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PETUA LARIAN M-DARIP ADA-K TERTILIK SEMULA BERDASARKAN 
P ANJANG LARIAN MEDIAN 

ABSTRAK 

Petua larian digunakan untuk meningkatkan kepekaan carta kawalan X Shewhart dalam 

pengesanan anjakan min proses yang kecil dan sederhana. Kebanyakan carta X yang 

menggabungkan petua larian adalah direkabentuk berdasarkan purata panjang larian (ARL) 

sebagai kriteria untuk diminimumkan. Adalah diketahui bahawa bentuk taburan panjang 

larian berubah mengikut magnitud anjakan dalam min proses, iaitu daripada taburan yang 

sangat terpencong apabila proses berada dalam keadaan terkawal kepada hampir simetri 

apabila anjakan adalah besar. Disebabkan bentuk taburan panjang larian berubah 

mengikut magnitud anjakan dalam min, median panjang larian (MRL) memberikan 

penjelasan yang lebih bermakna tentang prestasi carta dalam keadaan terkawal dan terluar 

kawal. Dalam tesis ini, rekabentuk petua larian m-daripada-k tertilik semula (R - mlk) 

berdasarkan median panjang larian telah dicadangkan dan sisihan piawai untuk taburan 

panjang larian (SDRL) bagi petua m-daripada-k tertilik semula juga dikaji. Tesis ini 

menokok-tambah hasil kerja Antzoulakos dan Rakitzis pada tahun 2008b, yang 

merekabentuk petua R - mlk berdasarkan ARL. Teknik rantai Markov digunakan untuk 

mengira MRL. Pada keseluruhannya, keputusan MRL menunjukkan bahawa petua larian 

tertilik semula memberi prestasi yang lebih baik untuk mengesan anjakan min yang kecil 

dan sederhana, di samping mengekalkan kepekaan yang sarna terhadap anjakan min yang 

besar, berbandlng dengan carta X asas. Keputusan MRL adalah sejajar dengan keputusan 

yang diperoleh Antzoulakos dan Rakitzis pada tahun 2008b, yang mana petua larian 

direkabentuk berdasarkan ARL. Semua MRL dikira dengan program Mathematica, yang 

mana kejituan pengiraan disemak melalui kaedah simulasi dengan menggunakan program 
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Statistical Analysis System (SAS). Plot-plot bagi pemalar had dalam, d lawan pemalar had 

luar, L untuk pelbagai petua R - mlk dan MRL dalam keadaan terkawal juga diberikan. 
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THE REVISED M-OF-K RUNS RULES BASED ON MEDIAN RUN LENGTH 

ABSTRACT 

Runs rules are used to increase the sensitivity of the Shewhart X control chart in 

detecting small and moderate process mean shifts. Most of the X charts incorporating 

runs rules are designed based on the average run length (ARL) as a criterion to be 

minimized. It is known that the shape of the run length distribution changes according to 

the magnitude of the shift in the process mean, i.e. ranging from highly skewed when the 

process is in-control to approximately symmetric when the shift is large. Since the shape 

of the run length distribution changes with the magnitude of the shift in the mean, the 

median run length (MRL) provides a more meaningful explanation about the in-control 

and out-of-control performances of a control chart. In this thesis, the design of the revised 

m-of-k (R - mlk) runs rules based on MRL is proposed and the standard deviation of the 

run length (SDRL) distribution of the revised m-of-k rules is also studied. This thesis 

complements the work of Antzoulakos and Rakitzis in 2008b, who designed the R - mlk 

rules based on ARL. The Markov chain technique is employed to compute the MRLs. 

