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PUNARAN PLASMA YANG DIGANDINGKAN SECARA TERARUH 
TERHADAP GALLIUM NITRIDA 

ABSTRAK 

Dalam projek ini, penyelidikan difokuskan kepada kajian tentang pengaruh 

pelbagai campuran plasma (H2 dan Ar) kepada Ch sebagai gas asas pada GaN 

menggunakan punaran kering khususnya punaran plasma yang digandingkan secara 

teraruh (ICP) untuk mendapatkan anisotropik yang tinggi, struktur dinding yang 

tegak dan yang paling penting adalah untuk memperoleh kadar punaran yang tinggi. 

Pertama sekali, wafer itu difabrikasi menggunakan fotolitografi dan Nikel 

diselaputkan ke atas wafer n-GaN atau p-GaN melalui alat pengewapan untuk 

melakukan proses 'angkat-buang'. Selepas itu, wafer dipunarkan menggunakan alat 

ICP-RIE. Semasa proses itu, kadar aliran gas untuk Ar atau H2 diubahkan manakala 

kadar Ch ditetapkan pada 60sccm untuk setiap eksperimen. Keadaan yang 

diperlukan dalam eksperimen ini ialah 60sccm Ch dan jumlah kadar aliran 60sccm 

Ar atau 30sccm H2. Manakala, kuasa ICP yang digunakan ialah lOOW, 250W kuasa 

RIE dan 600W kuasa RF. Sebelum membuat punaran kepada sam pel, satu set 

eksperimen yang ringkas dilakukan untuk memahami tentang perubahan dalam 

komposisi gas yang mempengaruhi kadar punaran. Untuk eksperimen ini, kadar 

aliran Ar diubah dari Osccm hingga 60sccm atau Osccm hingga 30sccm 

menggunakan gas H2, manakala kadar aliran Ch ditetapkan pada 60sccm dan 

tekanan kebuk ditetapkan pada lmTorr. Kemudian, pelbagai tekanan diubah bermula 

dari lmTorr hingga 15mTorr untuk memerhatikan kesan kadar punaran dan bentuk 

permukaan sampel dan akhir sekali, kuasa ICP dikenakan dari lOOW hingga 450W. 

Setelah selesai fabrikasi, pencirian morfologi permukaan ditentukan menggunakan 

Mikroskop Elektron yang Diimbas (SEM) dan Mikroskop Atom Dipaksa (AFM). 
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Mikroskop Elektron yang Diimbas (SEM) digunakan untuk mengukur kadar 

punaran, anisotropik, dan struktur dinding manakala Mikroskop Atom Dipaksa 

(AFM) pula digunakan untuk mencirikan morfologi permukaan sebagai Purata punca 

Kuasa Dua (rms) permukaan. Dari eksperimen yang dilakukan, pertambahan 15sccm 

H2 bersama dengan Ch di dalam kebuk pada tekanan 5mTorr dan 200W kuasa ICP 

menyebabkan perolehan kadar punaran yang paling tinggi iaitu sebanyak 3000Aimin 

untuk n-GaN dan 1900 A/min untuk p-GaN dan memplinyai permukaan yang licin 

dan anisotropik. Manakala untuk pertambahan 20sccm Ar bersama dengan 60sccm 

Ch pada tekanan 5mTorr dan 200W kuasa ICP, kadar punaran yang paling tinggi 

didapati melebihi kadar punaran H2; 5000Aimin dan ~0.5nm dan permukaannya 

masih kekallicin; ~0.5nm for n-GaN and ~0.7nm for p-GaN. Oleh itu, pertambahan 

H2 kepada plasma klorin menyebabkan permukaan yang dipunar lebih licin dari Ar, 

manakala pertambahan Ar pula menyebabkan kadar punaran yang paling tinggi 

dicapai dalam eksperimen ini. 
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INDUCTIVELY COUPLED PLASMA ETCIITNG ON GaN 

ABSTRACT 

In this project, the research mainly focused on the investigation of the 

influence of the various plasma mixtures (H2 and Ar) in Ch-based on GaN using dry 

etching majoring in Inductively Coupled Plasma etching to obtain highly anisotropic, 

vertical sidewalls structures and most importantly, highly etch rates for optimum 

device performance. First of all, the wafer was fabricated using the conventional 

photolithography method and the Ni metals were coated onto the n-GaN or p-GaN 

wafer through evaporator equipment to make lift-off process. After that, the wafer 

was etched using ICP-RIE machine. During the process, the gas flow rates for Ar or 

H2 were varied while Cb rates were held constant at 60sccm for all experiments. The 

conditions consisted of 60sccm of Ch and the total flow rate 60sccm of Ar or 30sccm 

of H2• Meanwhile, ICP power, RIE power and RF power was held at lOOW, 250W 

and 600W respectively. Prior to etching patterned samples, a simple set of 

experiments were conducted to get an understanding of how changes in gas 

composition affect the etch rate. For this experiment, the flow rate was varied from 

