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MODEL MUDAH SUAI DAN KERJASAMA 
GELINTARAN HARMONI BAGI RAMALAN 

STRUKTUR SEKUNDER RNA 

ABSTRAK 

Penentuan fungsi molekul RNA amat bergantung kepada struktur sekundemya. Kaedah fizikal 

yang sedia ada untuk penentuan struktur sekunder adalah mahal dan memakan masa. Be-

berapa algoritma telah dicadangkan untuk peramalan struktur sekunder RNA, termasuk pen-

gaturcaraan dinamik dan algoritma metaheuristik. Gelintaran harmoni (GH) merupakan suatu 

algoritma metaheuristik baru yang berjaya dalam penyelesaian berbagai jenis masalah pen-

goptimuman. Penyelidikan ini mengusulkan tiga varian baru algoritma GH untuk menyele-

saikan masalah peramalan struktur sekunder RNA. Varian pertama yang dikenali sebagai HSR-

NAFold adalah berdasarkan GH asas dan merupakan algoritma GH pertama untuk masalah 

ramalan struktur sekunder RNA. Varian kedua, AHSRNAFold, memperbaiki HSRNAFold 

dengan kawalan parameter mudah suai. Varian ketiga pula memperbaiki HSRNAFold den-

gan menggunakan model GH kerjasama dengan berbilang ingatan harmoni, dikenali sebagai 

CHSRNAFold. Kelakuan varian-varian GH yang baru itu dikaji dan impak penalaan param-

eter yang berlainan bagi varian-varian ini dinilai. Eksperimen dijalankan ke atas 20 individu 

dengan struktur yang diketahui dari empat kelas RNA. Kejituan peramalan ditentusahkan den-

gan menggunakan struktur natif dan algoritma terkini yang lain. Hasil penyelidikan ini me-

nunjukkan bahawa CHSRNAFold memberikan keputusan yang lebih baik berbanding dengan 

keputusan beberapa algoritma terkini dari segi kejituan peramalan. 
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ADAPTIVE AND COOPERATIVE HARMONY 
SEARCH MODELS FOR RNA SECONDARY 

STRUCTURE PREDICTION 

ABSTRACT 

Determining the function of RNA molecules relies heavily on its secondary structure. The 

current physical methods for secondary structure determination are expensive and time con-

suming. Several algorithms have been proposed for the RNA secondary structure prediction, 

including dynamic programming and metaheuristic algorithms. Harmony search (HS) is a new 

metaheuristic algorithm which succeeded in solving many different types of optimization prob­

lems. This research proposes three new variants of HS algorithm to address the RNA secondary 

structure prediction problem. The first variant is called HSRNAFold as a first application of 

HS for RNA secondary structure prediction. The second variant, AHSRNAFold, improves 

HSRNAFold by using adaptive parameter control. The third variant, CHSRNAFold, improves 

HSRNAFold by using a cooperative multiple harmony memories model. The behavior of the 

new HS variants is investigated and the impact of tuning the different parameters of these vari­

ants is evaluated. The experiments were conducted on 20 individuals with known structures 

from four RNA classes. The prediction accuracy was verified with native structures and other 

state-of-the-art algorithms. The results demonstrate that CHSRNAFold outperformed several 

state-of-the-art algorithms in terms of prediction accuracy. 

xxi 



CHAPTERl 

INTRODUCTION 

RNA is a nucleic acid which consists of a long linear polymer of nucleotide units found in the 

nucleus. RNA is similar to DNA, but usually it is single stranded instead of double-stranded, 

containing ribose rather than deoxyribose bases. It has uracil (U) in place of thymine (T). 

The discovered biological functions of RNA have increased in recent times. The scope 

of understanding has expanded and RNA is no longer viewed as only a passive messenger of 

genetic information from DNA to proteins manufacturers as had been thought before. These 

new discoveries have motivated RNA research in many aspects. 

RNA has been found to play important roles in all molecular biology such as carrying 

genetic information (messenger RNA), interpreting the code (ribosomal RNA) and transferring 

genetic code (transfer RNA). It also performs different functions including catalyzing chemical 

reactions (Doudna and Cech, 2002; Hansen et aI., 2002), directing site specific modification 

of RNA nucleotides, controlling gene expression, modulating protein expression and serving 

in protein localization (Bachellerie et aI., 2002; Meister and Tuschl, 2004). These functions 

of RNA molecules determine many diseases caused by RNA viruses. Understanding of the 

biological functions of an RNA molecule is fundamentally based on identifying its 3D structure 

(Tsang and Wiese, 2007a; Neethling and Engelbrecht, 2006). The primary structure of RNA 

is the easiest structure to be determined in the laboratory using gene sequencing techniques. 