Overall, the MRL results show that the revised runs rules give better performances for 

detecting small and moderate mean shifts, while maintaining the same sensitivity towards 

large mean shifts, compared with the standard X chart. The MRL results are in 

accordance with the results obtained by Antzoulakos and Rakitzis in 2008b, where the 

runs rules are designed based on ARL. All the MRLs are computed using the Mathematica 

programs, where the accuracy of the computation is verified via simulation using the 

Statistical Analysis System (SAS) programs. The plots of the inner limit constant, d versus 

the outer limit constant, L for the various R - mlk rules and in-control MRLs are also 

provided. 
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CHAPTER 1 
INTRODUCTION 

1.1 Statistical Quality Control (SQC) 

Statistical Quality Control (SQC) is a branch of Total Quality Management. SQC 

deals with the collection, analysis and interpretation of data, for use in quality control 

activities. Two major parts of SQC are Statistical Process Control (SPC) and acceptance 

sampling. All planned or systematic actions necessary to provide adequate confidence that 

a product or service will satisfy given requirements for quality are called quality assurance 

(Shirland, 1993). Quality assurance is usually associated with some form of measurement 

and inspection activity and it has been an important aspect of production operations 

throughout history. 

Prior to the late 1920s, quality control consisted mainly of 100% inspection. Most 

often, subjective decisions were made regarding the conformance or nonconformance of a 

product. It is generally accepted that Walter A. Shewhart of the Bell Telephone 

Laboratories was the originator of modern statistical quality control (Montgomery, 2009). 

In 1924, he developed a statistical chart for the control of product variables. In the later 

part of the 1920s, H. F. Dodge and H. G. Romig, both of the Bell Telephone Laboratories, 

developed the area of acceptance sampling as a substitute for 100% inspection 

(Montgomery, 2009). 

Recognition of the usefulness of statistical quality control became apparent during 

World War II, where products had to be produced quickly and with high quality. In 1946, 

the American Society for Quality was formed. This organization has been instrumental in 

standardizing the symbols and terminology used in quality control. It promotes the use of 

quality for all types of productions and services through numerous technical publications, 

conferences and training sessions. 



In 1950, W. Edwards Deming and Joseph M. Juran were hired to give a series of 

lectures on statistical methods to Japau.-ese engineers and on quality responsibilities to the 

chief executive officers (CEOs) of large organizations in Japan. In the decades that 

followed, Japanese industries were instrumental in developing quality as a management 

philosophy and this sets the quality standards for the rest of the world to follow (Shirland, 

1993). 

By the late 1970s and early 1980s, a quality renaissance began to occur in U.S. 

products and services and by the middle of 1980s, the concepts of Total Quality 

Management (TQM) were being publicized. In the late 1980s, industries and the U.S. 

Department of Defense began to emphasize on SPC. Japan's Genichi Taguchi introduced 

his concepts of parameter and tolerance design and brought about a resurgence of design 

of experiments (DOE) as a valuable quality improvement tool (Montgomery, 2009). 

In 1990s, quality concepts continued to be emphasized in the auto industry. In 

addition, the introduction of ISO 9000 became the worldwide model for a quality system. 

ISO 9000 has been modified by the automotive industry to place greater emphasis on 

customer satisfaction, continuous improvement and manufacturing capabilities. 

In the past ten years, the quality focus has been shifting towards information 

technology within an organization and externally via the Internet. 

1.2 Control Charting Techniques for X - R Charts 

It is helpful to follow a set of procedure in order to set up a pair of control charts, 

each for the average, X and range, R. The steps in this procedure are as follows 

(Besterfield, 2009): 

Step 1. Determine the quality characteristics. 

Step 2. Select the rational subgroup size.· 

2 



Step 3. Collect the data. 

Step 4. Determine the trial center line and control limits. 

Step 5. Establish the revised center line and control limits. 

The primary step in setting up the X and R charts is to determine the 

characteristics to be measured. A candidate for measurement should be something that is 

causing problems or has the potential to cause problems, such as length, overall weight, 

luminous intensity or other related characteristics. 

Next, the rational subgroup size is selected. A rational subgroup is one in which 

the variation within the group is due only to chance causes. This within-subgroup variation 

is used to determine the control limits whereas the variation between subgroups is used to 

evaluate long-term stability. Since the purpose of control charts is to determine when the 

process has gone out-of-control, there will be a greater probability of detecting a change if 

the units sampled are as nearly alike as possible. Typically, an ideal subgroup size is about 

four or five measurements (Shirland, 1993). 

