

• i

***IN-VITRO CARDIOVASCULAR EFFECTS OF GYNURA
PROCUMBENS (LOUR.) AND ORTHOSIPHON
STAMINEUS (BENTH.)***

BY

OMAR SAAD SALEH

Thesis submitted in fulfillment of the requirements for the

Degree of Master of Science

Pharmacology

School of Pharmaceutical Sciences

June 2004

In the name of ALLA H

The most beneficent and merciful

THIS THESIS IS DEDICATED

TO

**MY WIFE AND MY SONS AHMAD AND AKKRM
FOR THEIR LOVE, PATIENCE, DEVOTION AND
UNDERSTANDING**

ACKNOWLEDGEMENTS

This study was carried out at the department of Pharmacology sciences, University Science Malaysia.

Above all I wish to express my sincere and deepest gratitude to my supervisor Assoc. Prof. Dr. Mohd. Zaini Asmawi, whose excellence as a researcher and supervisor has enabled the completion of this thesis? I am really impressed by his profound knowledge of cardiovascular pharmacology; I sincerely thank my co- supervisor, Assoc. Prof. Dr. Amrin Sadikun for interest. Advice and guidance throughout the chemical part of this Work. I am very grateful for them and for all the help and valuable guidance, fruitful Discussions, patience and continued encouragement provided to me at every stage of this thesis.

I owe my deep and respectful appreciation to the support I received from Assoc. Prof. Abas. Hj. Hussin the Dean of school of pharmacy.

My great thanks also belong to all friends of our family for their fruitful unforgettable academic discussions and caring during these years. Thanks to Abdulrazak, Noraziyah, Yam Manfei, alsnoussi A.H and special thanks to Dr. Naji alamari. I am very grateful to all my colleagues for giving me their fullest cooperation and assistance.

A number of other academic and non-academic staff at the University Sains Malaysia also gave me their support and assistance, including Mr. Adnan and Yousef, working at animal house that always made animals' available for me. Mr. Rosly, the laboratory assistance in pharmacology laboratory that also always helped me as a colleague and friend, Mr. Majek, Mr. Basri with his group in the store deserve a special thanks to Mr. Hassan and Miss. Young, pharmacology lab for their help and kindness.

I would like to express my sincere thanks to those people, who helped me through their guidance, advice and moral support. Finally, and most important, I would like to express my most sincere and warmest gratitude to my Father, my mother, brothers, sisters, and my family for their prayers Love, and generous moral support during my study.

TABLE OF CONTENTS

	<u>Page</u>
DEDICATION	ii
AKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xxii
PUBLICATIONS	xxiv
ABSTRAK	xxv
ABSTRACT	xxvii
CHAPTER ONE: INTRODUCTION	<u>1 - 30</u>
1.1 Hypertension	1
1.2 Arterial blood pressure	2
1.3 Essential hypertension	3
1.4 Secondary hypertension	4
1.5 Systemic vascular resistance	5
1.6 Arterial tone	6
1.6.1 Endothelium	6
1.6.1.1 Vasodilatory factors	6
1.6.1.1.1 Nitric oxide	6
1.6.1.1.2 Prostacyclin	7
1.6.1.1.3 Endothelium-derived hyperpolarizing factor (EDHF)	7

1.6.1.2	Vasoconstricting factors	9
1.6.1.2.1	Endothelin-1	9
1.6.1.2.2	Angiotensin II	9
1.6.2	Smooth muscle	10
1.6.2.1	Potassium channels	10
1.6.2.1.1	Ca ⁺⁺ activated K ⁺ channels	10
1.6.2.1.2	Voltage-dependent K ⁺ channels	12
1.6.2.1.3	ATP-sensitive K ⁺ channels	13
1.6.2.1.4	Inward rectifier K ⁺ channels	13
1.6.2.2	Calcium channels	14
1.6.2.3	Tyrosine phosphorylation	14
1.7.1	The heart	14
1.7.1.1	Electrical conducting system of the heart	15
1.7.2	Aorta	15
1.8	Herbal medicine	18
1.8.1	Compounds from plants with cardiovascular activities	19
1.8.1.1	Alkaloids	19
1.8.1.2	Flavonoids	21
1.8.1.3	Coumarin	22
1.8.1.4	Terpenoids	23
1.8.2	<i>Gynura procumbens</i> (Lour.) Merr	23
1.8.2.1	Botanical aspects	25
1.8.3	<i>Orthosiphon stamineus</i> Benth.	25
1.8.3.1	Botanical aspects	27

1.9	Conventional antihypertensive agents	27
1.10	Objectives of the present study	30

CHAPTER TWO: MATERIAL AND METHODS 31-51

2.1	Materials used and their sources	31
2.2	Instruments used and their sources	32
2.3	Methods	33
2.3.1	Experimental animals	33
2.3.2	Organ baths	33
2.3.3	Isometric tension recording system	33
2.4	Pharmacological evaluation	33
2.4.1	Isolated right rat atrium	33
2.4.2	Isolated left rat atrium	35
2.4.3	Isolated rat aorta	36
2.5	Experimental procedure	36
2.5.1	Calculation of responses	37
2.5.2	Physiological salt solution	37
2.5.3	Drug preparation, storage and concentrations	38
2.6	Extraction of <i>Gynura procumbens</i>	39
2.6.1	Collection, drying and preparation of the plant material	39
2.6.2	Successive Soxhlet-extraction (percolation)	39
2.6.3	Fractionation of the methanol extract of <i>G. procumbens</i>	40
2.6.4	n-Butanol fraction	40