Osccm to 60sccm using Ar gases or from Osccm to 30sccm using H2 gases, 

meanwhile the Ch flow rates and the chamber pressure were held constant at 60sccm 

and lmTorr, respectiveiy. Then, the various pressures were varied starting of lmTorr 

to 15m Torr to observe the effect of etch rates and the roughness of surface and lastly, 

the ICP power applied from lOOW to 450W. After that, the wafer will be 

characterized using SEM and AFM. SEM will be used to measured the etch rates, 

anisotropic etch profiles and sidewalls meanwhile AFM has been used to quantify 

the etched surface morphology as root-mean-square (rms) roughness. From our 

XVlll 



experiments, the addition of 15sccm H2 together with Chin the chamber at 5mTor of 

pressure and 200W ICP power obtained high etching rate about 3000Aimin for n

GaN and 1900Aimin for p-GaN and smooth anisotropic pattern. Meanwhile, for 

addition of 60sccm Ar together with 20sccm Ch at pressure of 5mTorr and 20W ICP 

power resulting the highest etch rates, better than the addition of H2; 5000Aimin for 

n-GaN and 3300Aimin for p-GaN, while maintaining the smooth surface; -0.5nm for 

n-GaN and -0.7nm for p-GaN. Hence, it was found that the addition of H2 to 

chlorine plasma distributed a smooth etched surface better than Ar, while addition of 

Ar resulting the highest etching rates for this research. 
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1.1 Introduction 

CHAPTERl 
INTRODUCTION 

This chapter was devoted to issues and theories that were relevant to the work 

in this research. This chapter begins with an elaboration about the fundamental 

properties of GaN, lack of suitable etchants and dry etching and ended the chapter 

with research objectives of this work. 

1.2 III-V Nitrides for Device Applications 

For the last three decades or so, the III-V semiconductor material system has 

been viewed as highly promising for semiconductor device applications at blue and 

ultraviolet (UV) wavelengths in much the same manner that its highly successful As-

based and P-hased counterparts have been exploited for infrared, red and yellow 

wavelength as shown in Figure 1.1. As members of the III-V nitrides family, AlN, 

GaN, InN and their alloys were all wide band gap materials, and can crystallize in 

both wurtzite and zincblende polytypes. Wurtzite GaN, AlN and InN have direct 

room temperature bandgaps of 3.4 eV, 6.2 eV and 1.9 eV, respectively (Figure 1.2). 

In cubic form, GaN and InN have direct bandgaps, while AlN was indirect. In view 

of the available wide range of direct bandgaps, GaN alloyed with AlN and InN may 

span a continuous range of direct bandgap energies throughout much of the visible 

spectrum well into the ultraviolet wavelengths. This makes the nitride system 

attractive for optoelectronic device applications, such as light emitting diodes (LEDs ), 

laser diodes (LDs), and detectors, which were active in the green, blue or UV 

wavelengths (Strite, 1992). 

Another area gaining a lot of attention for III-V nitrides was high 

temperature/high power electronics (Pearton, 2000). The interest stems from two 

1 



intrinsic properties of this group of semiconductors. The first was their wide bandgap 

nature. The wide bandgap materials such as GaN and SiC are promising for high 

temperature applications because they go intrinsic at much higher temperatures than 

materials like Ge, Si and GaAs. It means that GaN power devices can operate with 

less cooling and fewer high cost processing steps associated with complicated 

structures designed to maximize heat extraction. The second attractive property of 

III-V nitrides was that they have high breakdown fields. The critical electric field of 

the breakdown scales roughly with the square of the energy band gap, and was 

estimated to be >4 MV/cm forGaN (Ali, 1991), as compared to 0.2 and 0.4 MV/cm 

for Si and GaAs respectively. Other advantageous properties of III-V nitrides include 

high mechanical and thermal stability, large piezoelectric constants and the 

possibility of passivation by forming thin layers of Ga20 3 or Ah03 with band gaps of 

4.3 eV and 9.2 eV respectively. 

Fig. 1.1 
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The various ternary and quarternary materials used for LEDs with 
the wavelength ranges indicated (Adapted from Pearton et al., 
2000). 

GaN has also excellent electron transport properties, including good mobility, 

and high saturated drift velocity (Sze, 1990). This makes it adequate for general 

electronics, and promising for microwave rectifiers, particularly. The material 
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properties associated with high temperature, high power, and high frequency 

application of GaN and several conventional semiconductors are summarized in 

Table 1.1. It was anticipated that GaN may eventually prove to be superior to SiC in 

this area. 

> llJ -uf' 

!; 
l 

7.0 

Wurtzitie Zincblende 
a-A IN 

]; ... 
••• J3-AIN 

4.0 

3.0 

2.0 

a-InN 

300K 
1.0 ................. ~i-'-'-"""""+ ........ ...,.,..·U-....... ~1-W-"""""+ ........ "* ...... ""' 

a.o 1.2 a.4 a.• a.a u 4.4 •·• u a.o 
Lattice Constant (A) 

Fig. 1.2 Bandgap of hexagonal (a-phase) and cubic (b-phase) InN, GaN, 
and AlN and their alloys versus lattice constant ll{) (Adapted from 
Pearton eta/., 2000). 

