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KEKROMATIKAN GRAF DWI-PARTISI DENGAN 

TIGA DAN EMPAT SISI TERSINGKIRKAN 

ABSTRAK 

Graf adalah satu set titik dengan satu set garisan yang menghubungkan titik-titik. Semua 

titik mungkin dihubungkan dengan garisan. Pewarnaan titik adalah cara mewarnakan 

titik-titik sesuatu graf dengan sebilangan warna yang tertentu supaya titik yang 

berjiranan (di sambungkan dengan garisan) tidak mempunyai warna yang sama. 

Perhitungan semua cara perwamaan yang mungkin sesuatu graf G dengan A jenis wama 

akan menghasilkan satu polinomial dalatn sebutan A. Ungkapan polinomial ini adalah 

polinomial kromatik untuk graf G dan dilambangkan sebagai P(G;A). Dua graf dari satu 

family graf mungkin mempunyai polinomial kromatik yang sama. Graf-graf yang 

mempunyai polinomial kromatik yang sama adalah graf yang setara kromatik. Jika satu 

unsur mempunyai polinomial kromatik yang lain dari semua unsur dari setnya, graf ini 

adalah unik kromatik. 

Graf bipartit adalah graf yang mempunyai ciri di mana set bucunya dibahagikan 

kepada dua set yang tidak bersilang dengan syarat bucu dalam subset-subset tersebut 
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tidak berjiranan. Graf bipartit lengkap adalah graf bipartit yang mempunyai ciri supaya 

tiap titik di bahagian berlainan adalah berjiranan dengan satu sama lain. 

Projek ini adalah satu penyelidikan tentang keunikan kromatik graf bipartit lengkap 

dengan syarat tiga atau empat sisi dibuang. 
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ABSTRACT 

Graphs are a set of vertices and edges. All vertices may or may not be joint. Vertex 

coloring is the coloring of a graph with a fixed number of colors such that adjacent 

vertices are of different colors. Considering all the possible ways of coloring a certain 

graph G with A colors will result in a polynomial in A. This polynomial is the chromatic 

polynomial of the graph G denoted by P (G; A). Two members from a set of graphs may 

have the same chromatic polynomial. These are called chromatically equivalent graphs. 

If a member of a set of graphs has a chromatic polynomial which is different from every 

other member in the set then this graph is chromatically unique. 

Bipartite graphs are graphs in which the vertices are partitioned into two non 

intersecting sets with condition that no vertices within the sets are adjacent. A complete 

bipartite graph is a bipartite graph with all the vertices in each set being adjacent to all 

the vertices of the other set. 

This project studies the chromaticity of complete bipartite graphs with three and also 

four edges deleted. 
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1.1 Introduction 

CHAPTER 1 

INTRODUCTION 

Graph theory is new branch of mathematics which was started around 1730 after a paper 

by Leonhard Euler on the subject the "Seven Bridges of Konigsberg ". In the paper 

Euler gave the necessary conditions for a solution and hence a definite negative solution 

for the puzzle of the "Seven Bridges of Konigsberg ". The "Seven Bridges of 

Konigsberg" is a problem which require a solution that passes through all the seven 

bridges only once with condition the start and the end must be at the same land 

mass(eulerian circuit). It must be noted that all the land masses have either three or five 

bridges connecting them as in the original map. Since then there are a host of famous 

mathematician contributing to this branch of mathematics. Another famous problem 

which also helps to generate a lot of interest in graph theory is the "Four Color 

Theorem". Francis Guthrie first posted this problem in 1852 and since then it is still 

unproven (2006a). 

The Four Color Theorem which states that for all planar graphs the area of the 

graph bounded by the edges of the graph can be colored by a minimum of only four 

colors with the condition that on either side of the edges will have different colors. 
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1.2 Fundamental Concepts 

Consider a graph G which has a set of vertices and a set of lines connecting these 

vertices call edges. The set of vertices is denoted by V(G) and the set of edges 

by E(G). IV(G) I is the order and I E(G) I is the size of the graph G. Two vertices are 

adjacent if they are connected by an edge else they are not adjacent. Sometimes two 

vertices can be connected by more then one edge. Such graphs are called multigraph 

and the edges are called parallel edges. A loop is an edge connecting a single vertex. A 

simple graph is a graph with no parallel edges or loops. If all the vertices of a simple 

graph are adjacent to one another then the graph is a complete graph. The number of 

vertices adjacent to a particular vertex is called the degree of the vertex. Hence the 

degree of all the vertices of a complete graph of order n (Kn) is n-1. 