The actual process mean and standard deviation are usually not known in practice; 

therefore, estimates are usually used to determine the control limits of a control chart. For 

subgroups with greater than 10 measurements, the subgroup standard deviation provides a 

good estimation of the process standard deviation. As the subgroup size increases, the 

control limits become closer to the center value, which makes the control chart more 

sensitive to small variations in the process mean. On the other hand, for subgroups with 

less than 10 measurements, either the subgroup range or the subgroup standard deviation 

provides a good estimation of the process standard deviation. In practice, the X and R 

charts are used with subgroups having sizes of four or five each, for ease of data collection 

and simple calculation of the range. 
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After the subgroup size is selected, the next step is to collect data and calculate the 

trial control limits. It is necessary to collect a minimum of 25 subgroups of data. Fewer 

subgroups would not provide a sufficient amount of data for accurate computation of the 

center line and control limits, while more subgroups would delay the introduction of the 

control chart. Tradition dictates the use of the three standard deviation width for 

calculating the upper and lower control limits of control charts. When three standard 

deviation is used, there is only a 0.0027 probability that a point will fall either above the 

upper control limit or below the lower control limit if the process is in-control. The use of 

the three standard deviation width in setting the control limits will help quality engineers 

in determining whether a process is out-of-control so that corrective actions can be taken 

immediately. 

Next, the mean and range of each subgroup are plotted on their respective X and R 

charts after the upper and lower trial control limits have been determined. A good process 

can be briefly described as one, where no out-of-control point or unusual pattern of 

variation on a control chart is present. Any out-of-control condition will trigger a search 

for an assignable cause. If an assignable cause for the point of out-of-control exists, the 

data point can be thrown out and the new centerline and control limits are computed using 

the remaining data points. The remaining data points are then plotted on the control chart 

using the new centerline and control limits. This process is repeated until all the data 

points are plotted within the control limits which indicate that the process is stable so that 

the trial revised limits can be used for the monitoring of a future process. 

1.3 Objectives of the Study 

The main objective of this thesis is to propose the design of the various revised m­

of-k runs rules based on Median Run Length (MRL), as a criterion to be minimized. The 
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second objective is to study the standard deviation of the run length (SDRL) distribution 

of the revised m-of-k rules. An example of application to show how the revised m-of-k:~ . 

rules, designed based on MRL is put to work in a real situation is also given. In the revised 

m-of-k runs rules, the general form of the transition probability matrix for the transient 

states does not exist because its dimension changes with the values of m and k. The values 

of m and k, where m = 2, 3 and 4 and k = 2, 3, 4 and 5 are considered in this thesis due to 

practical reasons. Note that small values of m and k are considered because the dimension 

of the transition probability matrix for the transient states will be extremely large when m 

and k are large. A large dimension of the transition probability matrix will lead to complex 

transient states. 

1.4 Organization of the Thesis 

This thesis is organized in the following manner: Chapter 1 gives some 

descriptions on Statistical Quality Control and control charting techniques for the 

Shewhart X - R charts, besides explaining the objectives of the study. In Chapter 2, the 

importance and applications of control charts are discussed. The Shewhart X chart, 

various types of runs rules and performance measures of control charts are also discussed 

in Chapter 2. In Chapter 3, the Markov chain approaches for computing the median run 

length (MRL) and the standard deviation of the run length (SDRL) distribution of·the 

revised runs rules are presented. Chapter 4 gives a detailed explanation on the proposed 

designs of the revised runs rules based on MRL. The descriptions and operations of the 

computer programs are also described in this chapter. Performance evaluations of the 

revised runs rules, in terms of MRL and SDRL, and an illustrative example to show how 

some ofthese rules are implemented in a real situation are also given in Chapter 4. Finally, 

conclusions and suggestions for further research are presented in Chapter 5. 
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CHAPTER 2 
SOME PRELIMINARIES AND REVIEW ON RUNS RULES AND 

CONTROL CHARTS 

2.1 Introduction 

In this chapter, the importance and examples of applications of control charts 

are given. In addition, the Shewhart X control charts for variables data, which 

include the XR and Xs charts that are widely used to monitor the mean of a process 

under the normality assumption will be briefly discussed. 

One of the ways to enhance the X chart to increase its sensitivity in detecting 

shifts in the process mean is to incorporate the chart with runs rules. This chapter will 

also discuss the various types of runs rules. 