Table 1.1 Comparison of 300 K semiconductor material properties (Adapted 
from Sawin, 1985). 

Property Si GaAs 4H-SiC GaN 
Bandgap Eg ( e V) 1.12 1.42 3.25 3.40 
Breakdown Field E8 (MV/cm) 0.25 0.4 3.0 4.0 
Electron Mobillity Jl (cm2N.s) 1350 6000 800 1300 

Maximum Velocity Ys (107 cm/s) 1.0 2.0 2.0 3.0 

Thermal Conductivity x (W/cm•K) 1.5 0.5 4.9 1.3 

Dielectric Constant E 11.8 12.8 9.7 9.0 

CFOM = XEJlYsEs21(XE/J.YsEs2)si 1 8 458 489 
(CFOM= Combined Figure of Merit for high temperature/high power/high frequency 
applications). 
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1.2.1 Gallium Nitrides 

Of all the III-V nitrides, gallium nitride or GaN was considerably the most 

intensely studied among the III-V nitride semiconductors. GaN was a direct and 

wide band gap semiconductor when compared to the more widely known Si as well 

as GaAs and SiC, to name among a few. With its superior radiation hardness and 

chemical stability, together with its large band gap characteristic, these properties 

have made GaN a suitable semiconductor material for device applications in the 

high-temperature and caustic environment as well as in space applications. GaN was 

also an attractive candidate for protective coatings due to its radiation hardness 

(Strite, 1992). Its wide band gap make it go intrinsic at a much higher temperature 

than materials like Ge, Si and GaAs, i.e. the intrinsic carrier concentration at any 

given temperature decreases exponentially with band gap, and therefore GaN and 

similar wide band gap materials are attractive for high temperature applications. 

Moreover, due to its many attractive features like higher sheet charge densities, 

higher mobilities, better charge confinement, and higher breakdown voltages, GaN 

was also a potential candidate for the application in electronic devices such as high 

temperature, high power and high frequency transistors (Ali, 1991, Sze, 1990, 

Pearton, 1999). 

Unlike SiC, another widely studied large band gap semiconductor with 

demonstrated n- and p- type doping and excellent power device performance, one 

advantage of GaN as well as III-V nitrides was that they form direct band gap 

heterostructures, have better ohmic contacts and heterostructures., which eventually 

made III-V nitrides or GaN a more promising candidate than SiC in terms of 

application devices in optoelectronics (Razeghi, 1996). 
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The transparency of high quality GaN at wavelengths longer than the band 

gap make it an ideal material for fabricating photodetectors capable of rejecting near 

infrared and visible regions of the solar spectrum while retaining near unity quantum 

efficiency in the UV. Besides, in optoelectronics, GaN was primarily of interest for 

its potential as a blue and UV light emitter (Strite, 1992). GaN was most commonly 

observed as the wurtzite 2H polytype but it can also crystallize into a metastable 

zinc-blende 3C structure (Mizuta, 1986, Davis, 1989, Petrov, 1992, Strite, 1993). 

However, another structure, which was the rocksalt, or NaCl structure can also be 

induced in the GaN under very high pressures (Morkoc, 1999). 

In general, GaN normally crystallizes in the wurtzite crystal structure, where 

it was grown on hexagonal substrates. On the other hand, the zinc blende structure 

can be grown on cubic substrates. 

1.2.2 Lack of suitable etchant 

The chemical stability of GaN provides a technological challenge, for 

example like when it comes to lithography (Maruska, 1996) where there have been 

many reports describing the resistance of GaN films to the conventional wet etching 

techniques used in semiconductor processing. There was no reliable wet chemical 

etchant that has been found forGaN. Maruska and Tietjen (1996) reported that GaN 

was insoluble in H20, acids, or bases at room temperature; however GaN did 

dissolved in hot alkali solutions, but at a very slow rate. Due to the difficulties of 

developing an established chemical etching process for GaN despite the efforts of 

many researchers, the attentions has shifted to dry etching; reactive ion etching (RIE) 

and high density plasma etching as the dominant patterning technique for III-V 

materials including GaN. 
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1.2.3 Dry etching 

In general, many have reported excellent etch anisotropies suggesting that 

RIE was a highly suitable technology forGaN-based device processing. Reactive ion 

etching (RIE) was one of the dry etching techniques in common usage, which utilizes 

both the chemical and physical components of an etch mechanism. RIE plasmas are 

typically generated by applying radio frequency (rf) power of 13.56 MHz between 

two parallel electrodes in a reactive gas. Etching was typically performed at low 

pressures, ranging from a few mTorr up to 200 mTorr, which promotes anisotropic 

etching due to increased mean free paths and reduced collisional scattering of ions 

during acceleration in the sheath. RIE was by far the most popular dry etching 

technique used for conventional III-V materials, and takes advantage of the fact that 

there was a synergism between the physical and chemical etching mechanisms. 