2.6.4.1.	Sub-fraction of the n-butanol fraction of <i>G. procumbens</i> using dry column flash chromatography	40
2.6.4.1.1	Preparation of chromatographic column	40
2.6.4.1.2	Preparation of sample and its application	43
2.6.4.1.3	Fractionation	43
2.6.4.1.4	Profiling of the n-butanol fraction and Bf_3 sub-fraction	44
2.6.5	Chloroform fraction	44
2.6.5.1	Fractionation of the chloroform fraction of <i>Gynura procumbens</i> using column chromatography	44
2.6.5.1.1	Preparation of chromatographic column	44
2.6.5.1.2	Pre-adsorption of the sample	45
2.6.5.1.3	Elution	45
2.6.6	Profiling of the chloroform fraction and Cf_3 sub-fraction	45
2.6.7	Phytochemical screening	46
2.6.7.1	Detection of the presence of flavonoids	46
2.6.7.2	Detection of the presence of glycosides and saponins	47
2.6.7.3	Detection of the presence of terpenoids	47
2.7	Extraction of <i>Orthosiphon stamineus</i>	47
2.7.1	Collection, drying and preparation of the plant material	47
2.7.2	Successive soxhlet-extraction (percolation)	48
2.7.3	Fractionation of the chloroform fraction of <i>Orthosiphon stamineus</i> using dry column flash chromatography	48
2.7.3.1	Pre-adsorption of the sample	50
2.7.3.2	Elution	50
2.8	Analysis of data	51

3.1	Extraction of <i>Gynura procumbens</i> leaves	52
3.2	The effect of <i>G. procumbens</i> extracts on isolated cardiac preparations	52
3.2.1	The effect of petroleum ether and methanol extracts of <i>Gynura procumbens</i> on isoprenaline-induced inotropic activity of isolated rat right atria preparations	52
3.2.2	The effect of petroleum ether and methanol extracts of <i>Gynura procumbens</i> on isoprenaline-induced inotropic activity of isolated paced left atria preparations	53
3.2.3	Fractionation of methanol extract of <i>G. procumbens</i>	55
3.2.4	The effect of chloroform, ethyl acetate, n-butanol and water fractions of <i>G. procumbens</i> on isoprenaline-induced inotropic activity of isolated rat right atria preparations	57
3.2.5	The effect of chloroform, ethyl acetate, n-butanol and water fractions of <i>G. procumbens</i> on isoprenaline-induced inotropic activity of isolated paced left atria preparations	57
3.2.6	Fractionation of n-butanol extract of <i>G. procumbens</i>	60
3.2.7	The effect of n-butanol sub-fractions (Bf ₁ , Bf ₂ and Bf ₃) of <i>G. procumbens</i> on isoprenaline-induced inotropic activity of isolated rat right atria preparations	63
3.2.8	The effect of n-butanol sub-fractions (Bf ₁ , Bf ₂ and Bf ₃) of <i>G. procumbens</i> on isoprenaline-induced inotropic activity of isolated paced left atria preparations	66
3.2.9	The effect of pure compounds rutin hydrate and quercetin dihydrate on isoprenaline-induced inotropic activity of isolated rat right atria preparations	69
3.3	Effect of <i>G. procumbens</i> extracts on the strength of contraction of isolated cardiac preparations	69

3.3.1	The effect of petroleum ether and methanol extracts of <i>G. procumbens</i> on the strength of spontaneous contraction of isolated right atria	69
3.3.2	The effect of petroleum ether and methanol extracts of <i>G. procumbens</i> on the strength of paced stimulated contraction of isolated left atria	72
3.3.3	The effect of chloroform, ethyl acetate, n-butanol and water extracts of <i>G. procumbens</i> on the strength of spontaneous contraction of isolated right atria	75
3.3.4	The effect of chloroform, ethyl acetate, n-butanol and water extracts of <i>G. procumbens</i> on the strength of paced stimulated contraction of isolated left atria	78
3.3.5	The effect of n-butanol sub-fractions (Bf ₁ , Bf ₂ and Bf3) of <i>G. procumbens</i> on the strength of spontaneous contraction of isolated right atria	78
3.3.6	The effect of n-butanol sub-fractions (Bf ₁ , Bf ₂ and Bf3) of <i>G. procumbens</i> on the strength of paced stimulated contraction of isolated left atria	83
3.3.7	The effect of rutin hydrate and quercetin dihydrate on the strength of contraction of isolated right atria	83
3.3.8	The effect of rutin hydrate and quercetin dihydrate on the strength of contraction of isolated paced left atria	87
3.4	The effect of <i>G. procumbens</i> extracts on isolated vascular preparations	89
3.4.1	The effect of petroleum ether and methanol extracts of <i>G. procumbens</i> on noradrenaline-induced contraction of isolated aortic strip preparations	89
3.4.2	The effect of chloroform, ethyl acetate, n-butanol and water extracts of <i>G. procumbens</i> on noradrenaline-induced contraction of isolated aortic strip preparations	89
3.4.3	Fractionation of chloroform extract of <i>G. procumbens</i>	94

3.4.4	The effect of chloroform sub-fractions (Cf_1 , Cf_2 , Cf_3 , Cf_4 and Cf_5) of <i>G. procumbens</i> on noradrenaline-induced contraction of isolated aortic strip preparations	94
3.4.5	The effect of rutin hydrate and quercetin dihydrate on noradrenaline-induced contraction of isolated aortic strip preparations	95
3.5	Preliminary identification of the chemical groups in the <i>G. procumbens</i> leaves extract	99
3.5.1	Detection of the presence of plant constituents in extracts using specific spray reagents	103
3.6	Extraction of <i>Orthosiphon stamineus</i> leaves	108
3.6.1	Effect of <i>Orthosiphon stamineus</i> extracts on isolated vascular preparations	108
3.6.2	The effect of petroleum ether, chloroform, methanol and water extracts on noradrenaline-induced contraction of isolated aortic strip preparations	108
3.6.3	Fractionations of chloroform extract of <i>Orthosiphon stamineus</i>	109
3.6.4	The effect of chloroform sub-fractions Cf_1 , Cf_2 , Cf_3 , Cf_4 and Cf_5 of on noradrenaline-induced contraction of isolated aortic strip preparations	112
3.6.5	Preliminary identification of the chemical groups presents in the <i>O. stamineus</i> leaves extracts	112