It does not contain additional information about the functional structure. On the other hand, 

the tertiary structures are much more difficult to model where the secondary structure bonds 



are stronger and can be formed faster than that of the tertiary structure (Zuker et aI., 1999). 

Therefore, the computational approaches used to predict the structure of RNA have paid more 

attention to the secondary structure. 

Since RNA structure and function are closely related, it is important to understand the com­

mon structure of homologous RNAs in order to discover their functional signatures. However, 

due to the exponential number of possible structures, RNA structure prediction is a complex 

problem. As such, it is still an open problem in bioinformatics. 

1.1 Problem statement and Motivations 

Physical methods used to determine the RNA secondary structure such as X-ray diffraction and 

nuclear magnetic resonance (NMR) spectroscopy are difficult, time consuming and expensive. 

Therefore, computational approaches to predict the secondary structure of RNA molecule can 

be considered as an appropriate alternative (Tsang, 2007). 

RNA secondary structure prediction is not a trivial problem. It has been estimated that 

the number of secondary structures modeled from the input of n nucleotides is greater than 

1.8n (Doshi et aI., 2004). For example, Saccharomyces cerevisiae (X67579) 5S rRNA with 118 

nucleotides in length has an estimated 1.3 x 1030 secondary structure models whereas a larger 

RNA such as the Sulfolobus acidocaldarius (D14876) 16S rRNA, with 1493 nucleotides, has 

an estimated total of 1.3 x 10381 possible secondary structure models. 

Two different computational approaches are currently in use to address the RNA secondary 

structure prediction problem. The first approach is called the comparative sequence analysis 

approach (Gardner and Giegerich, 2004; Gotoh, 1999). It is an iterative process performed on 

a set of homologous related RNA sequences. Briefly, sequence alignment works on the RNA 
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sequences similarities. This alignment is achieved by adding and removing gap characters 

(Deschenes, 2005). The purpose is to correlate sequence and function across genomes. The 

second approach is the single sequence approach, which predicts the secondary structure by 

searching for the minimum free energy. 

Most of the methods were developed based on free energy minimization either by applying 

dynamic programming algorithms (DP) or metaheuristics. Based on free energy minimization . 

of a single RNA sequence, dynamic programming algorithms have been studied since the early 

1970s. Mathews (2006b) provided a review of the revolutions which occurred in the develop­

ment of a number of these algorithms. 

Nussinov et ai. (1978) predicted the RNA secondary structure using the DP method by 

maximizing the number of base pairs. In 1980, they further adapted their original method 

to enhance the results using a simple nearest-neighbor energy model (Nussinov and Jacob­

son, 1980). Zuker and Stiegler (1981) proposed a slightly refined DP approach which models 

the nearest neighbor energy interactions and directly incorporated stacking into the predic-

tion. Later, Zuker (2003) proposed the DP algorithm, mfold. It is still a popular algorithm 

used to find the minimum free energy (MFE) pseudoknot-free secondary structure of an RNA 

molecule. Furthermore, it has become the benchmark for predicting the RNA secondary struc­

ture. mfold uses a complex thermodynamic model to evaluate the free energy of the structures 

by seeking the pseudoknot-free secondary structure with MFE (Zuker, 1994, 2003). Later, 

RNAFold from the ViennaRNA (Hofacker et aI., 1994) package was proposed as a dynamic 

programming algorithm to predict the RNA secondary structure through energy minimization. 

Dynamic programming algorithm, as a mathematical technique, can hit the global optima 

in solving small problems. Nevertheless, in real world problems, there are some drawbacks. 

For example, when the number of variables increases, the number of evaluations increases 
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exponentially due to recursive nature of dynamic programming. For RNA secondary structure 

prediction, the huge number of structure alternatives makes it difficult to determine the most 

correct one (Tsang, 2007). 

In another development, many metaheuristics algorithms were proposed such as genetic 

algorithms (GAs), simulated annealing (SA) and particle swarm optimization (PSO). GAs was 

shown to achieve higher base pairs prediction rates than DP (Gultyaev et aI., 1998). The most 

recent GAs studies in this area are RnaPredict and its parallel version (P-RnaPredict) which 

were proposed by Wiese and his students (Wiese et aI., 2007; Wiese and Hendriks, 2006). The 

results of both algorithms showed that their quality is comparable to mfold. SARNA-Predict 

which is an SA algorithm was introduced by Tsang and Wiese (2007a,b). It attempted to 

predict the RNA secondary structures with a low free energy. SARNA-Predict showed good 

results, with high number of correctly predicted base pairs, in comparison to known native 

structures and to other algorithms in the literature. Recently, two versions of PSO, setPSO and 

HelixPSO, were also proposed by Neethling and Engelbrecht (2006) and Geis and Middendorf 

(2007) respectively. Both algorithms were used to find secondary structures with low free 

energy. 