The use of high-density plasma etch systems, such as inductively coupled 

plasma (ICP) (Pearton, 2000) and electron cyclotron resonance (ECR), has resulted 

in improved etch characteristics for the III-V nitrides as compared to RIE. This 

observation was attributed to plasma densities which were 2-4 orders of magnitude 

higher than RIE thus improving the III-N bond breaking efficiency and the sputter 

desorption of etch products for the surface. Additionally, since ion energy and ion 

density can be more effectively decoupled, plasma induced damage was more readily 

controlled. 

High density ICP plasmas were formed in a dielectric vessel encircled by an 

inductive coil into which rf power was applied. The alternating electric field between 

the coils induces a strong alternating magnetic field trapping electrons in the centre 

ofthe chamber and generating plasmas with uniform density and energy distribution. 
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By keeping ion and electron energy low, we can obtain low damage etching while 

maintaining fast etch rates. 

Anisotropy was achieved by superimposing a rf bias on the sample. Generally, 

etch characteristics were dependent upon plasma parameters including ion energy 

(controlled by rf chuck power), plasma density (controlled by ICP source power), 

and operation pressure (the change in collisional frequency can result in changes in 

both ion energy and plasma density). ICP etching was generally believed to have 

several advantages including easier scale-up for production, improved plasma 

uniformity and lower cost of operation. 

Good results for the III-V nitrides have been obtained in chlorine-based 

plasma under high ion energy conditions where the 111-N bond breaking and the 

sputter desorption of etch products were most efficient. Unfortunately, the high 

energy plasma may induce significant damage and degrade both electrical and optical 

device performances. Lowering the ion energy and increasing the chemical activity 

in the plasma often results in much slower etch rates and less anisotropic profiles. It 

was necessary to pursue alternative etch platforms which combine high quality etch 

characteristics with low damage for III-V nitrides. 

Additive gases have been introduced in order to obtain a vertical sidewall, 

since etching with pure Ch generally leads to severe undercuts (Rommel, 2002). Cho 

et al. reported binary gas chemistries such as Ch/Ar, Ch/N2, Ch/H2 and concluded 

that ICP discharges were well-suited to achieving smooth etched surfaces when 

appropriate plasma condition were used. Previous study has demonstrated that 

unintentionally doped successfully etched by ICP using Ch/Ar as the etching gases 

(Sheu, 1999). It has been shown that one can achieve a highly anisotropic etch with a 

high etching rate and smooth surface morphology by using Ch/ Ar as the etching 
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gases. During such ICP etching, Ch was used to provide reactive Cl radicals, 

chemically react with GaN to form volatile etch products, and then desorbed from 

the sample surface. On the other hand, Ar was used to perform physical etching so as 

to achieve an anisotropic etching. Ch/H2 mixture has also bee studied since the 

inclusion of H2 in the plasma was found to increase etch rates and also improve 

surface morphology. 

To date, only a few reports on the effect of gas additives to Ch plasmas have 

been reported. Therefore, the effects of gas additives such as H2 and Ar on the etch 

characteristics of an inductively coupled Ch-based plasma have been chosen as a 

collection of recipes for this research. Each gas additive had unique effects on the 

etch rate, etch anisotropy, surface roughness and sidewall morphology, all of which 

require reliable control for device fabrication. 

1.3 Research Objective 

As the circuit complexity increases and device dimensions decreases, it was 

very necessary to choose right technique in order to get a highly anisotropic result. In 

this project, the research mainly focused on the investigation of the dry etching 

majoring in Inductively Coupled Plasma etching on GaN. To achieve the main 

objectives, several sub objectives have been identified: 

1. To obtain recipes using gas combination (Ar and H2) in Ch-based 

on GaN. 

2. To study the effects of Ch/Ar mixture on n-GaN and p-GaN 

etching. 

3. To investigate the effects of Ch/H2 mixture on n-GaN and p-GaN 

etching. 
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4. To get the formation of highly anisotropic and sidewalls structures. 

5. To determine the smooth surfaces after etching to avoid stress 

concentration for selected recipes. 

1.4 Outline of the thesis 

The content of this thesis was organized as follows:-

The next chapter, Chapter 2, will cover GaN-related matters and theory that 

were relevant to the work in this research. 

Chapter 3 was devoted to the instrumentation employed in this work. An 

explanation on the procedures and methods used, and also some principles 

underlying the operation of the instruments were covered. 

Chapter 4 will discuss include the main topic/theory which was associated in 

the fabrication process as well as the discussions of methods used in obtaining the 

results for this research project. 

In Chapter 5 and 6, the results of the effects of Ch/ Ar and Ch/H2 mixture on 

n-GaN and p-GaN etching from this research were presented, analysed and discussed. 

The final chapter, Chapter 7 concludes the thesis with a summary of the 

research work. Conclusion of the results obtained and a few suggestions for future 

research were included. 
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CHAPTER2 
THEORY OF PLASMA ETCIDNG 

2.1 Introduction 

This chapter is devoted to the theories that are relevant to the work in this 

research such as general principles of etching; wet and dry etching, the process of 

etching and the fundamentals of plasmas. Meanwhile, the types and the technique of 

dry etching including the literature review of Ch-based plasma etching are explained 

at last topics in this chapter. 