A graph formed by deleting edges and or vertices of a graph G is called a 

subgraph of G. A spanning subgraph of G is a graph having all the vertices of G but one 

or a few edges deleted. A graph with k partitions of vertices such that the vertices 

within a partition are not adjacent to each other is called a k partite graph. Particularly if 

k is two then we have a bipartite graph. A walk is a sequence of alternating vertices and 

edges starting and ending with a vertex. If we do not repeat any edge then the walk is a 

trail. If we do not repeat any vertex then we call the walk a path. A path with the 

starting vertex same as the ending vertex we call it a circuit. Lastly a eulerian circuit is a 

circuit which passes through all the edges only once while a hamiltonian circuit is a 

circuit which visits all the vertices only once. 
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Vertex coloring of a graph is the coloring of a graph such that the adjacent 

vertices have different colors. The minimum number of colors to completely color a 

graph with the above condition is the chromatic number of the graph. If we use A colors 

then it is a A coloring of the graph. Depending on the graph there are many ways of 

coloring a graph with A colors. Using combinatory it is possible to find the number of 

ways of coloring a graph in terms of A. And this expression in A is called the chromatic 

polynomial of the graph. We have other ways of finding the chromatic polynomial such 

as the Fundamental Reduction Theorem. Two graphs having different chromatic 

polynomial is defined as chromatically unique or x-unique. Two graphs having the same 

chromatic polynomial are chromatically equivalent but chromatically equivalent graphs 

may or may not be a pair of isomorphic graphs. Two graphs G and H are isomorphic 

(written G::: H) if there exist a one-to-one correspondence between their point set which 

preserves adjacency. We shall refer Harary (1972) to for all notations and terminologies 

not explained in this project. 

1.3 Organization of Project 

This project paper deals with chromaticity of complete bipartite graphs with three or 

four edges deleted. The objective is to use partitioning of the deleted edges to 

determine the chromatic equivalence or the chromatic uniqueness of the complete 

bipartite graph with three or four edges deleted. 

In chapter two, we give a brief literature review on the chromatic equivalent 

graphs and chromatically unique graphs. In chapter three, we will discuss chromatically 
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unique of complete bipartite graphs with three edges deleted. In chapter four, we will 

study the chromatically unique of complete bipartite graphs with four edges deleted. 
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CHAPTER2 

LITERATURE REVIEW 

2.1 The Chromatic Polynomial of Graphs 

Graph Theory is basically the study of a set on points called vertices and the lines 

joining these points called edges. Since Francis Guthrie in 1852 first posted the Four 

Color Theorem (2006a), there have been numerous attempts in proving this theorem but 

up to now there is no analytical proof yet. To study this Four Color Conjecture which 

states that all planar graph can be color by a minimum of four colors, G.D. Birkhoff in 

1912 propose the use of a function (Goh, 1987). This function is obtained by computing 

the number of ways of coloring a map with A colors. It seems that solving this function 

will lead to prove or disprove the Four Color Conjecture but it tum out to be otherwise. 

In graph coloring there are two branches namely the edge coloring and vertex 

coloring. In this project we are using only vertex coloring. Vertex coloring of a graph is 

the coloring of a graph such that the adjacent vertices have different colors. The 

minimum number of colors to completely color a graph with the above condition is the 

chromatic number of the graph. If we use A colors then it is a A coloring of the graph. 

Depending on the graph there are many ways of coloring a graph with A colors. Using 
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combinatory it is possible to find the number of ways of coloring a graph in terms of A. 

And this expression in 'A is called the chromatic polynomial of the graph. 

In 1932, Whitney used the same idea of a function derived from the number of 

ways of coloring the vertices of a graph using 'A colors (Whitney, 1932). It turns out to 

be a polynomial function and hence called the chromatic polynomial of the graph 

denoted by P ('A). Whitney has established many results on the chromatic polynomial of 

graphs. One of Whitney's contributions is the theorem that "the powers ofthe chromatic 

polynomial are consecutive and the coefficients alternate in sign" (2006b ). His 

contributions include the systematic computation of chromatic polynomial. 