CHAPTER FOUR: DISCUSSION AND CONCLUSION 121-156

4.1	Discussion	121
4.1.1	<i>Gynura procumbens</i>	121
4.1.2	Activity guided isolation of <i>G. procumbens</i> using isolated spontaneous beating right atria	121

4.1.3	Activity guided isolation of <i>G. procumbens</i> using isolated paced left atria	125
4.1.4	Possible mechanisms of positive inotropic activity of <i>G. procumbens</i> extracts	130
4.1.5	Possible mechanisms of negative inotropic activity of <i>G. procumbens</i> extracts	138
4.1.6	The effect of <i>G. procumbens</i> extracts on the strength of initial contraction	141
4.1.7	Possible mechanisms of the inhibition of initial contraction of right and left atria by <i>G. procumbens</i> extracts	141
4.2	Activity guided fractionation of <i>G. procumbens</i> extracts using rat aorta	142
4.2.1	Possible mechanisms of vasodilatation activity of <i>G. procumbens</i> extracts	143
4.3	Antihypertensive effect of <i>G. procumbens</i>	151
4.4	<i>Orthosiphon stamineus</i>	152
4.4.1	Activity of <i>O. stamineus</i> extracts on isolated rat aorta	152
4.4.2	Possible mechanisms of vasodilatation activity of <i>O. stamineus</i> extracts	153
4.5	conclusion	155

REFERENCES

LIST OF TABLES

Table 1	Amount of extracts obtained after serial extraction of <i>G. procumbens</i> leaves with petroleum ether and methanol.	52
Table 2	Amount of chloroform, ethyl acetate, n-butanol and water fractions extracts obtained after fractionation of methanol extract of plant <i>Gynura procumbens</i> .	55
Table 3	Amount of (Bf_1 , Bf_2 and Bf_3) fractions obtained after fractionation of n-butanol extract of <i>Gynura procumbens</i> .	60
Table 4	Amount of (Cf_1 , Cf_2 , Cf_3 , Cf_4 and Cf_5) sub-fractions obtained after fractionation of chloroform extract of <i>Gynura procumbens</i> .	94
Table 5	The colour of spots observed in chromatogram of extracts after being sprayed with NP/PEG reagent and observed under UV_{365} nm light.	101
Table 6	The colour of spots observed in chromatogram of chloroform fraction and sub-fraction Cf_3 after being sprayed with NP/PEG reagent and observed under UV_{365} nm light.	103
Table 7	The colour of spots observed in chromatogram of chloroform fraction and sub-fraction Cf_3 after being sprayed with antimony trichloride reagent and observed under UV_{365} nm light.	105
Table 8	The colour of spots observed in chromatogram of chloroform fraction and sub-fraction Cf_3 after being sprayed with antimony trichloride reagent and observed under visible light.	106
Table 9	The colour of spots observed in chromatogram of active chloroform fraction and active sub-fraction Cf_3 after being sprayed with ethanolic sulphuric acid reagent and observed under UV_{365} nm light.	107
Table 10	The colour of spots observed in chromatogram of active chloroform fraction and active sub-fraction Cf_3 after being sprayed with ethanolic sulphuric acid reagent and observed under visible light.	107

Table 11	Amount of extracts <i>Orthosiphon stamineus</i> leaves obtained after serial extraction with petroleum ether, chloroform, methanol and water.	108
Table 12	Amount of fractions Cf_1 , Cf_2 , Cf_3 , Cf_4 and Cf_5 obtained after fractionation of chloroform extract of <i>Orthosiphon stamineus</i> .	109
Table 13	The colours of spots observed in chromatogram of chloroform extract and sub-fraction Cf_2 after treatment with NP/PEG reagent as mentioned in section 2.5.7.1 and observed under UV_{365} nm light.	116
Table 14	The colours of spots observed in chromatogram of active chloroform extract and active sub-fraction f_2 after sprayed with ethanolic sulphuric acid reagent and observed under UV_{365} nm light.	118
Table 15	The colours of spots observed in chromatogram of active chloroform extract and active sub-fraction Cf_2 after sprayed with ethanolic sulphuric acid reagent and observed under visible light.	118
Table 16	The colours of spots observed in chromatogram of active chloroform extract and active sub-fraction Cf_2 after sprayed with antimony trichloride reagent and observed under UV_{365} nm light.	119
Table 17	The colours of spots observed in chromatogram of active chloroform extract and active sub-fraction Cf_2 after sprayed with antimony trichloride reagent and observed under visible light.	120

LIST OF FIGURES

Figure 1	Simplified endothelium-dependent relaxing mechanisms of vascular smooth muscle.	8
Figure 2	Potassium channels regulating the tone of vascular smooth muscle cells.	11
Figure 3	The conduction system of the heart	16
Figure 4	Anatomy of the blood vessel	17
Figure 5	<i>Gynura procumbens</i>	24
Figure 6	<i>Orthosiphon stamineus</i>	26
Figure 7	Equipment used for measuring the contractile responses in the isolated tissue preparations.	34
Figure 8a	Schematic diagram extractions of dried powdered leaves of <i>G. procumbens</i> with petroleum ether and methanol.	41
Figure 8b	Schematic diagram of fractionation of dried crude methanol extract of <i>G. procumbens</i> .	42
Figure 9	Schematic diagram extractions of dried powdered leaves of <i>O. stamineus</i> .	49
Figure 10a	The effect of petroleum ether extract of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat right atria preparations (n = 6).	54
Figure 10b	The effect of methanol extract of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat right atria preparations (n = 6). * (P< 0.05), ** (P> 0.01).	54
Figure 11a	The effect of petroleum ether extract of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat left atria preparations (n = 6).	56