Furthermore, several performance measures of control charts, like the ARL, 

MRL and SDRL will also be explained in this chapter. 

2.2 Importance of Control Charts 

Control charts are among the most important management control tools for 

analyzing data and have had a long history of use in U.S. industries and in many 

offshore industries (Montogomery, 7009). 

Control charts are effective in defect prevention. They can be used to 

determine whether a process is operating in a state of statistical control. This is 

because control charts show the degree and nature of variation over time. Control 

charts help to keep the process in-control, which is consistent with the "do it right the 

first time" philosophy. 
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Control charts are also used to estimate process parameters, like the mean and 

variance. They help us to recognize, understand and identify the variability and 

changes in process performance. A control chart can distinguish between background 

noise and abnormal variation. If process operators adjust a process based on periodic 

tests unrelated to a control charting program, they will often overreact to the 

background noise and make the unnecessary adjustments. These unnecessary 

adjustments can actually result in a deterioration of process performance. In other 

words, a control chart is consistent with the "if it isn't broken, don't fix it" 

philosophy (Montgomery, 2009). 

Control charts can be used to improve a process. Once a process is in a state 

of statistical control, efforts to reduce process variability can begin. By reducing the 

variability of a process, the overall quality of the final product increases, which 

reduces scrap and rework and thus increases profitability. 

In addition, control charts provide diagnostic information. Frequently, the 

pattern of points on a control chart contains useful diagnostic information to an 

experienced operator or engineer. This information allows the implementation of a 

change in the process that improves its performance. 

2.3 Applications of Control Charts 

2.3.1 Applications in Industries 

Control charts have been widely used in industries since the 1920s. Control 

charts can be used in practically any type of industry. Some examples of industrial 

applications are given as follows: 
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(i) Improving a supplier's process in the aerospace industry (Montgomery, 

2009): 

A large aerospace manufacturer purchased aircraft components from two 

suppliers. These components frequently exhibited excessive variability on 

a key dimension that made it impossible to assemble them into the final 

product. This problem always resulted in expensive rework costs and 

occasionally caused delays in finishing the assembly of an airplane. The 

materials-receiving group performed a 100% inspection of these parts in 

an effort to improve the situation. They maintained the X and R charts on 

the dimension of interest for both suppliers and find out the main 

problems faced by the two suppliers. Consequently, corresponding actions 

were taken, where the use of control charts had successfully helped the 

company to increase its profit. 

(ii) Reducing the nonconforming production of electric insulators (Gitlow et 

aI., 1989): 

Consider the case of a small manufacturer of low tension electric 

insulators. The insulators are sold to wholesalers who subsequently sell 

them to electrical contractors. Each day during a one-month period the 

manufacturer inspects the production of a given shift; the number 

inspected varies somewhat. Based on carefully laid out operational 

definitions, some of the production which is deemed nonconforming is 

downgraded. The p chart is used to help to reduce the fraction of 

nonconforming production. 
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(iii) Monitoring the stability of a plastic film process (Gitlow et aI., 1989): 

In a converting operation, a plastic film is combined with paper coming 

off a spooled reel. As the two come together they form a moving sheet that 

passes as a web over a series of rollers. The operation runs in a continuous 

feed, and the thickness of the plastic coating is an important product 

characteristic. Coating thickness is monitored by a highly automated piece 

of equipment that uses ten heads to take ten measurements across the web 

at half-hour intervals. The data are then analyzed using the X and S charts 

to monitor the stability of the process. 

(iv) Identifying the variation in the diameters of ceramic insulators (Gitlow et 

aI., 1989): 

In the manufacturing of low tension ceramIC insulators, a mixture of 

various clays and water is crushed, milled, de-aired, pre-shaped and then 

turned on a wheel to achieve the proper final shape. The manufacturer's 

clients specify that the diameter of the center hole is a critical dimension 

for proper ultimate use of the insulator. Consistency in the diameter of the 

center holes has been identified as an important characteristic. The firm's 

clients and hence the manufacturer, would like this dimension to be 

consistently on the nominal value with respect to time. To accomplish this 

goal the manufacturer must identify and remove any special causes of 

variation. The plant is located in an economically depressed area. The 

work force is poorly educated but is willing to learn and improve their 

processes. The median and range control charts are effective control 

charting tools that can be introduced to the work force, for process 
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monitoring, as these charts involve the median and range statistics that are 

easily comprehensible by this level of the work force. 