Vertex coloring is the number of ways of coloring the vertices of a graph with 

finite number of colors given so that the adjacent vertices do not have the same color. 'A 

- Coloring is the number of way of coloring the graph using A different colors. For 

example if we have a point and 'A different colors, then it is clear that we can color the 

graph in 'A ways. Now if we have two vertices and no edge connecting the vertices then 

we have A2 ways. If the two vertices are connected by an edge then there will be only 'A 

('A-1) ways. It should be noted that interchanging the colors between points are 

considered as different coloring. 

To facilitate the following discussion let us denote 'A ('A-1) ('A -2) ('A-3) ... (A-k+l) as A(k). 

The following are a few common graphs and their number of was of coloring: 

• 0 (n) is a graph with n vertices without edges has 'An ways. 

• Cn a complete graph with n vertices has 'A (n) ways. 

• T n a tree of order n has 'A ('A-I) n-I ways. 
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• A star of order n has A.(A.-1 t-1 ways. 

• W n a wheel of order n has A. (A.-1) (A.-2) n-1 ways. 

If we were to expand each of the expression of A. we have a polynomial in A.. And 

this is the chromatic polynomial of the specific graph. Below are a few examples: 

• P(Cn; A.)= A.Cn) 

• P(T n; A.)= A.(A.-1 )n-1 

• P(Wn; A.)= A.(A.-1) (A.-2t-1 

• P(C3; A.) = A. C3) 

= A. (A.-1 )(A.-2) 

= ')....3- 3A.2 + 2A. 

For the easy regular graphs as above we can use the combinatorial methods to 

get the respective polynomial but for more complex graphs we have a few theorems to 

apply. 

Theorem 2.1 Fundamental Reduction Theorem (Whitney, 1932): 

Let e = VNj be an edge in graph G. We denote G \ e the graph obtained from G by 

deleting e and by G • e the graph obtained from G by combining Vi to Vj and deleting all 

the edges incident to Vi and Vj (edge contraction). 

Then P (G; A.)= P (G\e; A.) - P (G • e; A.). 

Lemma 2.1 (Read, 1968): IfG1, G2, G3, G4 ••• Gk be components of graph G then 
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Lemma 2.2 (Zykor, 1949): Let G1 and G2 be graphs such that G1 u G2 be a complete 

graph then 

Another method of obtaining the chromatic polynomial of graphs is by using 

Whitney's Broken Circuit Theorem. 

Some properties of the chromatic polynomial P(G;A.) of a graph G. 

Theorem 2.2 (Read, 1968): 

(1) deg(P(G;A.) = n 

(2) all the coefficients are integers 

(3) the leading term is A," 

( 4) the constant term is zero 

(5) the coefficient alternate in sign 

(6) the coefficient ofA.n-I is -n 

(7) either P (G; A.)= A." or the sum of the coefficient in P (G; A.) is zero. 
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2.2 Chromatically Equivalent Graphs and Chromatically Unique Graphs 

Consider a family of graphs Q. Each member in the set has a chromatic polynomial. If 

the elements of a subset of graphs are isomorphic then all members in this subset will 

have the same chromatic polynomial. There are some members in g that have the same 

chromatic polynomial but are not isomorphic ( ~ ). These graphs are said to be 

chromatically equivalent. 

Let graph G and H in g. If P (G; A) = P (H; A.) then graph G and H are 

chromatically equivalent and we denote the relation as G ~ H. The members in g can be 

classified into disjointed subsets with the same chromatic polynomial and these subsets 

are called equivalent classes or x- equivalent classes. 

Finally if in a particular X - equivalent class which has only one member then 

that member is chromatically unique or x-unique. 