The main drawback of local based metaheuristics approaches like SA is that they may get 

stuck in the local optimal solution. In addition, there is no guarantee that the value of the 

objective function at any local optimum is close to the optimum value (Aarts and Lenstra, 

1997). On the other hand, the population-based metaheuristics approaches such as GA, ant 

colony and PSO have their drawbacks of premature convergence and stagnation (Qin et ai., 

2006). 
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1.2 Harmony Search Algorithm 

Hannony Search (HS) algorithm is an optimization technique developed by Geem (Geem et aI., 

2001). HS mimics the musicians' improvisation process. 

Researchers (Alatas, 2010; Lee and Geem, 2004; Geem et aI., 2001; Mahdavi et aI., 2007) 

summarized the features of HS over the other traditional optimization techniques: i) HS im­

poses less mathematical requirements, and as such it can be easily used for various types of 

engineering problems; ii) it does not require initial value settings of the decision variables, 

and thus, it may escape from local optima; iii) derivative information is not necessary due to 

stochastic random searches which HS uses; iv) HS can work with both discrete and continuous 

optimization problems; v) it can overcome the drawback of building block theory of GA by 

taking into account the relationship between the decision variables using its ensemble opera­

tion; and vi) HS algorithm generates a new vector by considering all of the existing vectors, 

rather than considering only two parents as in GA. 

These features increase the flexibility of HS algorithm in solving a wide variety of opti­

mization problems in several fields. Ingram and Zhang (2009) provided an overview of ap­

plications and developments using HS algorithm. These applications include continuous en­

gineering optimization, vehicle routing, combined heat and power economic dispatch, water 

pump switching problem, optimal scheduling of multiple dam system and transport energy 

modeling (Fesanghary et aI., 2009, 2008; Ayvaz, 2007; Lee and Geem, 2004, 2005; Mahdavi 

etaI., 2007; Mohsen et aI., 2008, 2009a,b; Saka, 2009; VASEBI et aI., 2007; Ceylan et aI., 2008; 

dos Santos Coelho and Mariani, 2009; Jaberipour and Khorram, 2010; Kaveh and Talatahari, 

2009; Kaveh and Abadi, 2010; Mun and Geem, 2009a,b; Pan et aI., 201Oc; dos Santos Coelho 

and de Andrade Bernert, 2009; Zou et aI., 2010). 
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Hannony search has three parameters which contribute interactively to the creation of new 

solution. The interaction between various components is the important factor to consider for 

the success of HS algorithm over other algorithms. As such, this interaction may guarantee a 

good balance between the intensification and diversification. Such a balance may prevent pre­

mature convergence and overcome the stagnation. For algorithm parameters, some evidences 

are available to suggest that HS is sensitive to chosen parameters (Mahdavi et al" 2007). This 

means that these parameters may need to be fine-tuned to obtain quality solutions. Further­

more, a group of multiple hannony memories can be used in parallel modeling. This parallel 

model may increase both the efficiency and effectiveness of the algorithm (Yang, 2009). 

1.3 Objectives 

The current algorithms used in RNA secondary structure prediction have some limitations and 

drawbacks. The aim of this thesis is not only to develop efficient HS variants for RNA sec­

ondary structure prediction, but also to show that the proposed variants are able to overcome 

the state-of-the-art algorithms in terms of performance. 

The primary objectives of this thesis are summarized as follows: 

• To adapt HS algorithm to address RNA secondary structure prediction problem. 

- To speed up the prediction process by refining the existing helix generation algo­

rithm. 

- To evaluate the effect of using different settings for HS parameters such as hannony 

memory size (HMS), harmony memory consideration rate (HMCR), pitch adjust­

ment rate (PAR) and bandwidth (BW) on the solution quality and the convergence 

behavior. 
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• To further enhance the accuracy of prediction and performance of HS for RNA secondary 

structure prediction problem by 

- Applying adaptive parameters for HS parameters. 

- Using a new cooperative model with multiple harmony memories. 

1.4 Scope and Limitations 

This thesis focuses on solving the RNA secondary structure prediction problem. Based on the 

assumption that the correct structure is a low energy structure, the RNA folding is subject to the 

laws of thermodynamics (Deschenes, 2005). The stability of the secondary structure depends 

on the amount of free energy released to form the base pairs. Therefore, the more negative the 

free energy of a structure is, the more stable a particular sequence is formed. This structure is 

called the MFE secondary structure (Layton and Bundschuh, 2005). 

