, two 
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graphite electrodes are connected to a power supply, and place linearly with the two 

ends are separated by a short distance (1-4mm) inside a low pressure chamber (50-70 

mbar). A very high temperature (2000-3000°C) is obtained under an inert atmosphere 

of helium or argon, which allows the sublimation of the carbon from the positive 

electrode (anode) and deposition on the negative electrode (cathode). As a result, the 

length of the anode decreases as the CNT start forming on the cathode (Y akobson 

and Smalley, 1997; Journet et al., 1997; Ebbesen and Ajayan, 1992; Poole and 

Owens, 2003; Dervishi et al., 2009). 

r o P 

Figure 2.1. Schematic reactor setup for electric arc discharge -(Nanodevice­
Laboratory, 201 0) 

Two types of synthesis can be performed in the arc: evaporation of pure 

graphite (for the production of MWCNT) and co-evaporation of graphite and metal 

(for the production of SWCNT) (Paradise and Goswami, 2007). The first successful 

production of MWCNT at the gram level was developed by Ebbesen and Ajayan 

( 1992). The purity and yield depend sensitively on the gas pressure in the reaction 

vessel (Ebbesen and Ajayan, 1992). In addition, MWCNT produced by the EAD 

method have fewer structural defects and better electrical, thermal, and mechanical 
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properties. Meanwhile, for SWCNT to be grown by EAD method, metal 

nanoparticles such as Fe, Co, Ni or their bimetallic catalyst, are needed to be 

embedded into the carbon anode (Bethune et al., 1993; Iijima and Ichihashi, 1993). 

The catalyst plays a role in inducing the growth of SWCNT. Bethune and coworkers 

(1993) were the first who successfully synthesized substantial amount of SWCNT 

with the process parameters involved small gaps between electrodes, high current 

(100A), plasma between the electrode at about 4000K, voltage range (30-35V) under 

specified electrode dimensions. The EAD technique for CNT production seems 

simple, but it is difficult to obtain high yields of nanotubes and requires careful 

control of reaction conditions (Meyyappan, 2005). 

2.1.2 Laser ablation method 

In 1995, Smalley and his coworkers at Rice University introduced a very 

promising approach to produce CNT, called the laser ablation method (Guo et al., 

1995b ). Laser ablation method is very similar to EAD method whereby the graphite 

rod- is vaporized at high temperature and the vapor carbon condensed to form CNT. 

Figure 2.2 shows a schematic of laser ablation reactor setup. In laser ablation method, 

intense laser pulses are used to ablate a carbon target in a hot helium or argon 

atmosphere. As the graphite target inside a furnace is heated up at about 1200°C, a 

pulsed laser beam incident on the target starts evaporating carbon from the graphite. 

The carbon atoms from high temperature zone are then sweep by carrier gas to a cold 

copper collector on which they condense into CNT (Terrones, 2003). 

Laser ablation method is a very efficient method for the production of 

SWCNT (Thess et al., 1996). Regrettably, it is an extremely expensive technique as 
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it occupies high-purity graphite rods and high-power laser (Terrones, 2003). Similar 

to EAD method, transition metal catalysts are required in order to synthesize 

SWCNT. It is experimentally found that the SWCNT growth time in this technique is 

only last for a few milliseconds (Yudasaka et al., 1999a; Zhang and Iijima, 1999; Sen 

et al., 2000). Generally, this method can be used to produce long bundles SWCNT 

(Saito et al., 1992a) and closed-ended MWCNT (Guo eta!., 1995a), and by-product 

such as fullerenes, amorphous carbon and other carbon by-product are produced. 

The morphology and properties of CNT are highly influenced by the reaction 

parameters such as reaction temperature, type of hydrocarbon and carrier gas, light 

intensity and pressure (Dervishi et al., 2009). For instance, no CNT are formed when 

the furnace temperature is below 800°C, whereas a maximum SWCNT yield is 

observed when the furnace is heated to about 1200°C (Yudasaka et al., 1999b; 

Puretzky et al., 2000). 

Nd YAG 
laser 

Wal or Cool<:td 
Cu Collector 

'--------------------------------' 

Figure 2.2. Schematic reactor setup for laser ablation method (Nanodevice­
Laboratory, 2010). 

19 



2.1.3 Catalytic chemical vapor deposition method 

Catalytic chemical vapor decomposition (CCVD) method enables the growth 

of CNT at low temperatures ( <1 000°C) from carbon-containing compounds which 

are decomposed catalytically on transition metal catalyst. The word catalyiic is used 

I to emphasize the role of metallic particles functioning as the nucleation sites for the 

CNT growth (Loiseau et al., 2006). The formation of filamentous carbon by CCVD 

in industrial chemical processes such as steam reforming has been intensively studied 

for the past 50 years since the introduction of the transmission electron microscopy 

(TEM). Nevertheless, the CCVD growth of CNT was first introduced by Yacaman 

and coworkers in 1993 (Jose-Yacaman et al., 1993). 