2.3.2 Applications in Healthcare 

Control charts also have direct applications in healthcare. In fact, many of the 

Performance Improvement Standards from Joint Commission on Accreditation of 

Healthcare Organizations (JCAHO) can be met by using control charts. In general, 

control charts have the following uses in healthcare (Carey, 2003): 

(i) Understanding 

Control charts are very useful to help understand a process and its 

capabilities, such as in studying the waiting time of patients in an 

outpatient center. Control charts provide an understanding of the 

performance and restraints of the system. For example, knowing that the 

average waiting time in an outpatient center is 28 minutes, management 

would not readily sign a service provider agreement that promises an 

average waiting time of 15 minutes unless the system is revamped. 

Control charts are able to show that the system will simply not perform 

well enough to meet the IS-minutes average unless changes are made in 

the procedures. 

(ii) Monitoring 

Control charts help to monitor things over time. Healthcare organizati0ns 

may choose to use control charts to display health or clinical data that they 

are required to gather for regulatory compliance, insurance purposes or for 

their own needs. Healthcare organizations can also use control charts, 
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particularly in high-risk areas like in an emergency ward, to provide 

ongoing, current information on the performances of the system, facilities 

and equipments, instead of discovering problems long after they occur. 

(iii) Improving 

Control charts can be used to improve the processes or systems in 

healthcare organizations. When a process is monitored, problems may be 

identified and improvement priorities may surface. For example, the 

systolic blood pressure (mmhg) readings for a patient who is diagnosed 

with high blood pressure can be recorded over a period of time deemed 

necessary by a medical doctor (Mohammed et aI., 2008). The individuals 

and moving range charts can be used to observe the blood pressure of the 

patients so that actions are taken to improve the blood pressure of the 

patient. 

(iv) Verifying 

Control charts are very helpful to verify if changes made to a system result 

in an improved system performance. For example, a new form may be 

used to decrease patients waiting time in an outpatient center. A control 

chart will show visually if the form is effective or not in reducing the 

waiting time. 

2.3.3 Applications in Accounting 

The potential applications of control charts m accounting are 

numerous. Control charts can measure efficiency, such as days it takes to process an 

invoice from a shipping document or days it takes to complete a monthly close. They 
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can also be used to chart weekly payroll in an account's department of an 

organization so as to alarm management whenever an error occurs. The use of control e. 

charts in accounting helps to improve performance and efficiency, which in tum 

reduces cost and increases profitability. Table 2.1 shows some of the applications of 

control charts in accounting and the measurements plotted on the chart (Walter et aI, 

1990). 

Table 2.1. Some applications of control charts in accounting 

Applications Measurements plotted on the control chart 

Payroll Number of audit exceptions in samples of 

employee pay records 
Accounts receivable billing Average billing time 

Tax preparation Proportion of unusable returns due to error 

Management travel and Number of improperly authorized or documented 
entertainment expense vouchers 
Accounts payable Number of invoices processed 

General accounting Time required for monthly closing and statement 
preparation 

Accounts receivable and cash Age of accounts receivable 
management 
Purchasing Number of purchase discounts lost 

Sales personnel Sales returns per salesperson when commissions 

are based on gross sales 

2.3.4 Applications in Environment 

Control charts are also being used for environmental purposes. For example, 

the Time Variant (TV) control chart is used to assess the quality and reasonableness 
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of hourly and daily air temperature, wind speed and vapour pressure data collected at 

the California Irrigation Management Information System (CIMIS) weather stations 

(Eching and Snyder, 2003). The TV control chart helps to provide an efficient means 

of inspecting the data and identify potential data quality problems easily. 

2.4 Shewhart X Chart 

The Shewhart X chart was proposed by Walter A. Shewhart while working 

for the Bell Labs in the 1920s (Montgomery, 2009). It is used to determine whether 

or not a manufacturing or business process is in a state of statistical control. The 

Shewhart X chart is based on the assumption that the distribution of the quality 

characteristic is normal or approximately normal. Generally, the Shewhart X chart, 

which signals an out-of-control condition when a single point falls beyond the three 

sigma limits, has been the standard control chart for variables data since the first 

quarter of this century. Variables data involve numerical measurements such as 

length, volume or weight which are measured on a continuous scale. 