Figure 11b	The effect of methanol extract of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat left atria preparations (n = 6).	56
Figure 12a	The effect of chloroform extract of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat right atria preparations (n = 6).	58
Figure 12b	The effect of ethyl acetate extract of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat right atria preparations (n = 6).	58
Figure 12c	The effect of n-butanol extract of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat right atria preparations (n = 6) * (P< 0.05).	59
Figure 12d	The effect of water extract of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat right atria preparations (n = 6).	59
Figure 13a	The effect of chloroform extract of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat left atria preparations (n = 6).	61
Figure 13b	The effect of ethyl acetate extract of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat left atria preparations (n = 6).	61
Figure 13c	The effect of n-butanol extract of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat left atria preparations (n = 6). * (P< 0.05), ** (P< 0.01), *** (P< 0.001).	62
Figure 13d	The effect of water extract of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat left atria preparations (n = 6).	62

Figure 14a	The effect of n-butanol sub-fraction Bf_1 of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat right atria preparations (n = 6).	64
Figure 14b	The effect of n-butanol sub-fraction Bf_2 of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat right atria preparations (n = 6).	64
Figure 14c	The effect of n-butanol sub-fraction Bf_3 of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat right atria preparations (n = 6). * (P<0.05).	65
Figure 15a	The effect of n-butanol sub-fraction Bf_1 of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat left atria preparations (n = 6).	67
Figure 15b	The effect of n-butanol sub-fraction Bf_2 of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat left atria preparations (n = 6). * (P<0.05), ** (P<0.01), *** (P<0.001).	67
Figure 15c	The effect of n-butanol sub-fraction Bf_3 of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat left atria preparations (n = 6). * (P<0.05), ** (P<0.01), *** (P<0.001).	68
Figure 16a	The effect of rutin hydrate pure compound of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat right atria preparations (n = 6).	70
Figure 16b	The effect of rutin hydrate pure compound of <i>G. procumbens</i> on isoprenaline (ISP)-induced inotropic action of isolated rat left atria preparations (n = 6).	70
Figure 17a	The effect of quercetin dihydrate on isoprenaline (ISP)-induced inotropic action of isolated rat right atria preparations (n = 6).	71
Figure 17b	The effect of quercetin dihydrate on isoprenaline (ISP)-induced inotropic action of isolated rat paced left atria preparations (n = 6) * (P< 0.05), ** (P< 0.01), *** (P< 0.001).	71
Figure 18a	The effect of petroleum ether extract of <i>G. procumbens</i> on the strength of contraction of spontaneously beating rat right atria (n = 6). *** (P<0.001).	73

Figure 18b	The effect of methanol extract of <i>G. procumbens</i> on the strength of contraction of spontaneously beating rat right atria (n = 6). * (P < 0.05), *** (P < 0.001).	73
Figure 19a	The effect of petroleum ether extract of <i>G. procumbens</i> on the strength of contraction of electrically paced rat left atria (n = 6). * (P < 0.05).	74
Figure 19b	The effect of methanol extract of <i>G. procumbens</i> on the strength of contraction of electrically paced rat left atria (n = 6). *** (P < 0.001).	74
Figure 20a	The effect of chloroform extract of <i>G. procumbens</i> on the strength of contraction of spontaneously beating rat right atria (n = 6). *** (P < 0.001).	76
Figure 20b	The effect of ethyl acetate extract of <i>G. procumbens</i> on the strength of contraction of spontaneously beating rat right atria (n = 6). *** (P < 0.001).	76
Figure 22c	The effect of n-butanol extract of <i>G. procumbens</i> on the strength of contraction of spontaneously beating rat right atria (n = 6). *** (P < 0.05).	77
Figure 20d	The effect of water extract of <i>G. procumbens</i> on the strength of contraction of spontaneously beating rat right atria (n = 6). * (P < 0.05), *** (P < 0.001).	77
Figure 21a	The effect of chloroform extract of <i>G. procumbens</i> on the strength of contraction of electrically paced rat left atria (n = 6). * (P < 0.05), ** (P < 0.01).	79
Figure 21b	The effect of ethyl acetate extract of <i>G. procumbens</i> on the strength of contraction of electrically paced rat left atria (n = 6). ** (P < 0.01), *** (P < 0.001).	79
Figure 21c	The effect of n-butanol extract of <i>G. procumbens</i> on the strength of contraction of electrically paced rat left atria (n = 6). ** (P < 0.01), *** (P < 0.001).	80
Figure 21d	The effect of water extract of <i>G. procumbens</i> on the strength of contraction of electrically paced rat left atria (n = 6). * (P < 0.05), *** (P < 0.001).	80
Figure 22a	The effect of n-butanol sub-fraction Bf ₁ of <i>G. procumbens</i> on the strength of contraction of spontaneously beating rat right atria (n = 6). *** (P < 0.001).	81

Figure 22b	The effect of n-butanol sub-fraction Bf_2 of <i>G. procumbens</i> on the strength of contraction of spontaneously beating rat right atria (n = 6). *** (P<0.001).	81
Figure 22c	The effect of n-butanol sub-fraction Bf_3 of <i>G. procumbens</i> on the strength of contraction of spontaneously beating rat right atria (n = 6). *** (P<0.001).	82
Figure 23a	The effect of n-butanol fraction Bf_1 of <i>G. procumbens</i> on the strength of contraction of electrically paced rat left atria (n = 6). *** (P> 0.001).	84
Figure 23b	The effect of n-butanol fraction Bf_2 of <i>G. procumbens</i> on the strength of contraction of electrically paced rat left atria (n = 6). *** (P< 0.001).	84
Figure 23c	The effect of n-butanol fraction Bf_3 of <i>G. procumbens</i> on the strength of contraction of electrically paced left atria (n = 6). *** (P< 0.001).	84
Figure 24a	The effect of rutin hydrate on the strength of contraction of spontaneously beating rat right atria (n = 6). * ** (P< 0.01).	86
Figure 24b	The effect of rutin hydrate on the strength of contraction of electrically paced rat left atria (n = 6). * (P< 0.05), ** (P< 0.01).	86
Figure 25a	The effect of quercetin dihydrate on the strength of contraction of spontaneously beating rat right atria (n = 6). * (P< 0.05).	88
Figure 25b	The effect of quercetin dihydrate on the strength of contraction of electrically paced rat left atria (n = 6). ** (P< 0.01).	88
Figure 26a	The effect of petroleum ether extract of <i>G. procumbens</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). * (P< 0.005), ** (P< 0.01), *** (P< 0.001).	90
Figure 26b	The effect of methanol extract of <i>G. procumbens</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6).	90
Figure 27a	The effect of chloroform extract of <i>G. procumbens</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). * (P< 0.05), ** (P< 0.01), *** (P< 0.001).	92

