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PEMBANGUNAN DAN PENILAIAN PELET PELEPASAN TERKA WAL DILTIAZEM 

ABSTRAK 

Satu sistem pelepasan terkawal telah dibangunkan melalui penyalutan satu filem polimer 

pengawal kadar apa ke atas pelet yang telah disaluti drug, dengan menggunakan diltiazem 

sebagai drug model. Drug tersebut dilapiskan ke atas pelet lengai dengan menggunakan sistem 

penyalutan fluidized-bed semburan bawah dan seteruskan disalutkan dengan Eudragit NE40D 

h 

sahaja atau campuran Eudragit NE40D dengan diltiazem. Kajian pelarutan in-vitro 

menunjukkan bahawa pelet yang disaluti dengan Eudragit atau campuran serbuk diltiazem 

dalam Eudragit sebaran berupaya mengekalkan kadar pelepasan sehingga 12 jam. Kajian 

pelarutan ke atas pelet tersalut juga menunjukkan bahawa kadar pelepasan drug boleh diubah 

dengan cara yang boleh diramalkan melalui perubahan ke atas tahap penyalutan polimer. 

Penambahan sebanyak 25% serbuk diltiazem ke dalam sebaran polimer meningkatkan kadar 

pelepasan drug kerana peningkatan ketelusan filem. Pemasukan 5% metil selulosa atau 

hidroksipropilmetil selulosa juga meningkatkan kadar pelepasan drug. Tetapi, penggunaan 

kedua-dua bahan tersebut tidak sesuai kerana pelet-pelet cenderung untuk mengumpal 

bersama sema~ proses penyalutan. Kadar pelepasan drug tidak begitu bergantung kepada pH, 

kadar agitasi dan kekuatan ionik larutan penampan. Rawatan haba ke atas pelet tersalut adalah 

perlu untuk memastikan pembentukan filem yang lengkap dan seterusnya pelepasan drug yang 

tetap selepas tempoh penyimpanan. Kadar pelepasan drug adalah stabil selepas disimpan pada 

suhu bilik selama 12 bulan. Satu sebaran baru polivinil asetat, Kollicoat SR30D (SR30) juga 

XX 



l 
t 
~' 
r' • ~· 

te!ah dikaji sebagai polimer pengawai kadar. Salutan SR30 ke atas pelet yang dilapisi drug 

mempamerkan kadar pelepasan yang diingini pada pelbagai tahap salutan. Amaun plastisizer 

seperti propilen glikol atau trietil sitrat dan bahan hidrofobik (magnesium stearat) di dalam 

formulasi salutan memainkan peranan utarna dalam menentukan kadar pelepasan drug daripada 

pelet tersalut. Kepekatan propilen glikol dan magnesium stearat yang lebih tinggi 

mempamerkan kadar pelepasan drug in-vitro yang lebih perlahan. Pencampuran pelet tersalut 

dengan talkum sebelum rawatan pemanasan atau penyimpanan menghapuskan pengumpalan 

dan kerosakan filem walaupun disimpan pada suhu 60°C. Kadar pelepasan drug daripada pelet 

tersalut diperlahankan selepas rawatan pemanasan pada suhu yang berapa dan profil pelepasan 

drug yang stabil dicapai selepas langkah rawatan pemanasan. Kajian mikroskopi'skan elektron 

ke atas pelet memberikan maklumat berguna mengenai integriti filem yang terbentuk. Tiada 

lapisan salutan drug dan polimer yang jelas dikenalpasti pada magnifikasi yang tinggi. Pelet 

yang disalut Eudragit telah dipilih untuk kajian bioekuivalen in-vivo yang melibatkan enam 

sukarelawan sihat dan ia dibandingkan dengan kapsul Herbesser SR. Kedua-dua formulasi 

adalah setara dari segi tahap biokeperolehan di bawah keadaan berpuasa dan mempunyai sifat 

pelepasan terkawal yang hampir sama. Kehadiran berbagai puncak di dalam setiap profil 

kepekatan plasma bagi semua subjek diperhatikan untuk kedua-dua formulasi kajian dan 

Herbesser SR. Korelasi yang memuaskan juga dipasti di antara data in-vivo dan in-vitro bagi 

kedua-dua fg_rmulasi tersebut. Sebagai tambahan, sifat peralihan gastrousus bagi formulasi 

kajian dan Herbesser SR dikaji dengan menggunakan pelet paracetamol dan sulfasalazin 

sebagai drug penanda. Kedua-dua formulasi tidak menunjukkan perbezaan yang signifikan 

untuk masa pengosongan gastrik dan masa peralihan usus kecil. Bagi kedua-dua formulasi 

kajian dan rujukan, lebih kurang 14% drug telah diserap apabila pelet-pelet tersebut berada di 
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dalam perut. Semasa berada di dalam usus kecil, amaun drug yang telah diserap daripada 

formulasi kajian berjumlah lebih kurang 50% and daripada Herbesser SR adalah 37%, 

manakala di dalam kolon, jumlah yang diserap masing-masing adalah 36% and 49%. 
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ABSTRACT 

A controlled release system was developed from coating drug layered pellets with a release rate 

controlling polymer film, using diltiazem as the model drug. The drug was layered onto inert 

pellets using bottom spray fluidized-bed coating system and subsequently coated with Eudragit 

NE40D alone or in combination with diltiazem. In vitro dissolution studies revealed that pellets 

coated with Eudragit or the dispersion of diltiazem powder in Eudragit sustained the release 

rate up to 12 hours. Dissolution studies of coated pellets also indicated that the release rate of 

the drug could be varied in a predictable manner by varying the coating thickness of polymer. 