2.2 Etching 

"Etching" is used to describe any technique by which material can be 

uniform removed from a wafer, or locally removed as in the transfer of patterns 

during fabrication of a microcircuit. Etching processes are divided into two major 

groups; wet etching (e.g. liquid chemicals) and dry etching (e.g. reactive gas 

plasmas). The basic mechanism of wet chemical etches of semiconductors is the 

formation of an oxide, or oxides on the surface, and the subsequent dissolution of the 

oxidized products by either acids or bases (Manos, 1989). The main advantage of this 

etching method is its simplicity, high selectivity, high throughput and low cost. 

However, these advantages do not apply to nitrides based material. GaN for example, 

electrolysis etches slowly at room temperature in hot alkalis and complex 

electrolytically using NaOH. Because of all this difficulties in obtaining reliable wet 

etching process, much work on nitride based etching are concentrated on dry etching 

processes. As such, we will only discuss briefly on wet etching and elaborate on the 

progress of dry etching throughout this chapter. 
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2.3 Wet Etching 

2.3.1 General Principles of Wet Etching 

Wet chemical etching of any material can be thought of as a sequence of five 

steps (Gandhi, 1983): 

1) Transport ofthe reactant to the surface 

2) Adsorption of the reactant 

3) Reaction at the surface 

4) Desorption of reaction products 

5) Removal of reaction products away from the surface 

Each of these three steps can function as a rate limiter and dominate the entire 

process. If the etch rate is controlled by the rate at which the reactant species can 

reach the surface, or the rate at which the reaction products are removed, the process 

is said to be diffusion-limited. If the etch rate is only limited by the rate of chemical 

reactions at the surface then the process is said to be reaction-rate limited (William, 

1990). Some distinctions between the two rate limiting steps are as follows: 

Table 2.1 The distinctions between the two rate limiting steps. 

The attributes of diffusion controlled The attributes of reaction-rate 
reactions controlled reactions 

The activation energy is viscosity The activation energy is typically 8-20 
controlled, 1-6 kcal/mol and increases kcal/mol 
with stirring 
All substances and crystal orientations The rate changes with etchant 
etch at the same rate concentration 
The reaction rate increases with agitation The rate is not sensitive to agitation 
The etch depth is proportional to the The etch depth is linearly dependent on 
square root of etch time etch time 

As with all chemical reactions, etching is sensitive to temperature. A 1 0°C 

increase in temperature can increase the etch rate by as much as a factor of two. 

Another consideration is the aging of etchant solutions. Some solutions may change 
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composition over time, depending on temperature and storage. All of these factors 

must be considered in establishing reproducible and controllable etching processes 

(William, 1990). 

2.4 Dry Etching 

2.4.1 Dry Processing 

A useful model of both dry process equipment and the processing itself is the 

idea that dry process results come from a balance between physical and chemical 

processes at the wafer surface. Figure 2.1 illustrates how a process dominated by 

sputter etching at low pressure and high ion energy can be compared to a process 

dominated by chemical etching at high pressure and low ion energy. Typically, 

sputter etching processes provide anisotropic profiles but do not provide selective 

etching between the different films on the wafer such as the photo resist, the etch 

film and the layer under the etch film. Faceting of the mask is also characteristics of 

sputter etch processes. At the other extreme is purely chemical etching, which 

usually provides excellent selectivity between films that have different chemical 

composition but tend to etch with isotropic profiles. Successful etch processmg 

occurs when the correct balance between these two extremes is struck. 

LOW HIGH PHYSICAL SPUTTER 
PlASMA - ETCHING 

I I PROCESS 

1 
ION 

BALANCED - RIE PRESSURE PROCESS 
ENERGY 

I I 1 
CHEMICAL PlASMA 
PLASMA - ETCHING 

HIGH LOW PROCESS 

Fig. 2.1 Physical and chemical processes in a plasma 
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2.4.2 Plasma Fundamentals 

Plasma is a gas which contains equal numbers of positive and negative 

charges; neutral atoms, radicals, or molecules; in addition to photons emitted from 

excited species. Radicals are molecule fragments with unsaturated bonds. Positive 

charge carriers are mostly singly ionized atoms, radicals, or molecules created by 

impact with energetic electrons. The majority of negative charges are free electrons. 

In the presence of atoms with high electron affinity, negatively charged ions can be 

created when these capture plasma electrons. Neutral atoms, radicals, and molecules 

can be at ground or excited state. Photons are emitted when excited species lose 

energy via spontaneous transitions to lower energy states. This latter process is the 

basis for the "glow" of the discharge. 

Plasma can be created by applying an electric field of sufficient magnitude to 

a gas. The process can be initiated by an incident electron which gains kinetic energy 

from the applied electric field. The probability for the electron to collide with and 

transfer energy to a gas atom or molecule depends upon the electron energy, the gas 

pressure, and the dimensions of the plasma chamber. When a collision occurs, it 

results in ionization, excitation, or fragmentation of gas molecules. An ionizing 

collision generates an electron-ion pair. The two new charged particles are 

accelerated in the electric field and can in tum collide with and ionize other gas 

particles. As this process continues, the gas breaks down and plasma is created. The 

charged particles can be neutralized by recombination within the plasma or at the 

chamber walls. For plasma to be sustained, however, the rate of ionization of gas 

atoms or molecules must be equal to the rate of electron and ion recombination. 