RNA secondary structure 
prediction (RNA Fold) methods 

Multi sequences 
(Comparative) 

psuedoknote 
structure 

optimization 

Figure 1.1: The scope of the research 
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In a case where only a single sequence of a given RNA molecule is known or the number of 

available sequences with high similarity is low, the ab initio methods are used to perform RNA 

secondary structure prediction as an energy minimization problem. These methods are either 

dynamic programming or metaheuristics. This research proposes new metaheuristic methods 

based on HS algorithm to enhance the accuracy of the prediction. As shown in Figure 1.1, the 

scope of study focuses on the prediction of pseudoknots-free RNA secondary structure. The 

prediction of the pseudoknots RNA secondary structure does not fall within the scope of this 

research due to the following reasons: i) the computational complexity (Hendriks, 2005); ii) 

the inability of the adopted thermodynamic models to deal with pseudoknot motifs (Neethling, 

2008); and iii) infrequent occurrence of pseudoknots in nature (Deschenes, 2005). In the future, 

if corresponding thermodynamic models support the calculation of pseudoknot energy contri­

butions, it will be easy to extend the proposed variants to enable prediction of pseudoknots. 

1.5 Research Approach 

This research work is divided into three processes: preprediction, prediction and postprediction 

as shown in Figure 1.2. 

In the preprediction process, the set of all feasible helices are generated with the calculation 

of the free energy for each helix using the particular thermodynamic model. In the prediction 

process, three variants are proposed based on HS for RNA secondary structure prediction. 

The first proposal is to predict the structure using basic HS without modification. The second 

proposal is an enhanced version of first proposal by using adaptive parameters control. Two 

parameters- harmony memory consideration rate (HMCR) and pitch adjustment rate (PAR)­

are affected by this adaptation. The third proposal is the new cooperative model of the basic 

HS with multiple HMs. In all the proposals, the same mechanism is used for RNA secondary 

structure encoding, decoding, the thermodynamic models and the harmony representation. 

8 



Collecting datasets 

Generating all feasible helices 

First proposed method (HSRNAFold) 

Second proposed 
method (AHSRNAFold) 

Third proposed method 
(CHSRNAFold) 
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I Results collection 

L 

Ie:: o 

I~ 
~ 

I~ - a.. 

~------~------~-I 
Analysis the finding results 

I.~ 
N 

I~ 
ILL 

Validation and comparison 

L 
Figure 1.2: The Methodology. 

The third process includes the collection of the results of each proposal for analysis and 

discussion. In this step, the best predicted secondary structure is also generated. 

Comprehensive study and discussion are performed on a variety of RNA classes ( 5S rRNA, 

Group I intron 16S rRNA, Group I intron 23S rRNA and 16S rRNA) to study the performance 

of the three proposed variants of HS and the accuracy of prediction. For the performance, 

the convergence behavior of the three variants is examined and various parameters' setting 

are investigated. In terms of prediction accuracy, an evaluation of the performance of the 

new variants is performed via the comparison to other RNA secondary structure prediction 

algorithms such as mfold (Zuker, 1994,2003), RNAFold (Hofacker et aI., 1994), RnaPredict 
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and P-RnaPredict (Wiese et aI., 2007; Wiese and Hendriks, 2006; Hendriks, 2005; Deschenes, 

2005), setPSO (Neethling and Engelbrecht, 2006), HilexPSO (Geis and Middendorf, 2007) and 

SARNA-Predict (Tsang and Wiese, 2007b,a; Tsang, 2007». 

1.6 List of Contributions 

This research investigates ideas in the direction of improving HS performance for RNA sec-

ondary structure prediction. There seem to be several exciting research issues connected with 

parameter control as well as the cooperative model of HS, which are investigated in this 

research. The main contributions include the following: 

• A new variant of HS algorithm called HSRNAFold as the first application of HS for RNA 

secondary structure prediction (Geem, 2010). 

• An improved variant ofHSRNAFold based on adaptive parameters called AHSRNAFold. 

• A new variant called CHSRNAFold algorithm which differed from the original HSRNAFold 

by operating on cooperative multiple HMs model to enhance both algorithm performance 

and accuracy of prediction. 

• A comprehensive study of the influence of the main parameters of HSRNAFold and its 

subsequent variants which may affect the algorithm's performance when used in a real 

world optimization problem. 

A comparative study of the three proposed HS variants was performed amongst themselves and 

against the state of the art algorithms for RNA secondary structure prediction, and then to the 

native structures. 
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1.7 Thesis Outline and Organization 

The organization of the remaining chapters of this thesis is as follows: 

• Chapter 2 provides an overview of the original HS algorithm. 

• Chapter 3 introduces the RNA structures, RNA secondary structure prediction problem 

and related work, and outlines the shortcomings of existing methods . 

