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SINTESIS DAN SIFAT HABLUR CECAIR KEMBAR DIGLISIDIL ETER 

BARU BERASASKAN KUMPULAN AZOMETINA DIMA T ANGKAN 

DENGAN AMINA AROMA TIK 

ABSTRAK 

Duajenis bisfenol yang mengandungi kumpulan azometina iaitu 3,3'-dimetoksi-4,4'

dihidroksi-N-benzilidina-o-tolidina (I) dan 4,4' -dihidroksi-N-benzilidina-o-tolidina 

(II) telah disintesis melalui tindakbalas o-tolidina bersama vanillin dan p

hidroksibenzaldehid. Tindakbalas seterusnya dengan epiklorohidrin dalam kehadiran 

tetraheksilammonium bromida (THABr) sebagai pemangkin untuk menghasilkan 

kembar hablur cecair baru diglisidil eter iaitu 4,4'-di(2,3-epoksipropoksi)-N

benzilidina-o-tolidina (III) dan 4,4' -di(2,3-epoksipropoksi)-N-benzilidina-o-tolidina 

(IV). Struktur kimia basil sintesis dikonformasikan mela1ui spektroskopi FT -1R, 1 H

NMR, 13C-NMR, UV-Vis dan analisis elemen (CHN). Pematangan Ill dan IV 

dijalankan dengan dua am ina aromatik yang berbeza iaitu 4,4' -diaminodiphenil 

sulfone (DDS) dan p-fenilindiamina (PPDA) dalam nisbah diglisidil eter I diamina 

1:1,2:1,3:1 dan 4:1. Tindakbalas pematanganyang berlaku dikonformasikan melalui 

spektroskopi FT-IR Darjah kristaliniti, sifat hablur cecair serta kestabilan terma bagi 

III, IV dan hasil yang termatang masing-masing dikaji melalui sudut Iebar X-ray 

diffraktometer, imbasan berskala kalorimetri (DSC), mikroskop berpolar (POM) dan 

analisis terma gravimetrik (TGA). Ciri-ciri mekanikal bagi basil yang termatang 

dikaji melalui pelekatan, kekerasan permukaan, kelenturan, serta impak hentaman. 
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SYNTHESIS AND LIQUID CRYSTALLINE PROPERTIES OF NEW TWIN 

DIGL YCIDYL ETHERS BASED ON AZOMETHINE GROUPS CURED BY 

AROMATIC DIAMINES 

ABSTRACT 

Two bisphenols containing azomethine groups namely, 3,3'-dimethoxy-4,4'

dihydroxy-N-benzylidene-o-tolidine (I) and 4,4' -dihydroxy-N-benzylidene-o-tolidine 

(II) were synthesized by reaction of o-tolidine with vanillin and p

hydroxybenzaldehyde. Subsequent reaction with epicholorohydrin in the presence of 

a catalyst called tetrahexylammonium bromide (THABr) to produce new twin liquid 

crystalline diglycidyl ethers namely, 3,3 '-dimethoxy-4,4 '-di(2,3-epoxypropoxy)-N

benzylidene-o-tolidine (III) and 4,4' -di(2,3-epoxypropoxy)-N-benzylidene-o-tolidine 

(IV). The chemical structures were confirmed by FT-IR, 1H-NMR, 13C-NMR, UV

Vis spectroscopy and elemental analysis (CHN). Curing of III and IV were then 

carried out with two different aromatic diamines namely, 4,4'-diaminodiphenyl 

sulfone (DDS) and p-phenylene diamine (PPDA) in the ratio of diglycidyl ether I 

diamine 1:1, 2:1, 3:1 and 4:1. The occurrence of curing reaction was confirmed by 

FT-IR spectroscopy. Degree of crystallinity, liquid crystal behaviors as welJ as the 

thermal properties of III, IV and the cured new twin diglycidyl ethers were studied 

by wide-angle X-ray diffractometer (WAXD), differential scanning calorimetry 

(DSC), polarized optical microscope (POM), and thermogravimetric analysis (TGA), 

respectively. Mechanical properties of the cured new twin diglycidyl ethers were also 

studied via adhesion, hardness, flexibility, and impact tests. 
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CHAPTER 1 

INTRODUCTION 

1.1 Epoxy Resin 

Epoxy or epoxied resins are well known polymeric materials. It is defined as 

cross-linked polymers in which the cross-linking is derived from the reactions of 

epoxy group. The 'epoxy' name comes from a Greek prefix meaning 'over' or 

'between' and the English suffix for oxygen. Therefore, epoxy materials are regarded 

as 'oxygen between compounds' [Saunders, 1988]. In general, epoxy resin is 

differentiated from other resins by the presence of epoxide functional group called 

oxirane group in its polymer chain. The oxirane group is capable to react with 

compound containing hydrogen active atoms for example amines, amides, carboxylic 

acid, phenol and mercaptan. Figure 1.1 shows the structure of the oxirane group that 

play an important role in the epoxy resin curing process [Mija eta/., 1996]. 