Addition of 25% diltiazem powder with respect to the polymer dispersion enhanced the release ... 
rates due to increased film permeability. Inclusion of 5% methyl cellulose or 

hydroxypropylmethyl cellulose, also increased the rate of drug release, but their utilization 

seemed to be unsuitable because they tended to cause agglomeration of the pellets during 

coating. The rate of drug release was reasonably independent of pH, agitation rate and ionic 

strength of buffers. Thermal treatment of coated pellets was essential to ensure complete film 

formation and hence constant drug release after different storage time. The rate of drug release 

was stable after storage at room temperature for 12 months. A new dispersion of polyvinyl 

acetate, Kollicoat SR30D (SR30) was also investigated as the rate controlling polymer. The 

coating of SR30 onto diltiazem-layered pellets was found to display desirable release rates at 

various coating-levels. The amount of plasticizers namely, propylene glycol or triethyl citrate 

and hydrophobic substance (magnesium stearate) in the coating formulation played a major role 

in controlling the release rate of drug from the coated pellets. Higher concentration of 

propylene glycol and magnesium stearate displayed slower rate of drug release in vitro. 

Blending the coated pellets with talc prior to curing or storage eliminated the agglomeration 
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and film damage even at 60°C. The rate of drug release was reduced after thermal treatment of 

coated pellets at 60°C and invariable drug release profiles were achieved after the curing step. 

Scanning electron microscopic evaluation of pellets provided useful information on the 
0" 

~· 
!£'. integrity of the film formed. No distinct coating layer of drug and the polymer was identified at 
f;; 
f higher magnification. Eudragit-based coated pellets were chosen for in vivo bioequivalence 

f studies involving six healthy human volunteers in comparison with Herbesser SR capsules. The 
~: 
~: 

r two formulations were comparable in the extent of bioavailability under fasted conditions and 
f 

possessed almost similar release sustaining behaviour. A slightly faster rate of in vivo 

absorption was observed with test formulation. The presence of multiple peaks in the individual 

plasma concentration profiles of all the subjects were common in both test formulation and 

Herbesser SR. A satisfactory correlation was also established between in vivo and in vitro data 

for the two formulations. In addition, the gastrointestinal transit behaviour of test formulation 

and Herbesser SR was monitored using pellets of paracetamol and sulfasalazine as marker 

drugs. No significant difference was found in gastric emptying as well as small intestine transit 

times of the two preparations. For both test and reference formulations, approximately 14% of 

drug was absorbed when the pellets were in stomach. Whilst in the small intestine, the amount 

absorbed from the test formulation was approximately 50% and from Herbesser SR, was about 

37%, whereas in the colon the respective amounts absorbed were 36% and 49%. 
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CHAPTER 1: INTRODUCTION 

;.: 1.1 ORAL CONTROLLED RELEASE DOSAGE FORMS 
~;, 

P: 

'"'::· 
f:· 

Among the various modes of introducing a drug into the body, the oral route remains the most 

~~· 
li' popular because of its ease of administration and convenience to the patients. Ideally, an oral 

~ · dosage funn should deliver the drug to its site of action, at the optimal rate required to elicit the 
It"<'-": 

i 
I'!' .,., 
~· 
Iii 
r:­
[ 

desired therapeutic response over the duration of the dosing interval. Since blood is usually the 

medium of transport for the absorbed drug, this ideal is best accomplished by providing a 

plasma-concentration profile, which produces optimal therapeutic activity. However, this goal 

can only be partially achieved with conventional dosage forms (Lee and Good, 1987). 

Conventional dosage forms such as normal tablets or capsules are generally designed to release 

their contents immediately for absorption so that the rate and extent of absorption are maximal. 

Hence, wide fluctuations in peak and trough steady-state drug levels are often obtained with 

these products in multiple dose administration, particularly if the biological half-life of the drug 

is short. Such fluctuations are undesirable with drugs of narrow therapeutic indices. Whilst 

increasing the frequency of dosing may be able to reduce these fluctuations, it may also lead to 

patient inconvenience and poor compliance. Because of these shortcomings, a number of 

approaches have been used to formulate sustained release dosage forms. To be effective such 

formulations must control the rate of oral drug release for absorption over an extended period 

of time after each administration. 



Controlled release dosage forms refer to pharmaceutical preparations that are formulated to 

deliver therapeutic agents over an extended period in a predictable and reproducible rate after 
. 

administration of a single dose (Chien, 1992). The terms controlled release, prolonged action, 
,. 

modified release and sustained release are used interchangeably with extended release. An ideal 

controlled release formulation should release its drug at a ccnstant rate and provides constant 

~· drug levels in plasma with reduced fluctuation over a period of 12 to 24 hours such that the 

duration of its therapeutic effect is sustained. Controlled release technology providing 

programmable delivery rates has increasingly become more important, especially drugs used 

for chronic treatment or with narrow therapeutic indices. 

1.1.1 V ARlO US APPROACHES FOR ACHIEVING CONTROLLED DRUG DELIVERY 

A number of approaches to achieve oral controlled drug delivery has been reported in the 

literature. These ranged from simple formulation techniques to those using sophisticated 

technologies. Broadly, the methods can be divided into three main categories, namely those 

based on a barrier membrane or coat, matrix systems and those using osmotic pressure. 