Figure 27b	The effect of ethyl acetate extract of <i>G. procumbens</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6).	92
Figure 27c	The effect of n-butanol extract of <i>G. procumbens</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). * (P< 0.05), ** (P< 0.01), *** (P< 0.001).	93
Figure 27d	The effect of water extract of <i>G. procumbens</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). * (P< 0.05).	93
Figure 28a	The effect of chloroform fraction Cf ₁ of <i>G. procumbens</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6).	96
Figure 28b	The effect of chloroform fraction Cf ₂ of <i>G. procumbens</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). ** (P< 0.01), *** (P< 0.001).	96
Figure 28c	The effect of chloroform fraction Cf ₃ of <i>G. procumbens</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). ** (P< 0.01), *** (P< 0.001).	97
Figure 28d	The effect of chloroform fraction Cf ₄ of <i>G. procumbens</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). * (P< 0.05), ** (P< 0.01), *** (P< 0.001).	97
Figure 28e	The effect of chloroform fraction Cf ₅ of <i>G. procumbens</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). * (P< 0.05), ** (P< 0.01), *** (P< 0.001).	98
Figure 29a	The effect of rutin hydrate pure compound of <i>G. procumbens</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6).	100
Figure 29b	The effect of quercetin dihydrate pure compound of <i>G. procumbens</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6) * (P< 0.05), ** (P< 0.01), *** (P< 0.001).	100

Figure 30	Thin layer chromatography (TLC) profile obtained from plant <i>G. procumbens</i> (a) methanol extract (b) n-butanol fraction (n-B), n-butanol sub-fraction Cf_3 (n-B f_3) and standard rutin hydrate (Rut.) using ethyl acetate, formic acid, glacial acetic acid and water (100:11:11:27) as mobile phase after being sprayed with natural product polyethylene glycol NP/PEG reagent under UV 365 nm light.	102
Figure 31	Thin layer chromatography (TLC) profile of chloroform extract ($CHCl_3$) sub-fraction (Cf_3) using ethyl acetate, chloroform (7:3) as mobile phase under UV ₃₆₅ nm light after being sprayed with natural product polyethylene glycol NP/PEG reagent.	104
Figure 32a	The effect of petroleum ether extract of <i>O. stamineus</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). * (P < 0.05).	110
Figure 32b	The effect of chloroform extract of <i>O. stamineus</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). * (P < 0.05), ** (P < 0.01), *** (P < 0.001).	110
Figure 32c	The effect of methanol extract of <i>O. stamineus</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6).	111
Figure 32d	The effect of water extract of <i>O. stamineus</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). ** (P < 0.01).	111
Figure 33a	The effect of chloroform fraction Cf_1 of <i>O. stamineus</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). * (P < 0.05), ** (P < 0.01), *** (P < 0.001).	113
Figure 33b	The effect of chloroform fraction Cf_2 of <i>O. stamineus</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). * (P < 0.05), ** (P < 0.01), *** (P < 0.001).	113
Figure 33c	The effect of chloroform fraction Cf_3 of <i>O. stamineus</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations (n = 6). * (P < 0.05), ** (P < 0.01).	114

Figure 33d	The effect of chloroform fraction Cf_4 of <i>O. stamineus</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations ($n = 6$). * ($P < 0.05$).	114
Figure 33e	The effect of chloroform fraction Cf_5 of <i>O. stamineus</i> on noradrenaline (NA)-induced contraction of isolated rat aortic strip preparations ($n = 6$).	115
Figure 34	Thin layer chromatography (TLC) profile of chloroform extract $CHCl_3$, sub-fraction Cf_2 of <i>O. stamineus</i> and Sinensetin flavonoid (Sin) using ethyl acetate, chloroform (7:3) as mobile phase after being sprayed with natural product polyethylene glycol NP/PEG reagent under UV 365 light.	117
Figure 35	Sarcolemmal exchange of Na^+ and Ca^{2+} during cell depolarization and repolarization.	131
Figure 36	Signal transduction mechanisms (G-protein and IP_3 -liked).	133
Figure 37	Mechanisms of calcium exchange by which calcium is removed by cells.	136
Figure 38	Vascular smooth muscle contraction and relaxation.	145
Figure 39	Physiology of nitric oxide.	146
Figure 40	Endothelin release by vascular endothelium.	148

LIST OF ABBREVIATIONS

AV	Atrioventricular node
Bf	n-butanol sub-fraction
° C	Degree Centigrade
Ca ²⁺	Calcium ion
cAMP	cyclic Adenosine monophosphate
Cf	Chloroform sub-fraction
CO ₂	Carbon dioxide
EDRF	“The endothelium-derived relaxation factor”
Fig.	Figure
g	Gram
Hz	Hertz
K ⁺	Potassium
Kg	Kilogramme (s)
ISP	Isoprenaline
log	Logarithm
mg	Milligram
ml	Milliliter
μl	Micro liter
n	Number of cases
N ⁺	Sodium ion
NA	Noradrenaline

NP/PEG	Natural product- Polyethylene glycol
NO	Nitric oxide
O ₂	Oxygen
PSS	Physiological salt solution
R _f	Retardation factor
SA	Sinoatrial nodes
S.E.M	Standard error of mean
SD rat	Sprague-Dawley rat
TLC	Thin layer chromatography
UV	Ultra violet
w/v	Weight per volume
WHO	World Health Organization

PUBLICATIONS ASSOCIATED WITH THIS THESIS

Omar Saad Saleh, Amrin Sadikun, Norhayati Ismail and M. Zaini Asmawi. Effect of *Gynura procumbens* on reactivity of heart and vascular preparations. Presented at 5th Congress Federation of Asian and Oceanian Physiology Societies (FAOPS) Kuala Lumpur, Malaysia. (September 23-26, 2002) p 46.