Collisions can result in fragmentation of gas molecules into atoms or 

molecules of smaller size or, for smaller electron energies, in excitation of atoms or 
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molecules to higher energy levels. Some important chemical and physical processes 

that occur in plasma are summarized in Table 2.2 (Sawin, 1985). At thermal 

equilibrium the particles can be assumed to move randomly at an average thermal 

velocity between collisions, approximated by 

(2.1) 

where k is Boltzmann's constant (k = 8.62xl0-5 eV/K), T the absolute temperature, 

and m the particle mass. Because of their very small mass, electrons travel at much 

higher thermal velocity than gas atoms or molecules. The motion of charged particles 

under the influence of an electric field is described in terms of a drift velocity, vd, 

given by 

(2.2) 

where f1 is the particle mobility, and E the electric field. 

Electrons also drift at a much higher velocity than ions. As electrons gain 

kinetic energy from the electric field, their effective temperatures increase above the 

gas temperature. While the temperature of the atoms and molecules in the gas 

remains near ambient, electrons can attain high average energies, typically 1-10 e V, 

corresponding to an effective electron temperature of 104-105 K (Fonash, 1985). 

This energy is transferred to the gas by collision processes in which ions and 

highly reactive species are created. It is this property of the plasma that allows high-

temperature type reactions to occur at low ambient temperatures and permits the use 

of temperature sensitive materials such as organic resist masks for etching. The 

average distance travelled by particles between collisions, called the mean free path A., 

depends on the species and gas pressure following the relation 

...1= 5x10-3 (em) 
p 
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where P is the pressure in Torr. The electron density in plasmas of interest ranges 

from 109 
- 1012 cm·3. It follows that the degree of ionization is very small; in typical 

reactors used for etching only 104 to 10·7 ofthe gas molecules are ionized (El Kareh, 

1995). 

Table 2.2 Important reactions in plasma (David, 1999). 

Reaction Example 

Positive ionization 
Ar + e ~ Ar+ + 2e 
02 + e ~ 02 + + 2e 

Dissociative CF4 +e ~ CF3+ + F + 2e 

Fragmentation 
CF3Cl + e ~ CF3 + Cle· 
C2F6 + e ~ 2CF3 + e 

Dissociative attachment CF4+ e ~ CF3 + F 
Dissociative ionization with attachment CF4+e~CF3+F+e 

Excitation 02 + e ~ 02* + e· 
Photoemission 02* ~ 02 + hv 

02 * is the excited state of 0 2 

2.4.3 Paschen Law (Ledernez, 2009) 

The first Townsend coefficient a is the probability to ionize a gas neutral by 

collision per unit length of path, i.e. it is the number of collision per unit length of 

path times the ionization probability per collision. Hence: 

a = ~ X exp (-_;) 
A. E. 

(2.4) 

with 'Ae the electron mean free path, Ei the ionization energy of the gas, Ee the 

electron energy colliding with the gas neutral. Equation (2.4) is more commonly 

known as (Cobine, 1958): a= Ap exp (-i) with Ee = e'AeE. Assuming that the 

electric field is uniform before the gas breakdown (E = Vb I d), Eq. (2.4) can be 

transformed to: 

Bpd 
V ln- = C+ In (pdJ (2.5) 
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With A. = kts T , one can deduce: 
GeJ> 

and the Paschen coefficients: 

(J. 

A=--...!! 
kT 

a .E. 
B:~ 

ekT 

C=ln(~T) 

(2.6) 

(2.7) 

(2.8) 

where <Jei is the electron impact ionization cross section (in m\ Ei is the ionization 

energy of the gas (in J), e the elementary charge (in C), k the Boltzmann constant, T 

the temperature (inK). 

2.4.4 The formation of a DC voltage. (V erdonck, 1990) 

Plasma is a (partially) ionized gas. In the plasmas we deal with, free electrons 

collide with neutral atoms/molecules and, through a dissociative process, they can 

remove one electron from the atom/molecule, which gives a net result of 2 electrons 

and 1 ion. Depending on the energy of the incoming electron, this collision can result 

also in other species, such as negative ions, because of electron association, excited 

molecules, neutral atoms ".nd ions. The light emitted by the plasma is due to the 

return of excited electrons to their ground state. As the energies between the 

electrons states are well defined for each element, each gas will emit light at specific 

wavelengths, which will give us the possibility to analyse the plasma. 

The power is applied to the lower or the upper electrode (or in some special 

cases to the reactor walls). In general the frequency of the applied power is 13.56 

MHz. A so-called dark sheath is formed in the neighbourhood of all surfaces in the 

reactor, electrodes and wails. This dark sheath can be considered as some kind of 
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dielectric or a capacitor. So, the applied power is transmitted to the plasma through a 

capacitor. 