1.1.1 (a) SYSTEM BASED ON BARRIER MEMBRANE/COAT 

The German dermatologist Paul G. was the first to use enteric coating for modifying drug 

release. He reported that if the pills were covered with a thin film of keratin, the pills would not 

dissolve in gastric acid fluid but in the intestine for absorption (Helfand et al, 1982). Thus, 

coating the drug particles or pellets with a barrier membrane is an effective means of 

controlling the drug release. The barrier coat can either be slowly soluble or insoluble in 

nature. In the former case, the pellets release their contents through erosion of the coat. A 
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typical product utilizing this release mechanism may consist of a capsule containing numerous 

pellets coated to various thicknesses with some erodible material. Since the rate of erosion of 

the coat can be expected to be dependent on the coat thickness, such a product will yield a 

relatively continuous drug release. The Spansule• capsule dosage form marketed by Smith, 

Kline and French laboratories (SK&F) (US Patent No. 2738303) was based on this design. A 

variation of this method is to coat the pellets with different coating materials of different 

dissolution or disintegration times, or successively coating a spherical pellet, in between which, 

is placed the active drug (Hermelin, 1957). A second mechanism whereby coated pellets 

release their medicaments is by diffusion of the drug through the intact coat. Following 

ingestion, moisture within the gastrointestinal (GI) tract penetrates the coat to dissolves the 

solid drug. The dissolved drug molecules then diffuse through the intact barrier membrane. The 

rate of drug release can be controlled by varying the nature and/or thickness of the coat or by 

altering its porosity by incorporating some water-soluble materials into the coat to act as 

channeling agents. It is interesting to note that osmosis has recently been suggested as an 

important mechanism for the drug release from such systems (Ozturk et al, 1990; Lindstedt et 

al, 1989 & 1991). 

1.1.1 (b) MATRIX CONTROLLED RELEASE SYSTEMS 

A drug with a slow dissolution rate is inherently sustained. For those drugs with rapid 

dissolution, embedding them within a slowly dissolving or erodible matrix provides a means of 

retarding the dissolution rate. Most of the oral matrix controlled release products utilize either 

hydrophilic or hydrophobic matrix systems in which the drug is homogeneously distributed or 

dissolved in the polymeric matrix. The release of drug occurs mainly through diffusion and 
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erosion. A simple semiempirical equation was introduced in 1985 to describe the drug release 

behaviour from a hydrophilic matrix system (Peppas, 1985; Ford et al, 1991) while the release 
. 

from a hydrophobic monolithic matrix system can be adequately described by the Higuchi 

~· equation (Higuchi, 1963). 

1.1.1 (c) OSMOTIC DRIVEN DEVICES 

In an osmotic pump described by Theeuwes in 1975, the delivery of the drug from the system 

is controlled by the solvent influx across a semipermeable membrane to dissolve the 

osmotically active drug and I or salt. This leads to an osmotic and hydrostatic pressure 

differences on both sides of the semipermeable membrane under which the drug solutes are 

continuously pumped out over a prolonged period of time. OROS® Push-Pull technology based 

on the above principle was marketed by ALZA Corporation for delivering drugs of very high or 

low solubility. Such technology provides a zero-order drug release over a 24-hour period. The 

system consists of two compartments that are compressed into a bilayer core. The top layer 

contains an active drug and the lower layer contains an osmotically active polymeric agent. The 

bilayer core is coated with a rigid semipermeable membrane and a delivery orifice is drilled 

through the coating membrane using a laser beam. The lower layer expands upon influx of 

water to dissolve the osmotically active salt and the hydrostatic pressure created drives the drug 

out of the system in the form of a solution or suspension. Thus, the rate of drug release is 

independent of the drug properties and the release environment. This system has been applied 

to deliver drug such as nifedipine (Swanson et al, 1987; Chung et al, 1987), metoprolol 

(Godbillon et al, 1985) and oxprenolol (Bradbrook et al, 1985). 
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.1.1 (d) OTHER APPROACHES 

)ther methods used for controlling drug release include ion exchange resins such as, Ionamin 

:apsules manufactured by Penwalt. Ion exchange resins consisted of water insoluble 

:rosslinked polymer with anion or cation groups in repeating positions. Upon administration of 

, drug-resin complex, the drug would be released through exchange whh appropriately charged 

ons in the GI tract. An improved approach is to coat the ion-exchange system with a 

tydrophobic rate-limiting polymer such as ethyl cellulose or waxes. In this system, the rate of 

lrug availability can be controlled by manipulating the polymer coat (Grass and Robinson, 

990). 

\.nother mechanism for sustaining the delivery of drugs with poor absorption characteristic is 

o increase its residence time within the stomach. This involves using gastroretentive 

ormulation such as pellets with lower density or pellets that bio-adhere to the stomach to 

1rolong the gastric retention time. Such drug delivery systems also offer a potential for 

ustained drug therapy for local conditions affecting the stomach . 

. 1.2 ADVANTAGES AND DISADVANTAGES 

)ral controlled release dosage forms are gaining medical acceptance and popularity due to their 

umerous therapeutic advantages. The therapeutic levels of a drug can be maintained for an 

xtended period of time, and thus the dosing frequency can be reduced to once or twice daily 

rhich in turn leads to increased patient convenience and compliance {Tinkleman et al, 1980). 

his is of great importance, especially for drugs used in the long-term treatment of chronic 

iseases. Moreover, controlled release dosage forms are useful for delivering drugs with narrow 
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therapeutic indices since they can reduce the peak-trough fluctuations in blood concentration, 

being characteristic of multiple dosing using conventional immediate release dosage forms. A 

better efficacy/toxicity ratio of drug during the entire dosing interval could thus be obtained 

(Urquhart, 1982). Wide fluctuations in the blood levels may produce high peak drug levels 

associated with toxicity while low trough levels result in the loss of efficacy. Hence, a better 

disease management and reliable therapy can be achieved with the controlled release dosage 

(Welling and Dobrinska, 1987). 

Elimination of local irritation and erosion arising from exposure of the gastric mucosa to high 

drug concentrations has also been reported for individual drugs. However, this point remains 

controversial. Perforations of the small bowel was reported with the OROS controlled release 

. formulation of indomethacin, but it is still unclear whether this was due to local effect of 

indomethacin, the osmtic agent or a systemic effect related to constant indomethacin plasma 

levels. 