The Shewhart X chart consists of three lines, namely, (i) upper control limit 

(DCL) , (ii) center line (CL), and (iii) lower control limit (LCL). The UCL and LCL 

are chosen to help identify nonrandom patterns on the X chart, which represent 

occurrences that are sufficiently unusual and warrant special attention. 

Assume that a quality characteristic is normally distributed with mean Jl, and 

standard deviation cr, where both Jl and cr are known. For XI' X 2 , ••• , Xn as a sample 

of size n, the average of this sample is 
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x = Xl +XZ +",+Xn 

n 
(2.1) 

cr 
where X is normally distributed with mean J.l and standard deviation cr x = Fn 

(Montgomery, 2009). Given the probability is 1- a that an arbitrary sample mean 

will fall between 

(2.2) 

the control limits on the X chart can be obtained from Equation (2.2) if J.l and cr are 

known (Montgomery, 2009). 

The values of J.l and cr are usually unknown in real life situations and are 

estimated from an in-control historical data set consisting of m samples, each of size, 

n. Let X" X2 , ••• , XIII be the averages of the m in-control samples in a Phase-I 

process, then J.l is estimated as follows (Shirland, 1993): 

x = XI +X2 +",+Xm 

m 

where X is the center line of the X chart. 

(2.3) 

The standard deviation cr can be estimated from either the ranges or standard 

deviations of the m samples. The range, R of a sample can be calculated as the 

difference between the largest and smallest observations in the sample, i.e., 

R = Xmax -Xmin . 

Let R" Rz' ... , Rm be the ranges of the m samples. Then, the average range is 

R = Rl + Rz + ... + Rm 
m 
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Therefore, the limits of the X chart when parameters are unknown are given as 

follows (Montgomery, 2009): 

(2.6a) 

CL=X (2.6b) 

and 

(2.6c) 

The value of the constant, A2 which depends on the sample size, n, is given in most 

statistical quality control textbooks (see Table Al in Appendix A). 

If the sample standard deviation, S is used to estimate cr, where 

S= ;-1 (2.7) 
n-l 

then the average sample standard deviation estimated from m preliminary samples in 

Phase-I is 

s = Sl +S2 +",+Sm 
m 

It follows that the limits of the X chart when parameters are estimated are 

(Montogomery, 2009) 

CL=X 

and 
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(2.9a) 

(2.9b) 

(2.9c) 



where A3 is the control limit constant whose value is given in most quality control 

reference books (see Table Al in Appendix A). 

2.5 Runs Rules 

2.5.1 Classical Rules 

Western Electric (1956) and Nelson (1984) provided excellent discussions on 

numerous runs rules schemes. They described an out-of-control condition as depicted 

by k of r successive points falling beyond the one, two or three sigma limits, where 2 

~ k ~ r. The effect of using runs rules on the X chart has been studied by Champ and 

Woodall (1987) who found that the chart incorporating runs rules achieve its goal but 

its false out-of-control signal rate increases significantly. 

Derman and Ross (1997) considered two additional schemes, each of which 

used specially designated (smaller than three sigma) control limits. In their first 

scheme, given two successive points, an out of control signal is obtained if either 

point is above an upper control limit and the other is below a lower control limit, or if 

both points are beyond one limit. In their second scheme, an out-of-control signal is 

obtained if any two of three successive points are beyond any of the control limits, 

i.e., among the two points contributing to the out-of-control signal, either a point is 

beyond the UCL while the other is beyond the LCL; or two points are beyond the 

same limit. In short, they showed that both schemes provided increased sensitivity to 

moderate process average shifts over that of a Shewhart X chart. Figures 2.1 and 2.2 

show the graphical displays explaining how the two schemes work. Both examples 

generate out-of-control signals at the last sample point. 
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______________________ ~~-------- UCL 