At frequencies between 1 MHz and 100 MHz, the free electrons are able to 

follow the variations of the applied electric field and, unless they suffer a collision, 

they can gain considerable e energy, of the order of some hundred e V. On the other 

hand, in this frequency range, the movement of the much heavier (positive) ions is 

very little influenced (one may simplify that they are not influenced) by these electric 

fields: their energy comes completely from the thermal energy of the environment 

and is of the order of a few hundredths of an eV (i.e., -0.01eV). 

In the pressure range of these plasmas, from a few mTorr to a few hundreds 

of mTorr, the electrons will travel much longer distances than the ions, and in this 

way, they will much more frequently collide with the reactor walls and electrodes 

and consequently be removed from the plasma. This would leave the plasma 

positively charged. However, plasmas remain neutral. To guarantee this neutrality, a 

DC electric field has to be formed in such a way that the electrons are repelled from 

the walls. The capacitor between the power generator and the electrode helps to form 

the DC charge. During the first few cycles, electrons generated in the plasma escape 

to the electrode and charge the capacitor negatively. In this way, a negative DC bias 

voltage is formed on the electrode, which repels the electrons. The AC voltage 

becomes then superposed on this negative DC voltage as shown in Figure 2.2. 

Free electrons escape from the plasma in higher numbers to the walls than 

ions do. So, one also needs a certain DC voltage to repel the electrons from the walls. 

In this way, one can understand that the DC voltage of the plasma will always be the 

most positive of all the DC voltages in the reactor. Figure 2.3 shows how the DC 

voltage varies between the lower and upper electrode. This figure indicates clearly 
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how the electrons are repelled from the walls and electrode towards the plasma. The 

ions are attracted towards the wall. However, because of their large mass, only the 

ions which arrive "by coincidence" at the interface of the plasma with the dark 

sheath will be attracted towards the electrodes or the walls. Within the plasma, the 

ions are not influenced by the electric fields and move randomly. 

- v 
Fig. 2.2 DC and AC voltage on the powered (Adapted 

from Verdonck, 1990) 

LOW8r 
electrode 

Upper 
electrode 

- VDC 
Fig. 2.3 

a 

a 1 interface plasma-dark aheath 
generated by lower electrode 

b a interface plas~~a-dark sheath 
generated by upper electrode 

DC voltage in the plasma reactor in RIE mode (Adapted 
from Verdonck, 1990) 
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In most reactors, one can clearly observe this so-called dark sheath as a 

region with less luminosity than the bulk of the plasma. In this region, the density 

and energy of the free electrons is lower. Therefore, less collisions with molecules 

will occur, causing less excitations of electrons (bound to molecules) and therefore 

less photons will be emitted from this region. 

2.4.5 Influence of DC Bias (V erdonck, 1990) 

The value of the DC voltage is influenced by many parameters. It depends in 

the first place on the dimensions of the etching reactor. It also depends on the plasma 

process (gas, flow, pressure, power etc). 

2.4.5.1 Influence of the dimensions of the reactor and etching mode 

One can demonstrate that: 

(2.9) 

with the Voc the voltage drop between plasma and electrode 2, A1 the area of 

electrode 1, A2 the area of electrode 2, n an exponential factor, which is typically 

between 1 and 2. Formula 2.9 is valid for whatever electrode is powered. If electrode 

1 is powered and electrode 2 is grounded, V oc is in the case the DC potential of the 

plasma. 

One can provt that n = 1 or that n = 2, depending on the (very reasonable) 

assumptions one makes about the plasma. Anyway, the modulus of the DC voltage 

will increase with the ratio of grounded surface area. In RIE systems, the powered 

electrode has in general much less area than the grounded surfaces, resulting in a 

large negative DC voltage on the lower electrode. The consequences on the etching 
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results will be discussed later. In PE systems, the upper electrode is powered and the 

lower electrode is in general grounded, together with the walls. This results in 

general in a small voltage drop between plasma and lower electrode. One can 

decrease the voltage drop between plasma and electrode even more, when one leaves 

the electrode floating i.e. no electrical connection is made to the lower electrode. 

2.4.5.2 Influence of the plasma parameters 

In general, the dimensions of the reactor are fixed. In this case, one can 

influence the DC voltage by the process parameters. One should remember that the 

DC voltage is created to repel electrons. Therefore, the higher the electron density 

and the higher the electron energy, the higher the modulus of the DC voltage will be: 

a more negative voltage is necessary to repel a larger number of electrons, with 

higher energies. Using this reasoning, one is able to predict the tendencies of the DC 

bias voltage. 