Omar Saad Saleh, Amrin Sadikun and M. Zaini Asmawi. Effect of *Orthosiphon stamineus* plant extracts on isolated SD rat aortic strip preparations. Presented at 18th Scientific Meeting of the Malaysian Society of Pharmacology and Physiology (MSPP), Kuala Lumpur, Malaysia. (April 28-29, 2003) p 95.

KESAN *IN-VITRO* KARDIOVASKULAR *GYNURA PROCUMBENS* DAN *ORTHOSIPHON STAMINEUS*

ABSTRAK

Gynura procumbens dan *Orthosiphon stamineus* digunakan di dalam perubatan tradisional untuk mengubati penyakit darah tinggi. Kajian menunjukkan kedua-dua *Gynura procumbens* dan *Orthosiphon stamineus* merencat aktiviti kardiak dan menyebabkan vasodilatasi, dua mekanisme yang menyumbang kepada penurunan tekanan darah. Aktiviti kardiak dinilai menggunakan sediaan terasing *in-vitro* atrium kanan yang berdenyut secara spontan dan atrium kiri yang diberi rangsangan elektrik berturutan dan aktiviti vasodialatasi menggunakan sediaan terasing jaluran aorta tikus Sprague Dawley. Serbuk kering daun *Gynura procumbens*, tumbuhan pertama yang diselidiki diekstraksi secara bersiri dengan eter petroleum dan diikuti dengan metanol. Ekstrak metanol didapati merencat kesan inotropi yang diaruhkan oleh isoprenalin pada atrium kanan lebih baik berbanding ekstrak eter petroleum. Ekstrak metanol seterusnya difraksikan kepada fraksi kloroform, etil asetat, n-butanol dan air. Fraksi n-butanol didapati menyebabkan perencatan paling kuat kedua-dua aktiviti atrium kanan dan kiri. Fraksi n-butanol kemudiannya di sub-fraksikan menggunakan kromatografi kilit turus kering dan menghasilkan tiga sub-fraksi (Bf_1 - Bf_3). Hasil percubaan menunjukkan subfraksi Bf_3 menyebabkan perencatan terkuat kesan inotropi yang diaruhkan oleh isoprenalin pada kedua-dua sediaan atrium kanan dan kiri dan menyarankan sebatian yang mempunyai aktiviti kardiak terdapat dalam fraksi Bf_3 .

Antara fraksi-fraksi yang didapatkan daripada ekstrak metanol diatas, fraksi kloroform didapati merencat paling kuat penguncupan jaluran aorta yang diaruhkan oleh

noradrenalin. Fraksi kloroform kemudiannya disubfraksikan dengan kromatografi kilat turus kering dan menghasilkan lima sub-fraksi (Cf_1 - Cf_5). Keputusan percubaan menunjukan sub-fraksi Cf_3 menyebabkan perencatan kontraksi aruhan noradrenalin yang paling kuat.

Tumbuhan kedua yang diselidiki adalah *O. stamineus*. Serbuk kering daun *O. stamineus* diekstraksi secara bersiri dengan eter petroleum, kloroform, metanol dan akhirnya dimaserasi dengan air. Ekstrak kloroform didapati menyebabkan perencatan paling kuat penguncupan aorta aruhan noradrenalin. Ekstrak kloroform kemudiannya difraksikan dengan kromatografi kilat turus kering dan menghasilkan lima sub-fraksi (Cf_1 - Cf_5). Sub-fraksi Cf_2 didapati menyebabkan perencatan paling kuat penguncuapan aruhan noradrenalin. Analisis fitokimia awal menggunakan kromatografi lapisan nipis menggunakan reagen semburan spesifik menunjukan subfraksi Bf_3 dan Cf_3 . *G. procumbens* dan fraksi Cf_2 *O. stamineus* mengandungi flavonoid, terpenoid dan kumarin. Berdasarkan dari kajian penyelidik terdahulu, flavonoid dilaporkan boleh mengaruhkan vasodilatasi. Oleh itu, besar kemungkinan vasodilatasi yang diaruhkan oleh *G. procumbens* dan *O. stamineus* adalah disebabkan oleh kandungan flavonoidnya. Perencatan aktiviti kardiak dan vaskular tumbuhan-tumbuhan ini mungkin menerangkan penggunaan tumbuhan-tumbuhan ini untuk merawat penyakit darah tinggi dalam perubatan tradisional.

ABSTRACT

Gynura procumbens and *Orthosiphon stamineus* have been used as traditional medicine to treat hypertension. This study has shown that both *Gynura procumbens* and *Orthosiphon stamineus* inhibit cardiac activity and cause vasodilatation, the two mechanisms which contribute to the lowering of blood pressure. The cardiac activity was evaluated using isolated spontaneously beating right atria and electrically paced left atria, whereas vasodilating activity was studied using aortic strip preparations isolated from Sprague Dawley (SD) rats. The dried pulverized *G. procumbens* leaves were serially extracted with petroleum ether and followed by methanol. The methanol extract was found to inhibit the isoprenaline-induced inotropic activity of right atria more than the petroleum ether extract. The methanol extract was then fractionated into chloroform, ethyl acetate, n-butanol and water fractions. Fraction n-butanol was found to cause the strongest inhibition for both cardiac right and left atria activities. Fraction n-butanol was then fractionated again using dry flash column chromatography to afford three sub-fractions: (Bf_1 - Bf_3). The results showed that, sub-fraction Bf_3 caused the strongest inhibition of the inotropic effect induced by isoprenaline in both right and left atria which suggest the compound (s) with cardiac activity is in sub-fraction Bf_3 .