CL 

LCL 

Figure 2.1. An illustration ofthe first scheme 

________________ ~~~------------ UCL 

CL 

LCL 

Figure 2.2. An illustration of the second scheme 

Motivated by Derman and Ross (1997), Klein (2000) suggested two types of 

rules for the X chart, namely the two of two (212) and the two of three (2/3) rules, 

having symmetric upper and lower control limits. The designs of both the rules are 

based on the Markov chain approach. For the 212 rule, either two successive points 

plotted above an upper control limit (UCL) or below a lower control limit (LCL) are 

required to signal an out-of-control. For the 2/3 rule, an out-of-control signal is 

produced if either two of three successive points are plotted above the UCL or below 

the LCL. The X chart incorporating any of these rules demonstrated better average 

run length (ARL) performances than the standard X chart, for a process mean shift 

of up to 2.6 standard deviations (Klein, 2000). Figures 2.3 and 2.4 show the graphical 
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display explaining how the 212 and 2/3 rules generate out-of-control signals at the last 

sample point. 

__________________ ~~==~----UCL 

CL 

LeL 

Figure 2.3. An illustration of the 2/2 rule 

________________ ~~------+_----- UCL 

CL 

LCL 

Figure 2.4. An illustration of the 2/3 rule 

2.5.2 Improved Runs Rules 

Khoo (2003) extended the work of Klein (2000) by suggesting the 2/4, 3/3 

and 3/4 rules. Khoo and Ariffin (2006) proposed two new rules, by combining the 

classical III rule with each of the 2/2 and 2/3 rules. These combined rules are 

referred to as the improved two-of-two and improved two-of-three rules (denoted by I 

- m/k, where m = 2 and k = 2 or 3). The 1- 2/2 rule signals an out-of-control if either 

a point plots beyond the outer limits (LCL2 , UCL2 ) or two consecutive points plot 
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between UCLI and UCL2 (or between LCLI and LCL2 ). On the contrary, an out-of­

control signal is issued by the 1 - 2/3 rule, if either a point plots beyond LCL2 1 UCL2 

or two of three consecutive points plot between UCLI and UCL2 (or between 

LCLI and LCL2 ). The two 1 - mlk rules give better ARL perfonnances than the 

corresponding rules of Klein (2000), in detecting small and moderate mean shifts 

while maintaining the same sensitivity in the detection of large shifts. Figures 2.5 and 

2.6 show the graphical displays explaining how the 1 - 2/2 and 1 - 2/3 rules work, 

where out-of-control signals are detected at the last sample point. 

---------------------------------- VCL2 

------------------------ ---------------, VCL I 

Figure 2.5. An illustration of the 1- 2/2 rule 

CL 

LCL! 

LCL2 

---------------------------------- VCLz 

Figure 2.6. An illustration of the 1- 2/3 rule 
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2.5.3 Modified Runs Rules 

Recently, Antzoulakos and Rakitzis (2008a) suggested a modified r out of m 

rule, which is denoted by M - rim. This modified rule gives an out-of-control signal 

if among m consecutive points, either r points are all plotted above an upper control 

limit, while at most (m - r) points fall between the lower control limit and the upper 

control limit or r points are all plotted below a lower control limit, while at most (m -

r) points fall between the upper control limit and the lower control limit. Antzoulakos 

and Rakitzis (2008a) recommended the use of the M - 4/5 rule for the detection of 

small process average shifts and M - 3/5 and M - 2/5 rules for moderate shifts. 

Figures 2.7 and 2.8 are examples showing the detection of out-of-control signals by 

the M - rim rule at the last sample point. In Figure 2.8, there is reasonable doubt 

about the shift of the process average to a higher level since between the r (= 2) 

points falling above the UeL, there are m - r (= 2) points that plot far away from the 

former two points. Thus, it seems useful to take into account the location of the (m - r) 

points relative to the location of the r points, in order to make a decision about a 

process shift, following an out-of-control signal. This setback of the modified rules 

has led to the revised m-of-k rules, proposed by Antzoulakos and Rakitzis (2008b), 

discussed in the next section. 