However, controlled release dosage forms also have some disadvantages. The removal of drug 

from the gastrointestinal (GI) tract is difficult with controlled release preparations if adverse 

drug effects are observed. Controlled release products may also yield erratic or variable drug 

absorption due to their increased susceptibility to interactions with the contents of GI tract as 

well as changes in the GI motility. Moreover, controlled release dosage forms may not be 

practical for drugs given as large doses (>500 mg) in conventional dosage forms. A controlled 

release tablet may contain twice the dose of a conventional tablet, and hence the size of the 

controlled release tablet would become too large to be swallowed easily. Moreover, dose-
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dumping phenomenon in which large amount of drug is released immediately for absorption 

into the systemic circulation, may occur leading to potentially toxic levels and adverse drug 

, reactions. The dose dumping is primarily due to a breakdown in the controlled release 
~:· 

t mechanism, thus the preparation behaves like a conventional iiiU!l.ediate release product. In 
~· . 

i addition, the potential for reduced drug availability due to first pass effect is greater with 

~controlled release formulations than with conventional dosages (Prisant et al, 1992). 

F· 
I' 
"'" ~~· 

~~· 1.1.3 MULTIP ARTICULATE AND SINGLE UNIT DOSAGE FORMS 
~·· 
~· 

Oral controlled release dosage forms can be classified into single and multiparticulate 

preparations (Bechgaard and Nielsen, 1978). The single unit usually consists ofa single tablet 

such as matrix system while multiparticulate preparation comprises many small subunits like 

pellets or beads in a hard gelatin capsule. The multiple unit dosage forms offer considerable 

advantages over matrix tablets. Pellets are usually produced in an ideal spherical shape that is 

suitable for coating and fllling due to their free flowing properties. Multiparticulate system can 

also provide greater flexibility in terms of dose adjustment, combining two or more compatible 

or incompatible drugs as well as combining the pellets having different release rates into a 

single dosage form. The pellets are well distributed in stomach and small intestine after 

administration and hence minimize the problem of gastric irritation due to reduced local drug 

concentration as compared to highly localized concentration after the administration of an 

immediate release dosage form (Wilson and Washington, 1989; Rowe, 1983). There is a rare 

chance that all pellets in a dose will be disrupted and hence has lesser risk of dose dumping 

(Beckett, 1985). 
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Another major advantage is the gradual and to some extent, more predictable emptying of 

pellets from the stomach with small intra and inter-subject variations. Pellets are usually 

emptied rapidly from the stomach and can easily pass through the contracted pylorus. On the 

other hand, gastric emptying of a single unit dosage form is essentially a random process with 

.. greater intra and inter-subject variations (Bechgaard, 1982) . 

. • 1.2 PELLETIZATION 

. Pelletization process is not only utilized in pharmaceutical industry but also in fertilizer, fish 

feed and polymer industries. The pharmaceutical industry shows keen interest in this process 

after the introduction of Spansule® capsule launched by Smith Kline & French. Pelletization 

can be described as an agglomeration process in which fine powders or granules of drug 

together with other non-active materials are converted into small spherical and free flowing 

units which are commonly known as pellets/beads or spheroids. Pellets manufactured in the 

pharmaceutical industry is normally ranged between 0.5 to 1.5 mm. Pellets can be prepared in 

different ways such as balling, layering, globulation and compaction (Ghebre-Sellassie, 1989). 

Balling process has little application in the pharmaceutical industry but has greater application 

in the ore and fertilizer industries. In this classical process, finely divided particles are 

converted to pellets with the addition of appropriate quantities of liquid prior to or during their 

continuous rolling in drums, discs or mixers (Newitt and Conway-Jones, 1958; Bhrany et al, 

1962; Sastry and Fuerstenau, 1977). The dominant stages in this process are nucleation, 

coalescence and layering. The pellets produced from balling process have a wide particle size 

distribution due to the random nature of the formation of nuclei (Chambliss, 1989; Wan, 1994). 
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In layering process, inert nonpareil or preformed drug nuclei are used for the deposition of 

successive layers of drug in solution, suspension or dry powder. In solution or suspension 

layering, the drug particles are either dissolved or suspended in binder solution for spraying 

· :; onto the inert nonpar~il. During the spraying and drying stage, liquid bridges that are 
l 

convertible to solid bridges, are formed and the process is continued until the desired pellet size 

·.~. is achieved. On the other hand, a binder solution is first applied onto the seeds during powder 

layering, which are then tumbled in the rotating pan containing powdered drug to form layers 

on the particles until the desired sizes are obtained (Sherrington, 1969; Ghebre-Sellasie et al, 

1985). 

r In comparison, globulation is a process in which hot melts, solutions or suspensions are 
~ 

atomized to produce solid particles through evaporation or cooling and solidification 

(Sherrington and Oliver, 1981). This process can be sub-divided into two relevant processes of 

spray drying and spray congealing (Ghebre-Sellasie, 1989). During spray drying, the atomized 

droplets are evaporated upon contact with hot gas stream whereas in spray congealing, the 

atomized droplets are cooled to temperature below the melting point of the vehicles. 

In pelletization using the compaction process, the drug particles or granules together with or 

without formulation aids are mechanically forced to produce pellets of definite shape and size 

(Conine and Hadley, 1970; Carstensen, 1984). Compaction can be divided into compression 

and extrusion. During compression, the particles undergo either elastic or plastic deformation at 

high pressure to increase inter-particulate contact. The f01mulation and processing variables are 

similar to those employed in the granulation proces~ during tablet manufacturing. In contrast, 
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extrusion is not a single pelletization process but instead is a multistage process. The four main 

operations involved are preparation of wet mass during granulation, shaping the wet mass into 

: cylindrical extrudates, breaking up the extruded mass and spheronizing it into pellets which are 

L then dried (Conine and Hadley, 1970; Woodruff and Nuessle, 1972). 