Figure 1.1: Oxirane group 

Epoxy resin was first commercialized in 1946 and used in industries [Kaynak 

et a/., 2002]. Commercial epoxy resins are prepared by the reaction of 2,2-bis(4-

hydroxyphenyl)propane (bisphenol A) and epichlorohydrin. However, the 

developments of this type of epoxy resins were slowed down during the 2nd World 

War due to the high price of epichlorohydrin. At the end of the war, method of 

produciJlg ~picblorobycJrill ~ M iJlt~rme<ii~te frOill gly~rol W~ ob~ill~<i. Tb~refor~, 

it became commercially available and lead to a wider application of epoxy resins 

[Brydson, 1989]. 
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Industrial sectors are the biggest consumer of the epoxy resins where most of 

the resins have been modified and enhanced by incorporating with additives. The 

modification are made due to several factors that restrict the uses of epoxy resins for 

instance the price of epoxy itself that is too costly, the compatibility with the end 

uses, environmentally friendly and to reduce the production cost and energy 

consumption [Milby, 1973]. 

1.1.1 Properties of Epoxy Resin 

Epoxy resin possesses properties that can be used in various applications. The 

properties are as follows; 

I. High tensile strength and tensile modulus [Joaquuin et a/., 2002; 

Mikroyannidis, 1990] 

II. Good dimensional stability [Joaquuin eta/., 2002; Mikroyannidis, 1990] 

III. Good rust and chemical resistance [Mikroyannidis, 1990] 

IV. Good thermal stability [Brydson, 1989] 

V. Brittle [Femandez-Nogaro et a/., 1996], which is the limitation of its 

usage. 

1.1.2 Utilization ofEpo:xy Resin 

The largest consumer of epoxy resin in the market is Germany which uses 

structural epoxy adhesives except for the epoxy film and paste which consume 25% of 

the worldwide demands and thus France is the biggest consumer for the epoxy film 

and paste. Structural epoxy is used in automotive industries in Germany while France 

use epoxy film and paste mostly in its aerospace industries. Other countries in Europe, 
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for example the United Kingdom and Ireland used epoxy resm m their manne 

industries. 

Epoxy resin is utilized as listed below: 

I. Surface coating (high molecular weight resin) 

II. Lamination 

III. Adhesives 

IV. Composites 

V. Moulding 

VI. Construction 

VII. Engineering 

VIII. Electrical and electronics 

Specifically, epoxy coatings are synthetic resms designed to provide a 

predetermined polymer structure. Epoxies are two-component, chemically cured 

paints. Since epoxies are synthetic, they are developed and used for a great variety of 

purposes. They form hard, abrasion-resistant films with excellent water, chemical, 

alkali and solvent resistance and are used on a variety of substrates from general 

purpose primers to high performance tank linings. Some epoxies present difficulties 

in overcoating due to hardness of cured film. In addition, they have a tendency to 

chalk and fade in direct sunlight. Therefore, epoxies are often modified with other 

binders to improve properties such as cathodic protection, surface tolerance, wetting, 

chemical resistance, gloss and color retention, abrasion resistance, and flexibility. 
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1.1.3 Types of Epoxy Resin 

The types of epoxies are differentiated by their structures and chemical 

compositions. Epoxy resins based on glycidyl ether includes epoxy resin based on 

bisphenol A, novolak, polyglycol, and halogenated epoxy resins. 

1.1.3.1 Epoxy Resin Based on Glycidyl Ether 

This type of epoxy resin is derived from the reaction between epichlorohydrin 

with polyhydroxyl compounds. 

1.1.3.1.1 Epoxy Resin based on Bisphenol A (DGEBA) 

Epoxy resins based on bisphenol A are the simplest epoxy resins and it is 

widely in commercial use [Mahesh eta/., 2006; Zhang and Wong, 2004; Sham and 

Kim, 2004]. In addition, it was the earliest commercialized epoxy resin. The 

preparation of liquid epoxy resin is by the reaction between bisphenol A and 

epichlorohydrin with molar ratio of I: I 0 to I :4 at 60 "C in presence of sodium 

hydroxide (caustic soda). 