Among the fraction obtained from methanol extract above the chloroform fraction was found to cause the strongest inhibition on noradrenaline induced contraction of aortic strip. The chloroform extract was then fractionated again using dry column chromatography to afford five sub-fractions (Cf_1 - Cf_5). Our results show that, sub-fraction Cf_3 caused the strongest inhibition of the contraction induced by noradrenaline. The second plant studied, was *O. stamineus*. Dried powdered leaves of *O. stamineus*

were serially extracted with petroleum ether, chloroform, methanol and lastly macerated in water. The chloroform extract was found to cause the strongest inhibition of noradrenaline-induced contraction in aortic strip preparation. The chloroform extract was then fractionated using dry flash column chromatography to afford five fractions (Cf_1 - Cf_5). Fraction Cf_2 was found to cause the strongest inhibition of contraction induced by noradrenaline.

Preliminary phytochemical analysis by thin layer chromatography using specific spray reagents showed that sub-fraction Bf_3 and Cf_3 of *G. procumbens* and fraction Cf_2 of *O. stamineus* contained flavonoids, terpenoids and coumarins.

Based on previous studies by Duarte *et al.* (2001), flavonoids have been known to cause vasodilatation. Therefore, it is seems likely that the vasodilatation caused by *G. procumbens* and *O. stamineus* extracts were attributed to flavonoids (TLC studies). The inhibition of the cardiac and vascular activity of the plants may explain their use for treatment of high blood pressure in traditional medicine.

CHAPTER ONE / INTRODUCTION

1.1 Hypertension

High blood pressure, termed "hypertension," is a condition that afflicts more than 50 million Americans and is a leading cause of morbidity and mortality. Hypertension is much more than a "cardiovascular disease" because it affects other organ systems of the body such as kidney, brain, and eye. Tens of millions of Americans are not even aware of being hypertensive because it is usually asymptomatic until the damaging effects of hypertension (such as stroke, myocardial infarction, renal dysfunction, etc.) are observed.

The term "hypertension" can be applied to elevations in mean arterial pressure, diastolic pressure, or systolic pressure. Hypertension is often defined as a diastolic pressure of 90 mmHg or above, or a systolic pressure of 140 mmHg or above or both. A diastolic pressure of 80 to 89 mmHg and a systolic pressure of 120-139 mmHg is termed prehypertension. Elevations in either diastolic or systolic pressure represent a significant risk factor to the patient (Richard, 2002).

Mean arterial pressure is the average value for arterial pressure. It is the product of cardiac output and vascular resistance. It is usually not discussed in the context of hypertension because it is not normally measured in a patient. However, changes in either cardiac output or systemic vascular resistance will increase not only diastolic and systolic pressures, but also mean arterial pressure. The term "mean arterial pressure" is usually spoken in the context of the arterial pressure that is responsible for organ perfusion.

1.2 Arterial blood pressure

Ejection of blood into the aorta by the left ventricle results in a characteristic aortic pressure pulse. The peak of the aortic pressure pulse is termed the systolic pressure (P_{systolic}), and the lowest pressure in the aorta, which occurs just before the ventricle ejects blood into the aorta, is termed the diastolic pressure ($P_{\text{diastolic}}$). The difference between the systolic and diastolic pressures is the aortic pulse pressure. The mean aortic pressure (P_{mean}) is the average pressure (geometric mean) during the aortic pulse cycle.

As the aortic pressure pulse travels down the aorta and into distributing arteries, there are characteristic changes in the systolic and diastolic pressures, as well as in the mean pressure. As the pressure pulse moves away from the heart, the systolic pressure rises and the diastolic pressure fall. There is also a small decline in mean arterial pressure as the pressure pulse travels down distributing arteries due to the resistance of the arteries. Therefore, when arterial pressure is measured using a sphygmomanometer (i.e., blood pressure cuff) on the upper arm, the pressure measurements represent the pressure within the brachial artery which will be slightly different than the pressure measured in the aorta or the pressure measure in other distributing arteries.

In most patients (90-95%) presenting with hypertension, the cause is unknown. This condition is called essential (or primary) hypertension. The remaining 5-10% of hypertensive patients have hypertension that results secondarily from renal disease, endocrine disorders, or other identifiable causes. This form of hypertension is called secondary hypertension (Richard, 2002).

Regardless of the origin of hypertension, the actual increase in arterial blood pressure is caused by either an increase in systemic vascular resistance (SVR) or an increase in cardiac output (CO). Therefore, in order to understand how arterial blood pressure can become elevated, it is first necessary to understand the mechanisms that regulate both SVR and CO (Neal, 1992)

1.3 Essential hypertension

Essential (or primary) hypertension accounts for approximately 90-95% of patients diagnosed with hypertension. Unlike secondary hypertension, there is no known cause of essential hypertension. Despite many years of active research, there is no unifying hypothesis to account for the pathogenesis of essential hypertension. There is a natural progression of this disease that suggests early elevations in blood volume and cardiac output might initiate subsequent increase in the systemic vascular resistance. This increase in blood volume was suggested to be due to inability of the kidney to adequately handle sodium as a basic underlying defect. In chronic, long-standing hypertension, blood volume and cardiac output are often normal and the hypertension is sustained by an elevation in systemic vascular resistance rather than by an increase in cardiac output. This increased resistance is caused by a thickening of the walls of resistance vessels (i.e. arteries) and by a reduction in lumen diameters. There is also an evidence for increased vascular tone that could be mediated by enhanced sympathetic activity or by increased circulating levels of angiotensin II. In recent years, considerable evidence has suggested that changes in vascular endothelial function may cause the increase in vascular tone. For example, in hypertensive patients, the vascular endothelium produces less nitric oxide and the vascular smooth muscle is less sensitive to the actions of this powerful vasodilator.