2.3 Chromaticity Of Bipartite Graphs 

A bipartite graph G is a graph whose vertex set V can be partitioned into two subsets V 1 

and V 2 such that every line of G joins V 1 with V 2. If G contains every line joining V 1 

and V2 then G is a complete bipartite graph. For any two positive integers p and q, let 

K(p,q) denote the complete bipartite graph with I V 1 I = p and I V 2 I = q. 
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Salzberg et al. proved that the graph K (p, q) is x-unique if p ?. 2 and 

0'5,q- p'5,max{5,.fiP}; and conjectured that the graph K(p,q) is x-unique for all 

p,q with2 '5, p '5, q (Read and Tutte, 1988). Tomescu showed that the graph K(p,q) is 

a x-unique if p?. 2 and 0 '5, q- p '5, 2-j p + 1 (Dong et al., 2001 ). Teo and Koh (1990) 

have proved that this is true. 

Salzberg et al. also proved that the graph K-1 (p,q) obtained by deleting any 

edge from K(p,q)is x-unique if p ?. 3 and 0 '5, q- p '5, 1 (Read and Tutte, 1988). 

Teo and Koh (1990) showed the graph K-1(p,q) is x-unique for all p,q with 

3'5,p'5,q, 

Peng (1991) stated these two theorems: 

Theorem 2.3 

Thegraph K;-\p,q) (.¥ K;3 (4,4) )isx-uniquefor l'5,i'5,6, p?.4 and q-p=O 

or 1. 

Theorem 2.4 

The graph K;-4 (p, p + 1) is x-unique for p?. 5 and 1 '5, i '5, 16. 

Motivated by Theorems 2.3 and 2.4, we use an alternative approach to prove the above 

two theorems. Our approach is by using the concept ofn-independent partition in G. 
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CHAPTER3 

CHROMATIC UNIQUENESS OF CERTAIN BIPARTITE GRAPHS WITH 

THREE EDGES DELETED 

3.1 Introduction 

In this chapter, we shall study the chromatic uniqueness of certain bipartite graphs 

K(p,q) with three edges deleted and the main results will be presented in section 3.3. In 

section 3.2, we give some known results and notations which will be used to prove our 

main result. 

3.2 Preliminary Results and Notations 

For a bipartite graph G = (A,B;E) with bipartition A and B and edge set E , Let G' = 

(A',B';E') be the bipartite graph induced by the edge set E' = {xy I xy !i'= E, x E A, y 

E B }, where A' ~A and B' c B. We write G' = K r,q- G, where p = IAI and q = IBI. 

For a graph G and a positive integer k, a partition {A1, A2, ... Ak} of V (G) is 

called a k-independent partition in G if each Ai is a non-empty set of pairwise non­

adjacent vertices. 

11 



Let a(G,k) denote the number of k-independent partitions in G. For any graph G of 

k=jV(G)j 

order n, we have P(G,A,) = L a(G,k)A,(A,-I) ... (A,-k+i).(Dong et al., 2000). 
k~J 

For any bipartite graph G=(A,B;E) with bipartition A and Band edge set E, 

let a'(G,3) = a(G,3)- (2IAI-I + 2181-I- 2). 

Let G(A,B;E)be a graph in K-s(p,q)with IAI = p and IBI = q. Therefore for 

any 3-independent partition {AI, A2, A3} in G, there are only two types of 3-

independent partitions { A 1 ,A2,A3}. 

Type 1: either A1 u A2 = A , A3 = B or A1 u A3 = B, A2 = A . 

The number of 3-independent partitions of type 1 is 2p-t + 2q-t -2. 

Let \f'(G) be the set of 3-indepe.ndent partitions {AI, A2, A3} of type 2 in G. 

Thus I \f'(G) I = a' (G,3) by the definition of a' (G,3). Let Q(G) = {Q I Q is an 

independent set in G withQnA :;t. 0,Qn B :;t. 0 }. Since s ~ q -I~ p-I, A -Q :;t. 0 and 

B- Q :;t. 0 for any Q E Q( G) . This implies that Q E Q( G) if and only if 

{Q, A- Q, B- Q} E \f'(G). The following result is then obtained: 

Lemma 3.1 (Read, 1988): If G- H then a(G,k) = a(H,k) fork= 1,2, ... 