1.1.3.1.2 Novolak Epoxy Resin 

Produced from the reaction of novolak resin and epichlorohydrin, novolak 

epoxy resin has low molecular wdght whereby the nuclei phenolic group is attached 

at ortho position. 
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1.1.3.1.3 Polyglycol Epoxy Resin 

The polyglycol epoxy resin was synthesized by the reaction of 

epichlorohydrin and polyglycol. The polyglycol could be directly epoxidized through 

the tenninal hydroxyl group that contained in the main chain. Generally, this type of 

resin is not used alone but incorporating it with I 0-30% of epoxy resin based on 

Bisphenol A will result in better strength properties. 

1.1.3.1.4 Halogenated Epoxy Resin 

This type of epoxy resin is derived from the reaction of halogenated 

hydroxyl compound and epichlorohydrin. Either tetrabromobisphenol A or 

tetrachlorobisphenol A are the halogenated hydroxyl compounds, which are 

commonly used. The structure of epoxy resin produced is similar with the epoxy 

resin based on Bisphenol A except that halogen atoms are attached to its aromatic 

ring. The presence of halogt>n atom will result in fire retardant resin. 

1.2 Azomethine 

Azomethine or (Schiff base), is a functional group that contains a carbon

nitrogen double bond with the nitrogen atom connected to an aryl or alkyl group. 

Azomethine is fonned by condensation process between aldehydes or ketones with 

primary arnines. 
R' 

• Rc=== NR" 

Where: R and R' are hydrogen, alkyl, allyl or aryl group; R" is alkyl or aryl group. 

Scheme 1.1: Azomethine Reaction 
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In the C=N group, the nitrogen atom is sp2 hybridized where it formed a 

sigma bond with the carbon atom, a sigma (a) bond with the substituent, the p orbital 

which form a pi (x) bond with the carbon atom and a lone pair of electron. Schiff 

base are used in liquid crystals for electronics, as chemical intermediates and 

perfume bases, in dyes and rubber accelerators. 

Azomethine compounds draw such wide interest in the chemistry field due to 

its ability to form aromatic poly(azomethine) compounds that are very high 

performance material. The polymers have high thermal stability, good mechanical 

properties and environmental resistance. However, the drawback is that 

poly(azomethine)s are generally infusible polymers and have poor solubility which 

leads to difficult processibility [Marin et a/., 2006]. Azomethine compounds have 

various applications and the most important are as following: 

I. As a linker group in liquid crystal synthesis. [Kimura eta/., 2003] 

2. Chelate forming ability in drug synthesis where azomethine polymer is able 

to bind with toxic and heavy metal. [Marin et a! .. 2006] 

3. In synthesis of high thermal stability polymers [Issam and Ismail, 2006] 

4. Good optoelectronic properties [Issam and Ratnamalar, 2009] 

By incorporating the azomethine linkage into the liquid crystalline polymer, it 

has been proved to maintain good thermal stability [Choi eta/., 2000]. Some of the 

polymer containing azomethine linkage had shown their thermal stability up to 

400 oc [Morgan et a/., 1987; Wojkowski, 1987]. Thus, it is predicted that by the 
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presence of the azomethine linkage in the liquid crystalline epoxy resin, the thermal 

stability could be enhanced. 

1.3 Liquid Crystal 

The liquid crystal is another phase of matter. Liquid crystals are substances 

that exhibit a phase of matter that has properties between those of a conventional 

liquid, and those of a solid crystal. For instance, liquid crystals are the aggregate 

states of matter whose properties are intermediate between a crystalline solid and an 

isotropic liquid. There are three common states of matters that we are aware ofwhich 

is solid, liquid and gas. The liquid crystal state is actually an intermediate state 

between crystalline solids and isotropic liquids states [Chandrasekhar, 1977]. 

Solid phase Liquid Crystal Phase Liquid Phase 

Figure 1.2: Molecule arrangement of solid, liquid and liquid crystal phase 

Liquid crystals flow like a liquid, but due to their anisotropy, they may have 

positional and/or orientational order as the solids. The optical, magnetic and the 

mechanical properties of a liquid crystal depend on the direction in which these 

quantities are measured. The transition of these states can be brought about by purely 

thermal process (thermotropic) or by the influence of solvent (lyotropic). 
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1.3.1 Types of Liquid Crystal Phases 

Friedel had proposed that the nomenclature of thermotropic liquid crystal can 

be classified broadly into several types namely: nematic, smectic, and cholesteric 

[Chandrasekhar, 1977]. Hence, there are basically three types of liquid crystal (LC) 

phase based on the amount of order of the substance. 

1.3.1.1 Nematic Phase 

The nematic phase generally has no positional order but tend to align in the 

same direction (along the director n) [Baron, 2001]. The nematic liquid crystal has a 

high degree of long range orientational order of the molecules, however inadequate 

range translational order. Thus, it differs from the isotropic liquid because the 

molecules are spontaneously oriented with their long axes approximately parallel. 