;, In addition to the above methods, there are two other techniques of producing pellets, namely 

cryopelletization and melt spheronization. Both techniques are gaining much interest in the 

pharmaceutical industry. Cryopelletization is a new freezing technique for conversion of 

aqueous solutions/suspensions into solid bead-like particles by employing liquid nitrogen as the 

t . cooling medium. The pellets are then dried in conventional freeze dryers (Knoch, 1'994). This 
'· 
~· technique was first developed for the nutrition industry as well as for the lyophilization of 
(.-

viscous bacteria. Melt spheronization, on the other hand, is a modified form of balling process 

and is still in the developing stage. The drug and inactive materials are first converted into 

molten or semi-molten state, which are then shaped into pellets by using melt pelletizers 

(Thomsen et al, 1993). 

1.2.1 EXTRUSION-SPHERONIZATION 

The pelletization process improves dramatically after the introduction of the extruders and 

spheronizers. At present, two pelletization processes, namely extrusion-spheronization and drug 

layering are widely used for the production of pellets in the pharmaceutical industry. The 

equipments used in both processes are discussed below. 
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1.2.1 (a) EXTRUDERS 

There arc different types of extruders available and all have the basic principle of forming a 
. 

wet powder mass through a perforated die or screen to produce cylindrical extrudates. The 

extruders can be classified according to the die design and feed mechanism for transporting the 

"' material to the die. The four main classes of extruders are screw extruder, sieve and baske~ 

type, roll (Rowe, 1985) and ram extruders (Benbow and Ovenston, 1968). 

The selection of an extruder depends upon the characteristics of the extrudates and the nature of 

further processing steps required. The ram extruder is usually used during an early 

experimental stage while a low compaction system such as the screen/screw extruders is 

appropriate for the production of granules. On the other hand, roll mill is suitable for a dense 

extrudates that require subsequent spheronization. 

Some instrumentation, such as roll extruder with two perforated cylinders, allow the 

measurement of forces during extrusion. The in-process control could be correlated to the final 

quality of the pellets (Baert et al, 1992). Harrison et al (1985) measured the force applied on the 

piston of a ram extruder that is necessary to maintain a fixed extrusion speed. 

1.2.1 (b) SPHERONIZERS 

Spheronizers consists of a grooved horizontal plate rotated within a stationary vertical cylinder 

fitted with a door to allow discharge of the spheronized products. During spheronization, the 

wet extrudes are loaded onto the rotating plate of spheronizer and are transported by centrifugal 

force to the periphery of the spheronizer. The damp extruded particles or extrudates produced 
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by the extruders described above require further processing to obtain spherical shapes. The 

extrUdates are broken down into shorter and uniform cylinders. The friction plates have two 

types of grooved surfaces; crosshatch geometry where the grooves form right angles, and radial 

·. geometry where a radial pattern is used. During the spheronization process, the extrudates in 

··the form of cylinders undergo different stages to form round pellets. Initially they form 

", ........ -~~ with rounded edges, then dumbbells followed by elliptical particles and finally 

·spheres (Rowe, 1985). A special kind of spheronizer has a lip around the rim of the friction 

plate, and was claimed to reduce the mixing effect of the friction plate resulting in a smaller 

amount of fines. In an air-assisted spheronizer, filtered dry air can be passed through the 

perforated base of the plate to partially remove the surface moisture from the particles: Air also 

flows through the gap between the plate and the wall. Such specialized spheronizer helps in the 

movement of the granules/pellets to slide across each other more easily. 

1.2.2 COATING TECHNIQUES 

Most coating processes utilize three categories of coating equipments, namely conventional 

pans, perforated coating pans and fluidized bed coaters. However, it should be noted that these 

coating equipments or processes can also be used to prepare pellets such as layering method 

mentioned in section 1.3. Fluidized-bed coating technique is best suited for producing modified 

release coatings especially when dealing with water-based formulations. Three types of spray 

systems are available, namely top-spray, bottom-spray and tangential-spray systems. However, 

the latter two systems are usually preferred (Olsen, 1989). The differences in the three systems 

are summarized below. 
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1.2.2 (a) TOP-SPRAY SYSTEM 

The conventional top-spray system has been used for many years and was originated from the 

fluidized-bed dryer. In this coating system, the particles are placed in the product container and 

it the particles are accelerated randomly upwards by air where a nozzle sprays the coating 

~·material from the top downwards. The spray nozzle is mounted lower than the expansion 
i•C< 

~ chamber so that the liquid is sprayed when the particles are moving at a higher velocity. The 

f, product then enters the wider expansion chamber resulting in reduction of velocity. The 
L~ 

' ,, 
. particles then fall back into the container and this cycle is repeated throughout the coating 

process. Such coating equipments are available in batch sizes between 3 to 1500 Kg. 

1.2.2 (b) BOTTOM SPRAY SYSTEM 

Bottom spray system or more commonly known as Wurster system is widely used for coating 

and layering of pellets as small as 100 microns. At the base of the coating chamber, there is a 

fine screen and an air distribution plate while in the center of the plate, a nozzle is fixed to 

spray coating formulation through a cylindrical partition. The air distribution plate is designed 

to generate a circulatory motion of particles. The fluidized particles move upward through the 

spray zone and enter the expansion chamber where they defluidize and fall outside the partition 

known as downbed. The downbed region is a slightly expanded bed where the air rate is below 

the minimum fluidization velocity and in this region sticking is more likely to occur. The cycle 

completes when horizontal transport of the product into the spray zone occurs through the small 

gap at the base of the partition. The presence of the partition in the Wurster chamber produces 

more organized movement of particles, which is less affected by bed load. The Wurster-based 

coating process is a complex process with many interrelated processes (Christensen and 
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Bertelsen, 1997). Proper selection of the distance between the base of the partition and the air 

i distribution, which is known as the partition height results in a rapid and smooth movement of 
a::.. 
~·: 

particles through the spray zone. 