• Chapter 4 presents the three variants of HS algorithm: HSRNAFold, AHSRNAFold and 

CHSRNAFold. In addition, the major modified and enhanced components of the three 

methods are also presented. 

• Chapter 5 presents the experimental setup and a Comprehensive investigation of the per­

formance of the three variants of HS with different parameter setting. 

• Chapter 6 presents the experimental results and evaluates the validity of the proposed 

algorithm. 

• Chapter 7 presents the concluding remarks, suggestions and some possible directions for 

future research. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter provides a description on the HS fundamentals. Section 2.1 gives a brief overview 

of the HS procedures. Section 2.1.1 describes the HS procedure. Section 2.1.2 reviews the 

main HS optimization steps. Section 2.1.3 and 2.1.4 provide a summary of the related work 

that has been done in adaptive parameters and mUltiple harmony memories. 

A review of the related literature pertaining to RNA secondary structure prediction will be 

provided as well. Section 2.2 gives a quick review of the RNA secondary structure. In Section 

2.3, Two physical methods for determining RNA structure are presented. Section 2.4 provides 

information on the related work of the two major computational methods for RNA secondary 

structure prediction: multiple sequences and single sequence methods. Finally, Section 2.5 

summarizes and concludes the chapter. 

2.1 Harmony Search Algorithm 

Harmony search was initiated by Geem and his colleagues in 2001 (Geem et aI., 2001) as a 

relatively new metaheuristic for hard combinatorial optimization problems (for more details 

about metaheuristic and combinatorial optimization see Appendix A). Harmony search is a 

stochastic search technique based on the mechanism of improvisation process to find fantastic 

harmony. It has received a great deal of attention regarding its potential as an optimization 

technique for solving discrete and continuous optimization problems (for more details about 

discrete and continuous optimization see Appendix A). 
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2.1.1 Fundamental Procedures of HS 

In HS, harmony parameters are usually used to create new harmony in each improvisation. 

The main role of these parameters is to direct the search toward the most favorable areas of the 

search space. These parameters are: 

• Harmony memory size (HMS) representing the total number of harmonies in the HM. 

• Harmony memory consideration rate (HMCR) which represents the probability of pick­

ing up values from HM to the variables in the solution vector. 

• Random selection rate (RSR) representing the probability of randomly chosen feasible 

values from the range of all possible values to the variables in the solution vector, for-

mally, RSR = 1- HMCR. 

• Pitch adjusting rate (PAR) representing the probability of further adjusting the pitch with 

neighboring pitches. 

• Number of improvisations (NI) representing the number of iterations to be used during 

the solution process, or stopping criterion. 

To explain the fundamental procedures of HS, consider a harmony memory that consists 

of N harmonies representing potential solutions to a problem. In HS, a harmony in harmony 

memory is represented by a string S of length n as follows: S = Sl ,S2, .. · ,Sj ... ,Sn. 

The string S is regarded as a harmony that consists of n musical instruments. The character 

Sj is a musical instrument at the /h locus, and the different values of a musical instrument 

are called notes. The harmony is a potential solution to a problem corresponding to a string 

S called the solution vector. In minimization problems, the string with a smaller objective 

[unction value has a higher fitness. 
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HS starts with an initial HM of n harmonies generated randomly. Each harmony in the 

harmony memory represents a potential solution of the problem under consideration. Each 

harmony in the harmony memory is evaluated using an objective function. The harmonies 

evolve through successive iterations, called improvisations. During each improvisation, a new 

harmony is created through harmony operators. After that, the harmony memory is updated if 

the new harmony is better than its worst one. The procedure continues until the termination 

condition is satisfied. When the termination condition is satisfied, the best harmony obtained 

is regarded as an optimal or approximate optimal solution to the problem. 

When applying HS to solve particular optimization problems, further detailed considera­

tions are required: i) representation for potential solutions, ii) a way to create an initial harmony 

memory, iii) an evaluation process in terms of their objective function, iv) harmony parame­

ters, v) constraint-handling techniques, vi) tunil!g for various parameters in HS such as HMS, 

HMCR and PAR and vii) termination conditions. 

2.1.2 HS Optimization Steps 

Figure 2.1 shows the optimization steps of HS which is presented in detail in the next subsec­

tions. 