The name of nematic is derived from the Greek words for thread where it can be 

observed from the polarized microscope that the shape of the crystal is just like a 

thread [Collings, 2002]. Figure 1.3 below illustrates the arrangement of the 

molecules of nematic phase. 

nematic cholesteric discoid nematic 

Figure 1.3: The arrangement ofthe molecules in nematic phase 
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This phase also have the highest degree of fluidity but have the lowest degree 

of order when compare to the other mesophase [Collings and Hird, 1997]. The 

molecules in nematic phase consist of intermolecular phase to keep itself parallel to 

the other molecules [Collings, 1990]. However the center of gravity of the molecules 

in the volume is randomly distributed. 

1.3.1.2 Smectic Phase 

The difference between smectic phase and nematic phase is that in smectic 

phase possessed a certain degree of translational order. In the smectic state, the 

molecules maintain the general orientational order of nematics, but also tend to align 

themselves in layers or planes. The motion is restricted to within these planes, and 

separate planes are observed to flow past each other. The increased order means that 

the smectic state is more "solid-like" than the nematic. The smectic phases always 

represent the low-temperature modifications in systems where both nematic and 

smectic phases coexist [Kelker and Hatz, 1980]. Two of the most common smectic 

phase is smectic A phase and smectic C phase. The smectic A phase is a two 

dimensional with no correlation between layer. 

The smectic C phase is similar to the smectic A phase in molecular 

distribution other than the director is at a constant tilt angle measured normally to the 

smectic plane. The smectic B phase however orients with the direction perpendicular 

to the smectic plane, but the molecules are arranged into a network of hexagons 

within the layer. 
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The molecular distribution of smectic A, B and C phase is shown Figure 1.4. 

smectic A smectic B smectic c 

Figure 1.4: The arrangement of molecules in smectic phase 

1.3.1.3 Cholesteric Mesophases (Chiral) 

The cholesteric mesophases is also known as the chiral liquid crystal phase. lt 

is because that the first material exhibiting this phase was cholesteryl benzoate 

[Collings and Hird, 1997]. This mesophases generally no difference than the nematic 

mesophases other than it is composed of optically active molecules. In other words, it 

is actually a nematic type of liquid crystal except that it is composed of optically 

active molecules. It is deemed that the structure has a screw axis superimposed 

normal to the preferred molecular direction [Chandrasekhar, 1 977]. 

In order for a compound to have liquid crystal properties, the molecules of 

the compound needs to possess the criteria below; 

1. The molecule must be elongated in shape; it is significantly longer than its width. 

n. The molecule must have some rigidity in its central region. 

iii. Ends ofthe molecules are flexible. 
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It has been said that an orgamc chemist indiscriminately synthesizing 

compounds will found that one in every two hundred compounds synthesized possess 

the liquid crystal state [Collings, 2002). This includes the polymer that has liquid 

crystal properties. 

1.3.2 Applications of Liquid Crystals 

1.3.2.1 Liquid Crystal Display 

Liquid Crystal Display (LCD) is widely used in electronics application such 

as hand phone, laptop, electronic gaming devices and also flat screen LCD television. 

When compare to cathode ray tube, liquid crystal is lighter in weight and also 

significant reduction in power consumption. A mixture of liquid crystal is used 

because there is currently no single liquid crystal able to fulfill the simplest display 

requirement [Heckmeir, 2004]. Hence, a mixture of 10-20 liquid crystals was usually 

used to produce the liquid crystal display because the electronic devices require a 

large temperature operating range. Currently, most of the liquid crystal display used 

nematic liquid crystal mixtures. 

Furthermore, there are two liquid crystal display available in the market, the 

active matrix display and passive matrix display. In active matrix display each matrix 

point (pixel) is driven by one to one related electronic switching device [Heckmeir, 

2004]. In the passive matrix display, however, the pixel is not driven by using 

electronic switching device directly to one pixel. The passive matrix display is more 

economical (cost wise). However, the quality of optical and picture performance in 

large screen is not as good as in the active matrix display. 
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1.3.2.2 Liquid Crystal Thermometer 

The chiral nematic liquid crystal (cholesteric) reflects light with a wavelength 

equal to the pitch [Baron, 2001]. Since the pitch is dependent upon temperature 

therefore the color reflected is also dependent on the temperature. Hence we could 

indentify the temperature by observing at the color exhibited by the thermometer. By 

mixing several difference liquid crystals we can basically construct a thermometer 

where it could detect all range of temperature. In medical field, the liquid crystal 

thermometer is used to determine tumor. The temperature of the area of the tumor 

usually has a different temperature compare to the surrounding tissue. While in the 

electronic field, the liquid crystal thermometer is used to determine the bad 

connections of a circuit board by detecting the characteristic of high temperature 

[Baron, 2001]. 