1.2.2 (c) TANGENTIAL SPRAY SYSTEM 

In this system, the product container consists of cylindrical chamber with a variable speed disk 

,. at its base. A gap exists at the perimeter of the disk through which the process air is drawn. 

Three forces act on the product during processing. Centrifugal force due to disk spinning makes 

the product to move forward and outward toward the chamber wall. The fluidization air 

~· produce acceleration upward and gravity makes the product to tumble toward tlie disk surface 
~ 
f 

once again. The spray nozzle is fixed tangentially and sprays on the tumbling product in the 

bed. Coatings can be applied using water, organic solvents or via hot melts. The fluidization 

pattern is quite different with the product flowing in a reverse direction as compared to that in 

the top spray and bottom spray systems. Tangential spray process is the most stressful 

mechanical method, where the pellets are randomly fluidized and their movement is related to 

size and density. The high speeds employed result in the loss of the rope-like motion of the 

pellets and cause the bed to slide on the rotating disk as the liquid is sprayed. Lower disk 

speeds also cause similar problems due to uneven distribution of the spray (Vuppala et al, 

1997). 

It has been observed that the quality of the modified release films is related to the type of 

equipments selected in the foilowing order (Mehta and Jones, 1985): 

Wurster= Tangential spray> Side vented pan>> Conventional pan 
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The Wurster and Tangential spray give the best drying characteristics due to the small distance 

between the spray nozzle and the particles which helps to control deposition of the coating 

material and maximize the quality of the final coating. In the Wurster technique, the 

movements of particles and spray droplets are co-current and therefore, have many chances to 

: come into contact. On the other hand, the fluidizing air and spraying are counter current in the 

.~.· top-spray method. Therefore, it is conceived that the spray is more gentle and homogeneous in 

Wurster technique while top-spray method causes an excessive spreading on the particles. 

• 1.2.3 COATING POLYMERS 

~, Controlled release coatings began as organic solutions and evolved to aqueo~s dispersions in 
~: 

~ 
response to environmental regulations and safety. An early and widely known aqueous product 

was the pseudolatex that consisted of a finely divided colloidal dispersion of water insoluble 

polymer in the aqueous media. The other polymeric dispersions are latexes prepared by 

emulsion polymerization of monomer and dispersions of micronized polymeric powder. Some 

aqueous coating systems have been described to possess pH-dependent properties, but most are 

unaffected by the pH of the dissolution media. Several aqueous polymeric dispersions require 

the presence of plasticizer to facilitate film formation. A number of aqueous dispersions are 

plasticized during the manufacturing stage while others require the addition of an appropriate 

amount before the coating process. 

The United States Pharmacopeia (2000) lists three sustained release coating materials, namely 

cellulose acetate, ethylcellulose and methacrylic acid copolymers that could function as rate 

controlling membranes. Polymeric dispersions available commercially are listed below: 
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Brand Type 

Eudragit L30D 

r Eudragit RSIRL 30D 
t 
I'~ Eudragit NE30D 

•!,• 

' Kollicoat EMM30D 

Kollicoat SR30D 

Aquacoat/Surelease 

Polymer Component Additives 

Copoly (MA-EA) Tween 80 (2.1 %), SDS (0.9%) 

Copoly (EA-MMA-TAMCI) Sorbic acid 

Copoly (EA-MMA) PNP 

Copoly (EA-MMA) NonoxynollOO (1.5%) 

Polyvinyl acetate Povidone (2.5%), SDS (0.3%) 

Ethyl cellulose Cetyl alcohol (9%), SDS (4%)/ 

Dibutylsebacate, Oleic acid, 

Ammonia fumed silica. 

MA, Methacrylic acid; EA, Ethyl acrylate; MMA, Methyl methacrylate; 

TAMCI, Trimethylammonioethyl methcrylate chloride; SDS, Sodiwn lauryl sulphate and 

PNP, Polyoxyethlene nonyl phenyl ether. 

Eudragit L30D is a copolymer of ethyl acrylate with methacrylic in ratio of 1:1 and has been 

used as an enteric coating material. 

Eudragit RS30D and RL30D (RL30 & RS30) are copolymers of ethyl acrylate and methyl 

methacrylate with trimethyl ammonioethyl methacrylate chloride as a hydrophilic group in 

ratios of 1:2:0.1 and 1 :2:0.2 respectively. Both are available as 30% w/v colloidal dispersion, 

stabilized in water by the positively charged quaternary ammonium. The release of drug can be 

controlled by mixing RL30 and RS30 in different ratios. 

Eudragit NE30D (NE30) is a copolymer of ethyl acrylate and methyl methacrylate in a ratio of 

2:1. It has a lower softening temperature as compared to RL30 and RS30. NE30 forms flexible 
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and expandable films while RL30 and RS30 form hard films under room temperature. Kollicoat 

EMM30D is a different trademark but having similar polymer composition and properties as 

that of NE30. The difference in the two brands lies in the selection of additives used in their 

preparations. The permeability of these films and hence the drug release from the coated pellets 

are pH independent. 

Kollicoat SR30D is polyvinyl acetate dispersion stabilized with povidone and sodium Iaury! 

sulfate. It forms hard, colorless or faint yellowish film in the absence of a plasticizer. 