Lemma 3.2 (Dong et al., 2000): a '(G, 3) =I Q(G) I ~ 2ti(G') + s -1- .6.(G '). 
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For a bipartite graphG = (A,B;E), the number of 4-independent partitions {AI, A2, A3, 

A4} in G with A; c A or A; c B for all i= 1,2,3,4 is 

= (21AI-1 _ 2) (2181-1 _ 2) + _!_ (3IAI-1 + 3181-1) _ 2. 
2 

Define 

a'(G,4) = a(G,4) _ {(2IAI-1_2) (2181-1 _ 2) + i(3IAI-I + 3181-1) _ 2} 

Observe that for G,H e K-s(p,q), 

a(G,4) = a(H,4) if and only if a'(G,4) = a'(H,4). 

Lemma 3.3 (Dong et al., 2000): For G ={A, B; E} e K-"(p,q) with IAI = p and IBI =q, 

a'(G,4) = L (2p-I-IQr1AI + 2q-I-IQr1 81 -2) +I {Q~. Qz}l Q1, QzeQ(G), Q1 nQz 
QeO(G) 

=0 }1. 

The following results will be used to prove our main theorems. 

Theorem 3.1 (Peng, 1991): IfG is x-equivalent toK-'(p,q), then G = G (p+k, q- k) 

1 
for some k, - h :s; k :s; -(q- p) where h is the largest nonnegative integer 

2 

satisfYing (q- p)h + h 2 :s; r. In this case, G is obtained from the complete bipartite 

graph K(p+k,q-k) bydeleting tk =(q-p)k-k 2 +redges. 
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Lemma 3.4 (Peng, 1991 ): If K;-3 (p, q) t=, K;3 (p, q) for p ~ 4 and 1 s; i s; j s; 6 , then 

Theorem 3.2 (Peng, 1991): The graph K;-2 (p, p + 2) ( ;£ K;2 (3,5)) is x- unique for 

p ~ 3 and1 s; i s; 3. 

The following result is our main objective. 

Theorem 3.3 (Peng, 1991): The graph K;-\p,q) ( ;£ K;3 (4,4)) is x-unique for 

1 s; is; 6 , p ~ 4 and q-p = 0 or I. 

Proof: We consider two cases. 

Case 1: q - p = 0. 

By theorem 3.1, the only possible x-equivalent candidates for K;-3(p,q) are 

K;2 (p -1,q + 1)(1 s; j s; 3) andK,-\p -1,q + 1)(1 s; l s; 6). But by Lemma 3.4, we need 

only to consider K;2 (p -1,q + 1),(1 s; j s; 3). The graph K;2 (p -1,q + 1),(1 s; j s; 3) is x-

unique if K72 (p -1, q + 1) ;£ K;2 (3, 5) (by theorem 3 .2). Therefore K;-\p, q) ( ;£ 

K;3 
( 4,4) ) is x-unique for p ~ 4 1 s; i s; 6. Note that K; 3 

( 4,4) is x-equivalent to the 

non-isomorphic K;2 (3,5). 

Case 2: q - p = 1. 

By theorem 3.1, the only possible x-equivalent candidates for K
1
-

3 (p, q) are 

K-1(p-1,q+1) and K;\p,q) (l:S;j:S;6). From Lemma 3.4, we do not need to 
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consider K;3 (p,q) (1 ~ j ~ 6). Also by the results of Teo and Koh (1990), the graph 

K-'(p-1,q+1) isx-uniqueforp~4. Thus the graph K;-3 (p,q) isx-uniquefor p~4 

and1:::; i:::; 6. 

3.3 An Alternative Proof Of Theorem 3.3 

Casel:q-p=O 

From Theorem 3.1, For q- p = 0, r = 3, 

0 + h2 
:::; 3, => h = 1 (largest non-negative integer) 

-h:::; k ~ 0, 

-1 ~ k ~ 0. => k = -1, 0. 