1.3.2.3 Other Liquid Crystal applications 

LC is also used in optical imaging and recording. In this technology, a liquid 

crystal cell is placed between two layers of photoconductor. Light is applied to the 

photoconductor, which increases the material's conductivity. This causes an electric 

field to develop in the liquid crystal corresponding to the intensity of the light. The 

electric pattern can be transmitted by an electrode, which enables the image to be 

recorded. They are used for non-destructive mechanical testing of materials under 

stress test. This technique is also used for the visualization of RF (radio frequency) 

waves in waveguides. They are used in medical applications where, for example, 

transient pressure transmitted by a walking foot on the ground is measured. Low 

molar mass (LMM) liquid crystals have applications including erasable optical disks, 
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full color "electronic slides" for computer-aided drawing (CAD) and light modulators 

for color electronic imaging. 

1.4 The Problem 

Epoxy resins are one of the most widely used thermosetting materials due to 

their excellent adhesion [Luo and Wong, 2004], high strength [Rosu et a/., 2002], 

good thermal and chemical resistance [He eta/., 2001] and many others. Its primary 

applications include coating, adhesives, industrial tooling, structures and electronics 

packaging [Stefani et a/., 2001]. However, epoxy resins exhibit low fracture 

toughness, poor wear and crack resistance in real application due to its rigid and 

brittle nature [Ng, 1993; May, 1988; LeMay and Kelly, 1986]. 

To overcome these problems, considerable amount of works have been 

carried out in the direction of toughening epoxies, with some research focused on 

introducing appropriate amounts of rubbery and flexible components into epoxy 

networks. Researchers applied modifications that employ the use of functionalized 

reactive rubbers such as carboxyl-, amine- or epoxy-terminated butadiene 

acrylonitrile [Kunz et a/., 1897; Kirshenbaum, 1984]. The rubber modifications 

showed positive effect on toughness of epoxy but negative on the strength, stiffuess 

as well as glass transition temperature range. 

Other common modification routes include physical blending, 

interpenetrating polymer network and intercrosslink network formations and filler 

incorporation. Reports have shown that these modifications resulted in improved 
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physical, mechanical and thermal properties but at the same time posed further 

challenges with undesirable traits that need to be overcome. This continues to 

motivate research on epoxy as versatile core material of thermoset systems for 

decades to come. 

Modification of epoxy further extends its applications which encompass some 

novel materials by the incorporation of rigid mesogenic groups into the epoxy 

network. Such materials with molecular order can also show anisotropic properties 

and are known as liquid-crystalline epoxy resins (LCERs) [Galina and Mossety

Leszczak, 2007]. 

Liquid crystalline epoxy resins can be synthesized from mesogens such as 

rigid rod molecules with epoxide groups (oxirane rings) directly attached to the 

mesogenic core, which were cured by reaction with aromatic amines thereafter. 

Liquid crystalline epoxy (LCE) networks are an important area of research given in 

their potential use in various applications such as electronics, advanced composites, 

non-linear optics, etc. The synthesis, development of texture, mechanical properties 

and influence of curing conditions has been examined for a number of LCEs 

[Balamurugan and Kannan, 2009; Wlodarska eta/., 2009; Harada eta/., 2009]. 

Azomethine linkage in the backbo'le of polymers shows many desirable 

properties such as thermal [Issam and Jamil, 2006], liquid crystal [Mikroyannidis, 

1989], etc due to the resonance of the poly-Schiff's base unit [Segal, 1967]. Stringent 

application requirements related to performance, processing and exposure to extreme 

conditions continue to increase demand for improved materials. Modification of 
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epoxy is indeed necessary to cope with such demands. Hence, azomethine reaction 

produces high yield, thus contributes to feasible processibility. Overally, many 

researches have been carried out on liquid crystalline epoxy resin, only few studies 

on liquid crystal epoxy resins containing azomethine groups have been reported so 

far. The incorporation of azomethine groups in various liquid crystal polymers that 

have been studied includes polyesters [Gaina et a/., 2001; Shukla et a/., 2003], 

polyurethanes [Sun and Chang, 1996; Stoica et a/., 1998], polyethers [Carter and 

Hedrick, 1994] and etc. 

1.5 Objectives 

This research project aims to design new twin liquid crystalline diglycidyl 

ethers containing azomethine groups. It includes the synthesis, characterization, 

thermal and mesomorphic properties of the new compounds. Also of interest is the 

curing with two different aromatic diamines. 

The above aims are achieved through fulfilling the objectives as follows: 

I To synthesize and characterize new twin liquid crystalline diglycidyl ethers 

containing azomethine groups. 