Cellulose derivatives cannot be formulated directly in latexes and are prepared as micronized 

powder. Film formation is easier from dispersions of micronized polymeric powders of small 

particle size as compared to large particle size. The effect of particle size on film formation was 

reported by Nakagami et al, (1991). They found that micronized ethyl cellulose with large 

particle size formed poor film and required more plasticizer to form a continuous film. 

1.2.3 (a) ADDITIVES USED FOR AQUEOUS BASED POLYMERS 

Plasticizers are incorporated for certain polymer coatings to reduce the film formation 

temperature as well as the glass transition temperature. Generally, the main function of a 

plasticizer is to increase the film flexibility. Plasticizers also have a significant effect on drug 

release when they are incorporated in the rate controlling membranes for coating. The inclusion 

Jf a suitable plasticizer prevents the cracking of polymeric coat and improves the drug release 

:etardant properties of the coat (Rowe, 1986). 
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Hydrophilic materials such as polyethylene glycol, methylcellulose, hydroxypropylmethyl 

cellulose (HPMC), polyvinylpyrrolidone and glycerine are usually added into water insoluble 

dispersions to modify the permeability of the coats formed and hence the drug release profiles. 

The addition of HPMC to a water insoluble membrane was reported to cause pore formation 

resulting in a faster drug release (Govender et al, 1995). On the other hand, talc, magnesium 

t' stearate and silica are used to reduce the stickiness of the coating formulations (Ghebre-

Sellassie et al, 1986 & 1987). Pigments like titanium dioxide are widely used in coloured film 

coating. 

1.2.3 (b) MECHANISM OF FILM FORMATION 

Film formation from a latex or pseudolatex takes place when droplets of the polymeric 

dispersion are deposited on the particles. This is followed by the evaporation of water and 

coalescence of the polymer particles into a continuous film. The formation of film coatings 

from aqueous polymer dispersions is a complex process, which is highly dependent on 

additives and processing parameters. For example, coating in a fluidized bed at the minimum 

film forming temperature may lead to incomplete film formation (Lippold and Monells, 2001 ). 

It was also found that the difference in the drug release behaviour of aqueous-based and 

organic solution-based coatings of ethylcellulose was attributed to the difference in the film 

formation process (Wesseling and Bodmeier, 1999). Guo et al, (1993) suggested that film 

formation from the aqueous latex dispersion proceeded gradually from the top to the bottom of 

the film. Various theories have been presented to describe the mechanism of film formation 

from aqueous polymeric dispersions (Fukumori et al, 1991; Lehmann, 1989; Muroi, 1970; 

Steuemagel, 1989). Fusion and film formation of polymeric particles can be explained by the 
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wet sintering theory for particles suspended in water, the capillary pressure theory for particle 

layers in water at various degrees of saturation, and the dry sintering theory for dry particles 

layers (Fukumori, 1994). 

1.3 EVALUATION OF CONTROLLED RELEASE PRODUCTS 

1.3.1 IN-VITRO EVALUATION 

f In-vitro dissolution study is useful in the initial stages of development and evaluation of 
[ 
r r· 
~ controlled release dosage forms. It also provides useful information regarding the factors that 
(.: 

could affect the drug release behaviour of controlled release preparations, which include 

processing variables, lot to lot uniformity as well as alterations in formulation or manufacturing 

site and stability determinations during various stages of the development process. 

However, it is not possible to include all the variables in the in-vitro test design that can affect 

the in vivo dissolution in the GI tract. As far as possible, the in-vitro test conditions should 

have meaningful relationships to the conditions in GI tract and should be the part of dissolution 

test methodology (Smollen and Ball, 1984). Choice of dissolution test conditions should be 

based whether the drug is to be dosed in the fed or fasted state. 

Various dissolution-testing devices have been developed and reviewed (Banaker, 1991 ). 

Generally, two dissolution systems can be distinguished, namely those based on stirred vessels 

and those based on flow through cells (Nelson and Muller, 1979). The former systems contain 

large volume of dissolution medium maintained at 37°C in a round flask that is mechanically 

stirred with a cylindrical basket or paddle. The later systems consist of a small dissolution cell 
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holding the dosage fonn through which fresh solvent circulates at a constant rate without any 

agitation. The official in-vitro dissolution methods in the USP 24 for testing oral controlled 

release dosage forms are rotating basket, paddle method, reciprocating cylinders, and flow 

~. through cell. Alternative unofficial in-vitro methods include the flow througr.. dissolution 
it 

"' ~ method, rotating bottle or flask methods, intrinsic dissolution method and peristalsis method 
t' 

f (Shargel and Andrew, 1999). Nevertheless, the rotating basket and paddle methods are still 
~· .. 
f 
~ commonly used to evaluate the dissolution characteristics of sustained release products. The in 
~' ,_ 

vitro dissolution method should be reproducible and at the same time, discriminative enough to 

detect inferior batches of similar products. Moreover, the sampling times should span from the 

first hour until at least 75% of drug has been released in order to detect any dose dumping 

phenomenon and to ensure a complete release of drug. It is imperative that the in vitro 

dissolution method should reflect the conditions in the GI tract. However, this may not always 

be possible due to the changing environment along the GI tract as well as alteration during 

different food status. 