CNT synthesized via CCVD method is essentially a two-step process, 

consisting of a catalyst preparation step followed by the growth of CNT. Common 

catalysts used are transition metal such as Ni, Fe or Co. The growth process involves 

heating of catalyst to high temperatures in a furnace and flowing of carbon-

containing gaseous (usually hydrocarbon) through the tube reactor for a period of 

-

time. Once the hydrocarbon is decomposed into carbon and hydrogen, carbon atoms 

dissolve and diffuse into the metal surfaces and rearrange themselves into a network 

containing hexagons of carbon atoms and finally precipitate out in the form of CNT 

(Oncel and Ytiriim, 2006; Dervishi et al., 2009). The catalyst could be deactivated 

when all the metal surfaces are covered by amorphous carbon or encapsulated by 

CNT, and thus hydrocarbon gases no longer come into contact with the active sites, 

which result in the cessation of CNT growth (Yamada et al., 2008). 
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It is worth mentioning that the excellent versatility possessed by CCVD 

enables the utilization ofhydrocarbons in any state (solid, liquid or gas) to synthesize 

CNT. The hydrocarbon source exploited in the CVD method can be in a gaseous 

state such as acetylene, methane, and ethylene, a liquid state such as benzene, alcohol, 

and hexane, or a solid state such as camphor and naphthalene. Hydrocarbon in the 

gaseous form can be purged directly into the reaction furnace, while hydrocarbons in 

liquid and solid forms require preheating before entering the reactor. (Terranova et 

al., 2006; Dervishi et a!., 2009). Figure 2.3 shows a schematic diagram of the CCVD 

method exploiting the carbon source in any state, i.e. gas, liquid and solid. 

CCVD is marked as the most favorable synthesis method because it is a 

simple and low cost process, yet able to synthesize CNT in high yield, not to mention 

can be easily scaled-up to industrial production (Daenen eta!., 2003). Furthermore, 

CCVD method is ideally suited to synthesize CNT for advanced applications in the 

fields of electronics and optoelectronics, or when a specific CNT architecture is 

required (Teo et al., 2005). In the present work, CCVD method is employed to 

produce CNT. In view of this, the prQduction Qf CNT via CCVD method is discussed 

in, depth in next section. 
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Figure 2.3. Schematic diagram of a CCVD setups utilizing three different types of 
hydrocarbons: (a) gas, (b) liquid and (c) solid. 
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2.2 Synthesis of carbon nanotubes via catalytic chemical vapor deposition 

method 

Compared to other CNT growth techniques, catalytic chemical vapor 

deposition (CCVD) has been regarded as the most promising method for large scale 

production of CNT due to its advantages of low cost, high yield, mild operating 

conditions and easily control (Cheng et al., 1998). In the CCVD process, the 

production of CNT can be controlled by varying the reaction parameters such as type 

of catalyst used, reaction temperature, and flow rate of feedstock (Shajahan et al., 

2004). These tunable parameters affect the types of carbonaceous material grown, the 

quality and quantity of the as-produced CNT. This section reviews the important 

variables that need to be considered in synthesizing CNT via CCVD method, such as 

type of catalyst, metal loading, reaction temperature, carbon feedstock and gas 

hourly space velocity (GHSV). 

2.2.1 Catalyst 

Catalyst is the heart of the CCVD synthesis of CNT and therefore developing 

an adequate catalyst is crucial to obtain the desired CNT morphology as well as 

production yield. Hence, careful selection of the catalyst is of importance in the 

CCVD synthesis. It is well accepted that transition metals such as Ni, Fe or Co in the 

form of nanoparticles are considered as the most effective catalysts. However, the 

doubt is which catalyst is more effective and active to provide CNT with better 

quality as well as yield. Supported nickel has been identified as the most effective 

catalyst for methane decomposition, thus nickel-based catalysts are frequently being 

employed for industrial use (Zhang and Amiridis, 1998; Li et al., 2006b; Konieczny 
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et al., 2008; Ashok et al., 2009). Meanwhile, iron supported on alumina was very 

efficient at the temperature range of 600-650°C (Reshetenko et al., 2004; Alexiadis 

and Verykios, 2009). The effect of selected catalyst (Ni, Fe and Co) on the synthesis 

of CNT studied by Lee and coworkers revealed that the growth rate of CNT is in the 

order ofNi> Co> Fe (Lee et al., 2002). Noble metal such as rhodium, ruthenium and 

platinum have been proposed as active metals in hydrocarbon decomposition into 

CNT (Otsuka et al., 2000; Ichi-oka et al., 2007). Ichi-oka et al. (2007) claimed that 

aforementioned noble metals supported on MgO gave higher yield of carbon than 

cobalt, iron and nickel from decomposition of methane. However, the use of noble 

metals is not feasible from the economic point of view. 

In order to enhance the performance and catalytic activity of the catalyst, a 

promoter can be added to the catalyst. A promoter is a component of catalyst system 

which does not involve directly in the chemical reaction like active metal does, but it 

helps to enhance the performance and activity of solid catalyst (Chai et al., 2009b). 

Possible promoters being used include Mn, Mo, Ni, Cu and Pd (Alvarez et al., 2001; 

Lamouroux et a!., 2007; Ashok et al., 2009; Chai et al., 2009b; Chesnokov and 

Chichkan, 2009; Landois et al., 2009; Gonzalez et al., 2010; O'Byme et al., 2010; 

Zoican Loebick et al., 2009). A proper choice of promoter will greatly improve the 

carbon yield and the morphology of CNT formed as well as prolong the catalytic 

activity of the catalyst for the growth of CNT, which are lacking in monometallic 

catalyst (Avdeeva et al., 1996; Alvarez et al., 2001; Kathyayini et al., 2004; 

Reshetenko et al., 2004; Ashok et al., 2009). A vdeeva et al. (1996) reported that by 

adding Cu on the catalyst as promoter, up to 250 g/gcat of filamentous carbon was 

produced by methane decomposition. The adding of promoter can affect the 

morphology of as-produced CNT too. For instance, an addition of a small amount of 
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