------------,L~~--~~---------- UCL 

CL 

LCL 

Figure 2.7. An illustration of the M - 3/4 rule 
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____________ ~------------~----- UCL 

CL 

LCL 

Figure 2.8. An illustration of the M - 2/4 rule 

2.5.4 Revised Runs Rules 

Antzoulakos and Rakitzis (2008b) suggested the revised m-of-k rule, denoted 

as R - mlk. In using the R - mlk rule, consider the X chart having a center line (CL) 

and two sets of limits, the outer limits (LCL2 , UCL2 ) and inner limits 

(LCLp UCLl ), where LCL 2 < LCLI < CL < UCLI < UCL2 • For k 2: 2 and 2 ~ m ~ 

k, the R - mlk rule signals an out-of-control if (Antzoulakos and Rakitzis, 2008b). 

(i)' a sample point is plotted beyond LCL2 1 UCL2 or 

(ii) m out of k successive sample points fall between UCLI (LCL l ) and 

UCL2 (LCL2), and the cluster of points taking part in the out-of­

control signal lies between CL and UCL2 (LCL2 ) • 

For every shift in the mean, Antzoulakos and Rakitzis (2008b) showed that 

the R - 2/3 and R - 4/5 rules exhibit better ARL performances than the corresponding 

1-213 and 1-415 rules. Note that the latter rules were suggested by Khoo and Ariffin 

(2006). The evaluation of the ARL performances of the R - mlk rules were based on 

the Markov chain technique, developed by Fu and Koutras (1994). The R - mlk rule 
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allows the user to specify the desired ARLo value. In comparison to most of the runs 

rules in the literature having this desirable property, the R - m/k rule provides the 

quickest speed in the detection of an out-of-control signal. Figures 2.9 and 2.10 

provide the graphical displays showing how the R - 2/3 and R - 4/5 rules detect out-

of-control signals at the last sample point. 

__________________ ~-------------- UCL2 

Figure 2.9. An illustration of the R - 2/3 rule 

CL 

LCL l 

LCL2 

__________________________________ UCL
2 

CL 

LCL2 

Figure 2.10. An illustration of the R - 4/5 rule 

2.6 Performance Measures of a Control Chart 

2.6.1 Average Run Length (ARL) 

The average run length (ARL) is often used to evaluate the performances of 

control charts. The ARL is defined as the average number of sample points plotted on 
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a chart before the first out-of-control signal is obtained. A sequence of ARL values 

corresponding to the various sizes of process shifts is called an ARL profile. ARL 

profiles are useful when alternative quality control schemes are evaluated and 

compared (Klein, 1997). If we use an X chart with limits set at plus/minus three 

standard deviations, the probability that a sample mean will fall outside the chart's 

limits is 0.0027 when the process is in-control. This means that if a process is in 

statistical control, we would expect to observe a sample mean falling outside the 

chart's limits about once in every 370 subgroups. The in-control ARL is calculated as 

follows: 

1 
ARL = =370. 

o 0.0027 

In general, the ARL of a Shewhart chart is computed as 

1 
ARL= -, 

P 

where p is the probability of a sample mean falling outside the chart's limits. 

2.6.2 Median Run Length (MRL) 

(2.10) 

(2.11 ) 

Barnard (1959), Bissell (1969), Woodall (1983), Waldmann (1986a and 

1986b) and Gan (1993), to name a few, have all criticized the sole dependence on 

ARL as a measure of a chart's performance. They suggested the use of median run 

length (MRL) as an additional performance measure. The MRL is the 50th percentage 

point of the probability distribution of the run length. 

The main setback of the ARL is its difficulty of interpretation. The difference 

between the ARL and MRL decreases as the magnitude of a shift increases. 
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Interpretation based on ARL is complicated and could be misleading to quality 

control practitioners, as the shape of the run length distribution changes with the 

magnitude of the shift. On the contrary, the MRL does not have the interpretation 

problem faced by ARL. For instance, an MRL of 20 indicates that 50% of all the run 

lengths are less than 20, or to a layman, it simply means that an out-of-control will 

occur by the 20th sample, in 50% of the time. 

2.6.3 Standard Deviation of the Run Length (SDRL) 

The standard deviation of the run length (SDRL) is the standard deviation of 

the probability distribution of the run length. Besides ARL and MRL, the SDRL is 

sometimes used to evaluate a chart's performance. Smaller SDRL values are more 

desirable than larger ones. 
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