2.1.2(a) Initialize the Problem and Algorithm Parameters 

Mathematically, the general form of optimization problem can be specified as follows: 
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Step 1 :Initialize Parameters 

F(x): Objective Function 
X: Decision Variable 
N: Number of Decision Variables 
HMS: represents the total number of harmonies in the HM. 
HMCR: Harmony memory consideration rate 
PAR: Pitch adjusting rate the pitch with neighboring pitches. 
Bw: Distance bound wide 
NI: Number of solution vector generation 

Step 3:lmprovise new harmon 

For i=l to N do 

r-----""-------, Ran: Random number in 
range 0-1 

'------r-----' NH: New harmony vector 

NH~]=Rand(l.HMS) 

Select a solution vector S from HM randomly 
Pick up Sri] 

No 

Figure 2.1: Optimization procedure of the simple HS algorithm (Mahdavi et al., 2007). 

MinimizeJ(x) 

SUbjecttog(x) > O,x= {Xl,X2, ... ,Xn } (2.1) 

hex) = 0 

Where J(x) is the objective function; g(x) and hex) are the inequality and equality con-
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straint functions respectively; x is the set of each decision variable Xi; and n is the number of 

decision variables (music instruments). HS algorithm parameters that are required to solve the 

optimization problem (i.e., HMS, HMCR, PAR, BW and NI) are also specified in this step. 

These parameters are used to improve the solution vector. 

2.1.2(b) Initialize the Harmony Memory 

Initialize the HM matrix(N x HMS) where N is the number of decision variables and M is 

HMS. Then fill the HM randomly by generating the feasible solution vectors. Formally, HM 

and the corresponding fitness function values are shown as follows: 

Xl 
I 

xl 
2 X1_1 xl N => f(x l ) 

xi ~ 4-1 4 => f(x2) 

HM= => (2.2) 

J!!MS-l 
1 

x'!MS-l 
2 

~MS-l 
N-l 

~MS-l 
N => f(J!lMS-I) 

xfiMS 
I 

x!!MS 
2 

J!!.MS 
N-l 

J!!.MS 
N => f(xfiMS) 

Where each x' = (xl xi ... x1) and f(x l ) represents a feasible solution vector and it's 

corresponding objective function respectively. 

2.1.2(e) Improvise a New Harmony 

A new harmony vector x' = (X'I x~ ... IN)' is generated based on three parameters: memory 

consideration, pitch adjustment and random selection as follows (Geem et aI., 2001): 

i) for each component x;, pick up the corresponding component of x; randomly from any of 
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the values in the specified HM range (x? _x;HMS) with the probability of Phmcr. 

I {' _ (I 2 . HMS} xi E x - xi' xi , .... xi" with probability HMCR 
(2.3) 

x; E Xi with probability (1 - HMCR) 

ii) the rest of the components of x; are picked randomly from the range of allowed values 

with the probability of 1 - Phmcr' For example, HMCR of 0.95 indicates that the probability of 

HS algorithm to choose the decision variable values from historically stored values in the HM 

is 95% and the probability of choosing a new random value from the allowed range is (100-

95)%. 

iii) change x; with the probability of Ppar' The pitch adjustment is applied only if the value 

is chosen from the HM. 

Pitch adjusting decision for x; ~{ 
No with probability (1 - PAR). 

Yes with probability PAR, 
(2.4) 

If the pitch adjustment decision for x; is yes, then small amount (bw) of changes takes place for 

pitch adjustments: 

(2.5) 

2.1.2(d) Harmony Memory Update 

Evaluate the new harmony x' = (Xii x~ ... x~) by calculating it's objective function. If the value 

of its objective function is better than that of the objective function of the worst harmony in the 
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HM, the new harmony is included in the HM and the existing worst harmony is excluded from 

the HM. Subsequently, the vectors are sorted out based-on their objective function values. 

2.1.2(e) Termination Criterion Check 

Stop the search process if a maximum number of iterations (number of improvisations) is 

reached. Otherwise, repeat steps three and four. 

2.1.3 Adaptive Parameters 

The study of the adaptive parameters in HS started in 2007 by Mahdavi et aI. (2007) with his 

algorithm called Improved Harmony Search (IHS). Many subsequent studies were inspired by 

IHS. However, some of these studies disagreed with IHS. In IHS the fine-tuning was done for 

two parameters, PAR and BW. These two parameters control the convergence rate ofHS. Figure 

2.2 shows the fine-tuning that has been applied dynamically by increasing and decreasing the 

values of PAR and BW respectively. They claimed that IHS overcomes the drawbacks of using 

fixed values of PAR and BW in the simple HS algorithm. Formally, PAR and BW are updated 

dynamically according to Equation 2.6 and Equation 2.7 respectively. 