II To investigate the thermal behaviour and crystallinity of the new twin liquid 

crystalline diglycidyl ethers and epoxy resins. 

III To study the effect of different curing ratios of the new epoxy resins on the 

mechanical properties as well as on the liquid crystal behaviours. 
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1.6 Choice of Materials 

It was realized that liquid crystalline polymers (LCPs) could not find wide 

diffusion on the market due to the costs of the raw materials in general, and to the 

synthesis that is often very expensive. Hence, in this research, the choice of vanillin 

as raw material was because of its low cost, safe and easy to crystalline. On the other 

hand, p-hydroxybenzaldehyde was chosen because it is composed of the similar 

structure as vanillin except for the absence of methoxy (-OCH~) group. As for the 

materials for epoxy curing, commonly used hardeners are amines, anhydrides, 

polyamides, phenols, isocyanates and polymercaptans [Strzelec, 2007]. The choice 

and stoichiometry of hardeners are application specific as it affects the properties of 

the cured thennosets. Amines are used for coating materials, amides for structural 

applications [Selvaraj eta/., 2006] and printed circuit board, for interior of food cans 

and anhydride [Wong and Bollampally, 1999] for urea fonnaldehyde (UF) material 

of the electronic packaging. Anhydride was the choice for microelectronic packaging 

materials because its resultant thermosets have the highest heat distortion values and 

the best aging stability. However, it has been subsequently phased out due to its 

tendency to absorb moisture [Chian et al., 2000] and outgas [Zhang and Wong, 

2004], as well as its sensitizing nature [Zhang et a/., 2002] that possess health 

hazard. Aromatic arnines are the favored choice to replace anhydride [Blanco et al., 

2005; Sbirrazzuoli et al .• 2006; Merad eta/., 2009]. Its preference is attributed to the 

higher T8 and rigidity [Zvetkov, 2002] as well as thermal and mechanical 

performances. The selection of 4,4'-diaminodiphenyl sulfone (DDS) was based on its 

high performance in the epoxy based composite materials [Wei-Fang eta/., 2002]. It 

is also interesting to note and compare the consequences of the biphenyl structure of 

DDS as to only single phenyl structure in 1,4-phenylene diamine (PPDA). 
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1. 7 Thesis Layout 

This thesis consists of seven chapters. Chapter 1 is the introduction, which 

covers the progress and inherent issues, which is the problem statement, research 

goals and the scope of this research. Chapter 2 explains the literature survey whereas 

Chapter 3 details out the research methodology. Next, Chapter 4 presents the 

structural elucidation of the synthesized products by various spectroscopic 

techniques. Subsequently, the thermal properties and mechanical properties are 

discussed in Chapter 5 and 6 respectively. Lastly, Chapter 7 concludes this research 

and lists out suggestions for further investigation. 

17 



CHAPTER2 

LITERATURE REVIEW 

2.1 Liquid Crystalline Epoxy Resins 

Liquid crystalJine thermosets (LCT) particularly liquid crystalline epoxy 

resins (LCERs) show interesting properties due to the combination of a thermoset 

and liquid crystal (LC) formation capability [Punchaipetch eta!., 2002; Carfagna et 

a!., 1997; Giamberini eta!., 1995; Barclay and Ober, 1993; Earls eta!., 1993]. Epoxy 

compounds, which generally contain rigid-rod group, are particularly interesting as 

monomers for obtaining LCT. This is due to the fact that the formulations of epoxy 

resin and curing properties are highly versatile [Cai eta/., 2008]. In addition to the 

final properties of the thermosets obtained which includes low shrinkage upon cure, 

low thermal expansion coefficients, low dielectric constants and enhanced reaction 

rates [Carfagna eta!., 1997]. 

As compared to ordinary epoxies, crosslinked LCERs exhibit higher fracture 

toughness [Giamberini et a!., 1995] and mechanical properties when oriented by 

magnetic fields [Barclay et a!., 1992]. This can be explained by their approximately 

overall isotropic properties, combined with localized anisotropy [Harada et al., 2005; 

Choi et a/., 2004]. The inhomogeneties of the LC structure leads to the deviation of 

crack propagation, thus, an increase in fracture toughness. In addition, above glass 

transition temperature, liquid crystalline thermosets ensures greater mechanical 

resistance, fracture toughness and stiffuess [Balamurugan and Kannan, 2009]. 
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The excellent properties of LC thermosets stem from the preservation of 

molecular organization in the mesophase of LC precursors and monomers by means 

of crosslinking. The resulting highly crosslinked thermoset containing rigid rod 

molecules can offer improvement of rather poor properties in transverse direction to 

the chain orientation. Hence, of possible thermosetting polymers, epoxy resins are 

commercially important because of their superior adhesion, heat and corrosion 

resistance, mechanical and electrical properties than other classical thermosets. 