There is also an increase in endothelin production, which can enhance vasoconstrictor tone. There is compelling evidence that hyper-insulinemia and hyperglycemia in type 2 diabetes (non-insulin dependent diabetes) causes endothelial dysfunction by enhanced oxygen free radical mediated damage and decreased nitric oxide bioavailability (Richard, 2002).

1.4 Secondary hypertension

Secondary hypertension accounts for approximately 5-10 % of all cases of hypertension. Secondary hypertension has an identifiable cause. Regardless of the cause, arterial pressure becomes elevated either due to an increase in cardiac output, an increase in systemic vascular resistance, or both. When cardiac output is elevated, it is generally due to either increased neurohumoral activation of the heart or increased blood volume. Some of the causes for secondary hypertension are listed below:

- Renal artery stenosis
- Chronic renal disease
- Primary hyperaldosteronism
- Stress
- Sleep apnea
- Hyper- or hypothyroidism
- Pheochromocytoma
- Preeclampsia
- Aortic coarctation

1.5 Systemic vascular resistance

Systemic vascular resistance (SVR) refers to the resistance to blood flow offered by all of the systemic vasculature, excluding the pulmonary vasculature. It is sometimes referred as total peripheral resistance (TPR). Systemic vascular resistance (SVR) is therefore determined by those factors that influence vascular resistance in individual vascular bed. Mechanisms that cause vasoconstriction will increase SVR, and those that cause vasodilatation will decrease SVR. The actual change in SVR in response to neurohumoral activation, for example, depends upon the degree of activation and vasoconstriction, the number of vascular beds involved, and the relative in series and parallel arrangement of these vascular beds to each other. Although SVR is primarily determined by changes in blood vessel diameters, changes in blood viscosity also affect SVR.

Systemic vascular resistance can be calculated if cardiac output (CO), mean arterial pressure (MAP), and central venous pressure (CVP) are known.

$$\text{SVR} = (\text{MAP} - \text{CVP}) \div \text{CO}$$

Because CVP is normally near 0 mmHg, the calculation is often simplified to:

$$\text{SVR} = \text{MAP} \div \text{CO}$$

It is very important to note that SVR can be calculated from MAP and CO, but it is not determined by either of these variables. A more accurate way to view this relationship is that at a given CO, if the MAP is very high, it is because SVR is high. Mathematically, SVR is the dependent variable in the above equations; however,

physiologically, SVR and CO are normally the independent variables and MAP is the dependent variable (Richard, 2002).

1.6 Arterial tone

Arterial tone is an important factor in the regulation of blood pressure. Arterial tone is determined by the interaction of the endothelium and the smooth muscle.

1.6.1 Endothelium

The vascular endothelium is highly active endocrine organ covering the inner surface of the arteries and veins. The endothelium is an important regulator of arterial tone because it secretes various vasodilating and vasoconstrictive substances (Figure 1).

1.6.1.1 Vasodilatory factors

1.6.1.1.1 Nitric oxide

In 1980 Furchtgott and Zawadzki showed that the endothelium must be intact for acetylcholine (Ach) to induce arterial smooth muscle relaxation. A substance originating from a vessel with an intact endothelium caused relaxation in an arterial ring with a denuded endothelium; it was named “the endothelium-derived relaxation factor” (EDRF). Later the EDRF was confirmed to be nitric oxide (NO) (Ignarro *et al.*, 1987; Palmer *et al.*, 1987). NO is a gaseous free radical which is synthesized from the amino acid L-arginine by a family of NO synthases (NOSs). NO relaxes vascular smooth muscle cells (VSMCs) by increasing the production of cyclic guanosine 3', 5'- monophosphate (cGMP). A normal endothelium constantly releases small amounts of NO. Extra NO is released in response to physiological stimuli such as increased shear stress and reduced oxygen tension, and to substances

such as acetylcholine (Ach), bradykinin, histamine, thrombin, adenosine diphosphate (ADP), adenosine triphosphate (ATP), and the substance P. So far, NO is the most potent vasodilator known (Umans and Levi, 1995).

1.6.1.1.2 Prostacyclin

Prostacyclin (PGI_2) is formed from arachidonic acid (AA) by the enzyme cyclo-oxygenase. The endothelial cells are the highest producers of PGI_2 , but VSMCs and fibroblast are also able to synthesize PGI_2 . Prostacyclin (PGI_2) is produced in response to shear stress and to substances that stimulate NO formation. The contribution of PGI_2 to vasodilation is less than that of NO (Mikkola *et al.*, 1996).

1.6.1.1.3 Endothelium-derived hyperpolarizing factor (EDHF)

Endothelium-dependent relaxations and hyperpolarizations can be partially or totally resistant to the inhibitors of cyclo-oxygenase and NO synthetase, suggesting the existence of an additional endothelial relaxing mechanism. These NO- and PGI_2 -independent relaxations appear to be without an increase in the intracellular levels of cyclic nucleotides in smooth muscle cells and the relaxations are antagonized by apamin and charybdotoxin (ChTX), the inhibitors of Ca^{2+} sensitive K^+ channels (K_{ca}) (Feletou and Vanhoutte, 1999). It has been suggested, therefore, that the hyperpolarization of smooth muscle cells caused by the opening of K^+ channels is responsible for these relaxations, and the relaxing agent is called an endothelium-derived hyperpolarizing factor (EDHF).