The dissolution media in the small intestine is a complex mixture of bile salts, lecithin, 

cholesterol and a wide range of lipid materials that can vary considerably with meal type and 

diet, being different from the conditions in the stomach. Nevertheless, in vivo solubilization can 

be partially simulated by the addition of surfactants into the dissolution medium to maintain 

sink condition, such that the drug completely dissolves in less than 20-30% of the dissolution 

medium. Other important factors that should be considered in the dissolution tests are the types 

of dissolution apparatus, size and shape of dissolution vessels, volume of medium and mixing 

or circulation of the dissolution medium and the duration of the test. 
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pellet coated with a polymeric membrane provide a certain amount of resistance to drug 

diffusion from the drug reservoir to the surrounding medium. The driving force of such systems 

is the concentration gradient of drug molecules between the reservoir and the medium. The 

drug entity from film-coated dosage forms may be transported through a hydrated swollen film, 

via a network of capillaries filled with the dissolution media or driven by an osmotic pressure 

difference between the core content and the surrounding dissolution media. Base on Fick's first 

law of diffusion, the release rate of a drug from a reservoir coated with polymeric system at 

steady state is expressed as follows: 

Release rate= DKAL\C IL (1.1) 

Where D is the diffusion coefficient of the drug, K is the partition coefficient of drug between 

the polymeric barrier and aqueous phases, A, the surface area, L\C, the concentration gradient 

and L, the thickness of the film. In the case, when all the terms are held constant, the amount of 

drug release as a function of time can be obtained on the basis of zero order kinetics. 

Release rate = K (1.2) 

Where K is the release rate constant. The drug layer of coated pellets must continually release 

sufficient drug to maintain a constant concentration gradient across the rate-controlling 

membrane for sustaining zero order release rates. However, when the solid drug has been 

depleted, the drug release will follow first order kinetics, the rate being dependent on the drug 

concentration remaining in the reservoir. 
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1.3.2 IN VIVO EV ALUTION 

Due to the difficulty of in vitro dissolution studies to simulate the actual environment and 

conditions in vivo, in vivo performance of a controlled release dosage form is best evaluated 

using human subjects. However, thi~ will increase the cost of product development. In the 

absence of in-vivo testing, it is generally impossible to make any decision about bioavailability 

from the dissolution data alone. It has been emphasized that bioavailability testing in human 

subjects provides the most authentic means for the validation of the final product. A 

comparison of drug blood levels of the test product with that of a reference product containing 

the same drug can be achieved by administering the drug solution orally or intravenously, or a 

proven conventional or controlled release preparation. The bioavailability o(the test product 

can then be estimated from the analysis of pharmacokinetic data. A single dose bioavailability 

is usually sufficient but some regulatory agencies like Food & Drug Administration (FDA) may 

require multiple dose steady state studies for registration of the product (Skelly, 1986; USP 24, 

2000). Moreover, the effects of food also require to be evaluated. 

Over the last two decades, attempts were made to establish a correlation between percentages 

of drug absorbed in-vivo with percentage of drug dissolved in-vitro at different time intervals. 

In an acceptable in-vitro and in-vivo (IVIV) correlation, a linear relationship should be 

established between these parameters. There are reports that indicate satisfactory IVIV 

correlation could be established for various dosage forms (Yuen, 1991 ; Peh and Yuen, 1996). 

Nevertheless, an IVIV correlation is more relevant for controlled release dosage forms as 

compared to immediate reiease preparations because the rate-limiting step in the absorption 

process for the former is the drug release rate. 
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A bioavailability study alone may not be sufficient for optimization of a new controlled release 

fonnulation because it does not allow to prediction of physiological variables such as gastric 

_ emptying and intestinal transit behaviour (Digenis, 1982; Davis, 1983). Therefore, in-vivo 

,: visualization and transit behavior of oral dosage forms within the GI tract has become an 

important tool for the development of controlled release formulations (Wilson & Washington, 

1988). 

~' 1.4 GASTROINTESTINAL TRANSIT BEHAVIOUR OF CONTROLLED 

t RELEASE DOSAGE FORMS 
r: . 
~· 

t Drugs that are administered orally will pass through various regions of the Gl tract such as 
~ 

stomach, small intestine and large intestine. The biological environment and absorptive 

capacities are quite different among these regions and these differences can give rise to 

variations in the bioavailability of drug from the stomach, the small intestine and the colon. The 

small intestine has the greatest absorptive surface area due to the presence of villi and 

microvilli and therefore, most drugs are mainly absorbed from this part of the GI tract. Thus, 

the biological availability of a drug from an oral dosage form can be affected by its length of 

residence time in the stomach and small intestine. The stomach is able to empty different 

materials at different rates even though they might have been taken simultaneously. Fluids and 

small particles are emptied from the stomach more rapidly than solids, which are pushed back 

to some extent at the pylorus until they have been reduced in size small enough to pass through 

the pyloric sphincter. 

23 



A solid dosage form administered to a fasted stomach or following a light meal may be emptied 

rapidly from the stomach and pass quickly through the small intestine to the colon (Hunter et 

al, 1981 ). A special mechanism known as the interdigestive myoelectric complex (IMC) or 

housekeeper wave can produce powerful contractions in the GI tract that will sweep 

indigestible material from an empty stomach past the pylorus into the duodenum. Latter waves 

will move the material rapidly down the small intestine into the colon. 

In general, the presence of food in the stomach increases the gastric emptying time and thus can 

delay the absorption of drug in the small intestine. However, the gastric emptying rates of 
.. 

multiparticulate dosage forms are not severely affected by the presence of food. The emptying 

of the pellets can be prolonged by the heavier meal, but not to a similar extent as the single 

large unit. When pellets are administered with a meal, they tend to empty in a similar pattern as 

digestible component of the meal. 

Gastric emptying time of single non-disintegrating tablets having diameter 10-16 mm range 

from 0.5 to 4.5 hours whereas granules or pellets are emptied gradually from the stomach with 

a mean time of 1.5 hours (Bechgaard and Christensen, 1982). The gastric emptying of 

encapsulated pellets depends upon the nature of the capsule, the speed at which it disintegrates 

and the degree of dispersion of the pellets in the gastric contents. 

Unlike gastric emptying, small intestinal transit of a dosage form is unaffected by their physical 

state as well as the presence or absence of food, although high calorific loads may slow it 

slightly (Davis et al, 1987). A review of the literature suggests that small intestinal transit time 
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