Incorporating LC structure into the epoxy network could enhance the properties. 

LCER networks are an important area of research given in their potential use 

in a number of applications such as electronics, advanced composites, non-linear 

optics, etc. The syntheses, development of texture, mechanical properties and 

influence of curing conditions have been examined for a number of LCERs (Gaina, 

2001; Carfagna et a/., 1997; Carter and Hedrick, 1994]. Over last years, several 

research groups have studied the synthesis and curing of LC diepoxides with a 

flexible spacer between epoxide moiety and mesogenic group [Mallon and Adams, 

1993] with two mesogens linked by a central flexible spacer [Barclay eta/., 1992], 

and with substituents in mesogenic units [Mormann et a/., 1997; Carfagna et a/., 

1997]. 

In general, LCT have been widely investigated in many research groups 

because of their unique properties, e.g. anisotropic orientation, low coefficient of 

thermal expansion and liquid crystalline phase development during curing. LCT can 

be prepared through many routes. It can be made through the self -cross-linking 

reaction of LC monomer or non-LC rigid rod monomer. The reaction between LC 
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monomer and non-LC curing agent, or LC curing agent can yield LCT. In addition, 

the possibility to obtain LCT through reaction of non-LC rigid rod monomer with 

non-LC curing agent is too low [Giamberini et al., 1995]. 

It has also been reported that non-LC rigid rod oligomers can form a LCT 

through the cross-linking reaction with non-LC curing agent [Barclay et al., 1992]. 

Curing reaction of liquid crystal epoxy (LCE) resin with curing agent can form 

highly orderly and densely crosslinked LC polymer networks under suitable curing 

conditions. As a result, the epoxy polymer may develop an LC structure during 

curing process [Jun-Gang et al., 2009). 

2.2 Azomethine 

The azomethine group is of special interest due to its interesting properties 

such as syn-anti isomerism [Becker and Richney, 1967], good thermal stability 

[Issam and Ismail, 2006; Li and Chang, 1991; Roviello and Sirigu, 1979; Antoun et 

a/., 190 I], non-linear optical activity [Yang and Jenekhe, 1991 ], ability to form metal 

chelates [Rudzinski et al., 1988], fibre-forming ability [Yang, 1989], liquid 

crystalline property [Shukla et a/., 2003; Barbera et al., 1992; Sek, 1984] and 

semiconductivity [Farcas eta/., 2001; Saegusa eta/., 1990]. The introduction of 

azomethine moiety in the polymer backbone will incorporate the above mentioned 

properties in the newly synthesized polymer due to the resonance stabilization of the 

Poly-Schiff's base unit [Segal, 1967]. 

Limited amounts of research articles have been published on epoxy resins 

containing azomethine mesogens. In 1989, Mikroyannidis reported the synthesis of 
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epoxy derivatives of bis(azomethine)s without flexible spacers, curing by 4,4'

sulfonyl dianiline and thermal stabi1ity of the resulting polymers. Soon later, 

Mormann et a/., 1997 reported the synthesis of azomethine-linked aromatic 

mesogenic epoxies with methyl and methoxy substituents as well as the phase 

behavior. Also, E-Joon eta/., 2004 and Gao eta/., 2007 reported the synthesis of 

azomethine epoxies and the curing behavior with diamines. According to their 

results, aromatic azomethine LCERs indeed possess advantages of high 

mesomorphic properties and can be obtained by a feasible and easy process with high 

percentage of yields [Mormann and Pokropski, 2005; Sadagopan, 2003]. 

2.3 Curing of Liquid Crystalline Epoxy Resin 

Curing is a reaction between the epoxy group with other functional group that 

has an active hydrogen molecule to give linear, branched or cross-linked products 

[Sandler and Karo, 1992]. The excellent properties of LC thermosets stem from the 

preservation of molecular organization in the mesophase of LC precursors and 

monomers by means of crosslinking. The resulting highly crosslinked thermoset 

containing rigid rod molecules can offer improvement of rather poor properties in 

transverse direction to the chain orientation [Choi eta/., 2000]. 