Therefore when k = -1, the candidate is K ; 2 (p -1, q + 1 ),1 :::; j :::; 3 

and when k = 0, the candidate is K,-\p,q),l-::;, I-::;, 6. The possible candidates for x-

equivalence to the graph G E K,:_3 (p,q) , 

K/ (p -l,q + 1),1:::; j:::; 3 andK,-3 (p,q),1:::; l:::; 6. 

p 2:: 4 , q - p = 0 are 

Observe that the family K;2 (p -1,q + 1),1:::; j:::; 3 , consist of the following three 

bipartite graphs are: 

K,-2 (p,q) = K(p,q)-2K2 , 

K;2 (p,q) = K(p,q)-K(l,2), 

K;2 (p,q) = K(p,q)- K(2,1). 
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K (1, 2) K (2, 1) 

Figure 3.1 The graphs 2K2 ,K( 1 ,2) and K(2, 1) 

We can also observe that the family K,-3 (p, q),1::;; l::;; 6, consist of the following 

six bipartite graphs: 

1. K 1-
3(p,q) = K(p,q)-H1 

2. K;\p,q) = K(p,q)-H2 

3. K;3(p,q) = K(p,q)-H3 

4. K;3(p,q)=K(p,q)-H4 

5. K;3(p,q) = K(p,q)-H5 

6. K;3(p,q)=K(p,q)-H6 

III IV IJ\ V\ 11\ 11\ 
H3 

Figure 3.2 The graphs Hi , 1 ::;; i ::;; 6 
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Let 

1. G1 = K 1-
2 (p,q) = K(p,q)-2K2 

2. G2 = K;2 (p,q) = K(p,q)- K(l,2) 

3. G3 = K;2 (p,q) = K(p,q)-K(2,1) 

4. G4= K 1-
3(p,q)=K(p,q)-H1 

5. Gs= K;3(p,q)=K(p,q)-H2 

6. G6 = K 3-
3(p,q) = K(p,q)-H3 

7. G1= K;3(p,q)=K(p,q)-H4 

8. Gs = K;3(p,q) = K(p,q)-H5 

9. G9= K;3(p,q) = K(p,q)-H6 

Table 3.1 Graph Gi , 1 -5: i -5: 9 

Name of Graphs 
Graphs G, 1 

a 1(G,3) a 1(G,4) 
( Gi I = K (p' q) - G,) 

u u 

G1 2 2p-l + 2q-J - 3 

G2 3 5·2p-) + 3·2q-2 - 6 
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L 

3 

3 

Gs IV 4 7·2p-3 + 4·2q-2 - 5 

G6 
()/\ 

4 4·2p-2 + 7·2q-J- 5 

G1 V\ 5 9·2p-J + 9·2q-J- 9 

Gs I~ 7 7·2p-2 + 19·2q-4 -14 

G9 \V 7 19·2p-4 + 7·2q-2 - 14 

We group the graphs G1, G2, G3, G4, G5, G6, G7, Gs, and G9, according to the 

values of a '(G;,3), which can be calculated by counting using Lemma 3.2. 
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Thus we have the following classification. 

rl = {Gl}, 

r2 = {G2,G3,G4}, 

r3 = {Gs,G6} ' 

r4={G7}, 

r 5 = {G8 ,G9 } , 

Since r 1 , r 2 , r 3 , f 4 and f 5 are chromatically disjoint, the search for x­

unique graphs of family K;-3(p,q), p ~ 4 and q-p=O will be focused in the different 

elements in each equivalence class. 

We aim to show the chromaticity of K;-\p,q) , 1 ~ i ~ 6 and thus we only 

consider r 2,r3,r4 and r 5 • To show that the graph in K;-\p,q) , 1 ~ i ~ 6 is x-unique, 

it suffices to show that for every graph G; and Gi in rk, 2 s k s 5, if G; 'i. G
1 

then 

a'(G;,3) * a'(G
1
,3)or a'(G;,4) * a'(G

1
,4). The remaining work is to compare every 

graph in r k where 2 s k s 5 . 

We want to show that G4 is x-unique. 

When p = q , G2 = G3 and we need to compare G2 and G4 (or G3 and G4 ). 

a' (G
2 
,4)- a' (G

4 
,4) = 5·2p-J + 3·2q-2 - 6- (3·2p-2 + 3·2q-2 - 3) 

= -2p-J -3 * 0. 

Therefore G2 , G3 and G4 are x-unique. 
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We want to show that G5 and G6 are x-unique. Observe that when p = q, G5 = G6 and 

thus they are x-unique. 

(3) Note that r 4 contains one graph and hence 0 7 is x-unique. 