Figure 2.2: Variation of PAR and bw versus generation number (Mahdavi et aI., 2007). 
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PAR ( ) - P,'AR. PARmax - PARmin g - ~ mm+ NI x g (2.6) 

In BWmin 

BW(g) = BWmaxexp( :;nuu x g), (2.7) 

where PAR(g) and BW(g) are the pitch adjustment rate and the distance bandwidth in gener-

ation g respectively; NI is the maximum number of iterations, and g is the current iteration; 

PARmin and PARmax are the minimum and the maximum pitch adjustment rate respectively; 

BWmin and BWmax are the minimum and the maximum bandwidth respectively. 

IHS algorithm has critical drawbacks (Wang and Huang, 2010). For instance, there is 

difficultly in setting suitable values of BWmin and BWmax and, on the other hand, PAR should 

be decreased with search time to limit perturbation. Surprisingly, Ornran and Mahdavi (2008) 

in their subsequent research claimed that they achieved better results, in spite of giving PAR a 

small constant value. 

Later, Ornran and Mahdavi (2008) developed another version of HS called the Global-

best Harmony Search (GHS). GHS is different from the simple HS in the improvisation step 

by modifying the pitch adjustment rule. The idea was inspired from swarm intelligence to 

enhance the performance of HS. To improvise new harmony, the pitch adjustment of the GHS 

was modified such that a new harmony is affected by the best harmony in the harmony memory. 

GHS simplifies the pitch adjustment step and BW is not used anymore. Formally, the rule to 
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adjust the pitch is given in Equation 2.8 as follows: 

Xnew(j) = XB(k) ,j = 1,2, ... , nand k = Rand(l,n), (2.8) 

where Xnew is the new harmony, XB is the best harmony in harmony memory and k is a random 

integer between 1 and n. According to Omran and Mahdavi (2008), this modification allows 

the GHS algorithm to work more efficiently on both continuous and discrete problems. 

The GHS was also criticized by Wang and Huang (2010). They listed a number of disad-

vantages of GHS. It suffered from premature convergence. Moreover, there are some obvious 

mistakes in the GHS and so the reliability of the numerical results is decreased. 

Later, dos Santos Coelho and Mariani (2009) proposed a modified version of HS. They 

inspired the concept from Mahdavi (Mahdavi et al., 2007) for using variable PAR with small 

changes to the Equation 2.2. The modification is the inclusion of the grade of the solution 

vectors into Equation 2.6. The grade is updated according to the following expression: 

d 
Fmax(g) -mean(F) 

Cra e = ( ) , 
Fmax(g) - Fmin g 

(2.9) 

where Fmax(g) and Fmin(g) are the maximum and minimum objective function values in gen-

eration g, respectively; mean (F) is tae mean of the objective function value of the harmony 

memory. The new PAR rule shown in Equation 2.10 as follows: 

PAR(g) = PAR . + PARmax - PARmin x g x grade 
min /VI (2.10) 

Then, Pan et al. (201Oc) proposed a variant of HS called A Self-Adaptive Global Best 
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Harmony Search Algorithm for continuous optimization problems (SGHS). Unlike GHS, in 

SGHS the value of the decision variable XB(j) in XB is assigned to Xnew(j), while in GHS, 

Xnew(j) is determined by selecting one of the decision variables of XB randomly. According to 

Equation 2.11, PAR is updated as follows: 

Xnew(j) = XB(j) , j = 1,2, ... ,n (2.11) 

where Xnew is the new harmony, XB is the best harmony in harmony memory and j is an integer 

between 1 and n which refers to the current location in the corresponding harmony. The results 

showed that the SGHS algorithm outperforms the existing HS, IHS and GHS algorithms. 

2.1.4 Multiple Harmony Memories Models 

According to Yang (2009), since HS algorithm is a population-based metaheuristic, a group of 

multiple harmonies can be used in parallel. Proper parallelism could result in a better perfor­

mance with higher efficiency. Conducting a balance between intensification and diversification 

could also be achieved with the use of parallelism and elitism. 

Pan et al. (201Ob,a) proposed two variants. The first one is called referred to them as 

a local-best harmony search algorithm with dynamic subpopulations for solving continuous 

optimization problems; and the other is called a local-best harmony search algorithm with 

dynamic sub-harmony memories for lot-streaming flow shop scheduling problem. These two 

are the only methods that take advantage of multiple harmony memories to improve the HS 

performance. Numerical experiments showed that these techniques overcome the existing HS, 

IHS, GHS, and MHS algorithms. The methods have some limitations due to the incomplete 

model of mUltiple harmony memories and the effects of the parameters of the multiple harmony 

memories model was neglected. 
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2.2 RNA Secondary Structure 

The linear sequence of RNA molecule consists of a single stranded sequence of four nu­

cleotides. This linear sequence is the primary structure of RNA molecule. The RNA strand 

has the ability to fold back upon itself. During the folding process, the hydrogen bonds which 

lie between different nucleotides form base pairs. These hydrogen bonds, which occur mostly 

between G and C or A and U, are called the Watson-Crick base pairs and the bond between G 

and U is called the wobble base pair. These base pairs- GC, AU, and GU, and their mirrors, 

CG, UA, and UG- are called the canonical base pairs. 