In the case of LCERs, it is crucial to determine as to whether the cured resins 

will possess liquid crystalline properties or not. In addition, the amount of cross

linked involved during curing process also determine the properties of the cured 

LCER. It is reported that superior mechanical and thermal stability were obtained 

from highly cross-linked LCERs as compared to the lightly cross-linked LCERs 

[Ambrogi eta/., 2005]. 
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The curing behaviour of LC thennosets are greatly influenced by the 

substituents on the mesogenic group, mesogenic structure and bridging group 

between the mesogenic group and the epoxide functional group [Lee and Jang, 

2006]. Furthermore, LC epoxy networks have been obtained mainly through the 

crosslinking of epoxy monomers containing mesogenic groups. The long triaromatic 

ester mesogenic group in epoxy monomers makes the mesophase stable because of 

significant geometrical anisotropy. The synthesis and curing of monomers with these 

mesogenic groups have been widely studied [Mossety-Leszczak et a/., 2003; Lee et 

a/., 1999; Mallon and Adams, 1993]. Galina and Mossety-Leszczak, 2007 reported 

the synthesis of epoxy monomer based on a triaromatic mesogen and its cross

linking reaction with primary and tertiary aromatic amines have resulted to networks 

retaining anisotropic nematic mesophases with stability up to 300 oc. 

Similar to the ordinary epoxy resin, LCER also need to undergo cross-linking 

process in order to become a cured resin. There are a wide variety of curing agents 

that can be chosen from and it can be classified into two main groups which are for 

room temperature curing and for elevated temperature curing [Miles and Briston, 

1965]. Polyamines, polymecaptans and polyisocyanates are the example for room 

temperature curing while polycarboxylic acids, polyanhydrides, polyphenols and 

carboxy-functional polyesters only react with heating [Stoye and Frietag, 1996]. 

2.4 Properties and Applications of Liquid Crystalline Epoxy Resin 

Researches on LC main chain polymers are mainly directed to high-strength 

fibers, high-modulus thermoplastic materials, and self-reinforcing polymers, which 

22 



in addition should have a better high temperature perfonnance and resistance to 

thennal degradation [Monnann and Brahm, 1991]. 

Generally, the properties of LCER are actually a combination of properties of 

the epoxy resin and liquid crystal [Punchaipetch et al .• 2002]. By incorporating the 

liquid crystalline structure into the conventional epoxy resin network, it could 

enhance the epoxy resin properties such as good adhesion, heat and corrosion 

resistance as well as mechanical and electrical properties [(Choi et a/., 2000]. 

Besides that, the thennal properties also reported have been enhanced [Carfagna et 

a/., 1997]. 

The amount of cross-linked involved during the curing process is crucial to 

detennine the properties of cured epoxy resin. It is reported that in the case of highly 

cross-linked structures, superior mechanical and thennal stability epoxies were 

obtained compared to the lightly cross-linked structures [Ambrogi eta/., 2005]. 

Over the past years, LC epoxies have been extensively studied, since the 

simultaneous existence of rubber elasticity, due to the crosslinked backbone chains, 

and optical birefringence, related to the mesogens, lead to exceptional physical 

properties. An elastic· defonnation of the network influences the order of the 

mesogens and, therefore the optical properties. In particular, they can undergo stress

induced polydomain-to-monodomain transition [Ambrogi et a/., 2005]. Moreover, 

they exhibit many interesting features, and unique dynamic-mechanical properties 

[Ortiz eta/., 1998]. 
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Most of the research conducted has studied the thennal behaviour of the 

liquid crystalline epoxy resin. Liquid crystalline epoxy resin exhibits high heat 

resistance [Lee eta/., 1999] and high thennal stability due to the improvement of the 

dimensional stability by the cross linking reaction [Litt et a/., 2003]. The cross 

linking agent plays an important role to detennine the thennal stability of the cured 

resin. It is reported that most common epoxy resins undergo thennal decomposition 

at relatively low temperatures where it usually lose 10% of their mass between 250-

3000C in air. However, researches using LCER had found that the mass loss is only 

5% and this proved the good thennal stability of the cured liquid crystalline epoxy 

resin [Farren eta/., 2001]. 

Furthermore, by incorporating the azomethine linkage into the liquid 

crystalline polymer, it has been proved to maintain good thermal stability [Choi et 

a/., 2000]. Several polymers bearing azomethine linkage had shown their thennal 

stability up to 400°C [Wojkowski, 1987]. Thus, it is predicted that the thermal 

stability of LCER could be enhanced by the presence of the azomethine linkage in 

the polymer backbone. 

Besides that, mechanical properties of liquid crystalline epoxy resin have 

become one of the main research interests in this exciting field. Numbers of paper 

published regarding the study of mechanical properties of cured liquid crystalline 

epoxy resin [Lee and Jang, 2006, Ochi and Takashima, 2001]. Compared to ordinary 

cured epoxy resin, cross-linked liquid crystalline epoxy resin exhibited higher 

mechanical properties when oriented by magnetic fields [Punchaipetch eta/., 2001]. 

Similar to the thennal stability properties, mechanical properties of cured resin 
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