We want to show that G8 and G9 are x-unique. Observe that when p = q, G8 = G9 and 

hence they are x-unique 

Case 2: q- p = 1 

By theorem 3.1, the only possible x-equivalent candidates for Ki-3 (p, q) are 

K-1(p -1,q + 1) and Kj3 (p, q) , (1 =:; j =:; 6). By the result of Teo and Koh (1990), the 

graph K-1 (p -1, q + 1) is x-unique for p ::::: 4. Therefore we only need to consider the six 

bipartite graphs in Kj3 (p, q) , (1 =:; j =:; 6) . 

Thus we have the following classification: 

r; = {G4 } 

r; = {G5 ,G6 } 

r; = {G7} 

r: = {G8 ,G9 } 

Note that r; and r; contain only one graph each, then G4 and G 7 are x-unique. The 

remaining work is to compare G5 and G 6 in r; and graphs G8 and G 9 in r: 
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When q- p =I, 
a' (G

5 
,4)- a' (G

6 
,4) = (7·2p-3 + 4·2q-2 - 5)- (4·2p-2 + 7·2q-3 - 5) 

:;t:Q. 

Therefore G5 and G6 are x-unique. 

When q-p=l, 

= -9·2p-4 

:;t:Q. 

Therefore G8 and G9 are x-unique. 

This completes the proof. o 
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CHAPTER4 

CHROMATIC UNIQUENESS OF CERTAIN BIPARTITE GRAPHS 

WITH FOUR EDGES DELETED 

4.1 Introduction 

In this chapter we shall study the chromatic uniqueness of certain bipartite graphs 

K(p,q) with four edges deleted. The following theorem is from Peng ( 1991 ). 

Theorem 4.1: 

The graph K;-4 (p, p + 1) is x-unique for p z 5 and I~ i ~ 16. 

In section 4.2 we shall present the possible candidates for x-equivalence to the graph G 

E K;-4 (p, q) and thus we discuss the alternative proof of theorem 4.1. 
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4.2 An Alternative Proof Of Theorem 4.1 

From theorem 3 .I we found that the possible candidates for x-equivalence to the graph 

p?.5, q- p =I are K;2 (p-I,q+1),I:S;j:S;3 and 

For q- p = I, r = 4, 

h + h2 
:S; 4, ::::> h = 1 (largest non-negative integer) 

-h :S; k :S; 0, 

-I :S; k :S; 0. => k = -I' 0. 

Therefore when k =-I , the candidate is K;2 (p -1, q + I),1 :S; j :S; 3 

and when k = 0 , the candidate is K,-4 (p, q), I :S; l :S; I6 . 

From the above results, let: 

1. G1 = K 1-
2 (p,q) = K(p,q)- 2K2 

2. G2 = K;2 (p,q) = K(p,q)- K(1,2) 

3. G3 = K;2 (p,q) = K(p,q)- K(2,I) 

4. G4 = K 1-
4 (p,q) = K(p,q)-H1 

5. Gs= K:(p,q) = K(p,q)-H2 

6. G6 = K 3-\p,q) = K(p,q)-H3 

7. G7 = K;4 (p,q) = K(p,q)-H4 
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8. Gs= K;t(p,q)=K(p,q)-H5 

9. G9= K;,'\p,q)=K(p,q)-H6 

10. G10= K-:(p,q)=K(p,q)-H7 

11. G11 = Kt(p,q)=K(p,q)-H8 

12. G12 = K;4 (p,q) = K(p,q)- H 9 

13. GJ3 = Kl-: (p' q) = K (p' q) - HI 0 

14. G14= K1--:(p,q)=K(p,q)-H11 

15. G1s = K1-;(p,q) = K(p,q)-H1 2 

16. G16= K1--:(p,q)=K(p,q)-H13 

17. G17= K1~\p,q)=K(p,q)-H14 

18. G1s= K1~4 (p,q)=K(p,q)-His 

19. G19= K 1-6
4 (p,q)=K(p,q)-H16 

Table 4.1· Graphs Gi, 1 ~ i ~ 19 

Graph a; 
Graph a'(G,3) a'(G,4) 

(G; = K(p,q)-G;) 

C) C) 

G, 2 2p-l + 2q-l - 3 
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