Definition 2.1. Given a single stranded RNA sequence of length L,x = (X\,X2, •.. ,xd, with 

Xi E {A,C,G,U} for all i, the RNA secondary structure for x is defined as a set P of ordered 

base pairs, written as (i, j), with 1 :S i:S j:S L, which satisfy the following constraints (Wiese 

and Hendriks, 2006; Mathews, 2006a; Zuker, 1994): 

• i) for (i,j), it must be a canonical base pair; 

• ii) each base pair cannot share more than one base (nucleotide); 

• iii) pairing bases must be at least three bases apart i - j > 3; and 

• ivy two base pairs must not cross, i.e.:{i,j}n{i''/} = <P or for all (i,j), (i',/) either 

i < i' < / < j or l < i < j < / holds. 

The RNA secondary structure has a number of elements including stacked base pairs which 

form helices, hairpin loops, internal loops, bulges, multi-branched loops and external bases. 

• Hairpin loop is a group of nucleotides which are enclosed by a helix but not canonically 

paired. Formally, in a given secondary structure, the tuple (i, j) defines a hairpin loop if 
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Figure 2.3: RNA secondary structure components: stems (helices), interior loops, hairpin loop, 
multi loops and bulges loops. This figure was created using jViz.RNA (Wiese et al., 2005) for 
the Deinococcus radiodurans organism. 

i and j are paired, and [i + k, j - k] is an empty region Vk > 3, (i, j) is called the closing 

base pair of the hairpin loop. The hairpin marked in Figure 2.3 contains two hairpin 

loops with thirteen and four unpaired bases from left to right respectively. 

• Stacked loop or helix contains a contiguous stacking of base pairs. Formally, in a given 

secondary structure, a tuple (i,j) defines a stacked pair if (i,j) are paired and con sec-

utively (i +k,j - k) are base pairs, Vk >= 3. The structure in Figure 2.3 contains six 

helices. Generally, stacked pairs exist when two or more base pairs exist in such a way 

that the ends of the pairs are adjacent, forming a helical structure as shown in Equation 

2.12: 

(i,j), ... ,(i+n,j-n),i:Sn<m,where m= ;-~-3,nE [l ... m] (2.12) 

• Internal loop, sometimes called interior loop, is a loop inside the helices which separates 

two helices by having unpaired or no canonically paired nucleotides. An internal loop 

is symmetric if the number of nucleotides in each side of the helix is tied, asymmetric 

otherwise. Formally, the tuple (i, j) and the tuple (i, j) define an internal loop if (i, j) 

are paired, (i,j) are paired with i + 1 < { < j < j - 1 and kj,k2 are unpaired regions, 
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Vk, i < kl < [and f < k2 < i. The structure in Figure 2.3 contains two symmetric 

internal loops with six and four unpaired bases from left to right respectively. 

• Bulge loop interrupts helices by having unpaired nucleotides, but occurs at only one 

side. It is considered as a special case of internal loop, where it has no free base on one 

side, but has at least one free base on the other. The bulge loop marked in Figure 2.3 

contains two unpaired bases. 

• Multi-branched loop is a loop region which arises from the confluence of three or 

more helices. In other words, it is enclosed by three or more base pairs. Formally, 

(i"h,h,12,··.,im,im), with m ~ 3,il < i2 < 12 < ... < im < im < h define a multi-loop 

with m branches if (il,it),(h,12), ... ,(im,im) are base pairs and kl,k2, ... ,km are free 

bases, Vk,il > kl < h,12 < k2 < i3, ... ,im < km < il. The multi-branched loop marked 

in Figure 2.3 contains one multi-branched loop with three branches containing five, one 

and three unpaired bases from left to right respectively. 

• external loop is consist of all those bases that are not enclosed by a base pair in the 

structure. In Figure 2.3 there are two unpaired bases in both sides. 

The stability of the RNA secondary structure is quantified as the amount of free energy 

being released or used by the formation of base pairs. The stability increases according to the 

number of GC versus AU and GU base pairs, and the number of base pairs in a hairpin loop 

region. The number of unpaired bases such as interior loops or bulges decreases the stability 

of the structure (Tsang, 2007). 

2.3 RNA Secondary Structure Determination 

Two primary physical methods are available for determining RNA structure: X-ray crystallog­

raphy and Nuclear Magnetic Resonance (Cheong et al., 2004; Mattson et al., 1997; Neidle, 

24 