2.4.5.2.1 Gases and Flow 

The electronegativity of used gases is a determining factor. When all other 

process parameters remain constant, the electronegativity of the gas will determine 

the DC voltage. Gases with low electronegativity, such as 0 2, N2 etc. have very 

negative DC bias voltages. Fluorine, chlorine and bromine containing gases are much 

more electronegative: the atoms of group VII are very prone to absorb any free 

electron which passes nearby. In this way, these gases decrease the density of the 

free electrons in the plasma (increasing the number of negative ions). Fluorine 

containing gases are more electronegative than chlorine containing gases, which are 

more electronegative than bromine containing gases. SF 6 is a very electronegative 
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gas: its main use is in fact as an insulator gas in places with high electric fields, e.g. 

around linear accelerators. When all other plasma parameters remain the same, the 

DC voltage of SF 6 plasma can be a factor of 10 less than the DC voltage of N2 

plasma. The absolute flow ofthe gases does in general not affect the DC voltage. If a 

mixture of gases is used, the DC bias will be a monotonically increasing function of 

the relative flows of the gases. In general, the DC bias tends to become rapidly more 

negative when a small flow of a gas with low electronegativity is entered in the 

plasma. Small flows of electronegative gases do not influence the DC bias very 

much. 

2.4.5.2.2 Pressure 

The pressure of the plasma does also influence the DC bias voltage, but to 

explain its influence is a little more complicated. At higher pressure, more molecules 

are available for the electrons to collide with and to generate a new free electron -

and a positive ion. In this way, an increase in pressure would increase the number of 

free electrons, turning the DC voltage more negative. On the other hand, an increase 

in pressure increases the density of species, i.e. it decreases the mean free path of the 

electrons before colliding. In this way, the electrons will gain less energy before 

colliding. This decrease in energy results in less formation of a new electron-positive 

ion pair. This mechanism decreases the formation of free electrons and ions. So, one 

has two tendencies in opposite ways. In the pressure ranges used ior plasma etching, 

one can observe that in the 1- (approximately) 100 m Torr range, the number of free 

electrons increases, the plasma becomes more dense with increasing pressure. At 

higher pressure, the plasma density decrease with pressure. The DC voltage is also a 

function of the energy of the free electrons. At higher pressure, electrons suffer more 
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collisions, therefore they gain less energy between collisions. The electron energy 

decreases with pressure. Taking all these mechanisms in account, one can understand 

that the DC bias voltage becomes less negative with increasing pressure. 

2.4.5.2.3 Power 

The influence of power is straightforward: an increase of power increases 

both the density and the energy of the free electrons. Therefore, the DC voltage 

becomes more negative with increasing power. 

2.4.6 Sheath Formation 

A simple plasma-etch reactor is shown in Figure 2.4. It consists of a grounded 

electrode which is typically connected to the chamber walls, a second electrode to 

which power is applied, and a partially evacuated chamber which contains a low 

pressure of a suitable mixture. Most systems use rf rather than de power to avoid 

charge accumulation on insulator surfaces. The rf amplitude is in the range of 700-

1000 V, and its frequency is typically 13.56 MHz. At such a frequency, most 

electrons oscillate between the electrodes, increasing the average electron energy and 

probability of electron-gas collisions. The rf power source is separated from the 

second electrode by a coupling capacitor to block de current components. While the 

plasma chamber as a whole is neutral, recombination of charges at boundary surfaces 

surrounding the plasma causes charge depletion near these boundaries and the 

formation of a boundary layer called the sheath. The resulting gradient in charges 

gives rise to a net diffusion of carriers to the boundaries. Since electrons diffuse 

faster than ions, more electrons leave the plasma initially. Consequently, an excess of 
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positive ions is left in the plasma which now assumes a potential V P with respect to 

the grounded walls. 

The potential V P gives rise to a drift current component which enhances the 

motion of ions and retards the motion of electrons to the grounded walls. When 

steady-state is reached, the electron and ion fluxes are balanced and the sheath is 

almost depleted of electrons. As a consequence of the reduced electron concentration, 

the sheath conductivity decreases considerably below that of the plasma region, and 

the probability for electron-gas collisions is reduced creating a "dark space" region. 

The large difference between electron and ion mobilities also creates a sheath 

near the powered electrode. Since the coupling capacitor suppresses de current 

components, electrons can accumulate at the electrode surface which assumes a 

negative de voltage superimposed on the time-average AC potential. The powered 

electrode reaches a "selfbias" negative voltage, Voc, with respect to ground (Coburn, 

1982). Similarly, when an electrically isolated surface (such as an insulating 

substrate isolated from ground by an insulating film) is in contact with the plasma, it 

must receive equal electron and ion fluxes at steady state. 

Following the same reasoning as above, the isolated surface must acquire a 

negative potential with respect to the plasma to retard the motion of electrons and 

enhance the motion of ions to equalize the fluxes of both carrier types. The potential 

of the isolated surface with respect to ground is referred to as its floating potential, 

Vf. As in the case of the grounded walls and the powered electrode, the isolated 

surface is surrounded by a sheath of reduced electron concentration. The sheaths are 

typically a few millimeters thick. 
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Schematic of simplified plasma etch reactor. 

2.4.6 Potential Distribution 

The potential distribution in a plasma chamber is shown in Figure 2.5 for a 

two electrode parallel plate reactor, with rf power applied to one of the electrodes. 

The second electrode, which also includes the chamber walls, is at ground potential. 

The three time average potentials of importance are the plasma voltage (V p), the 

"self-bias" voltage of the powered electrode (Voc), and the floating voltage (Vf). 

They determine the energies of ions incident on floating surfaces in the plasma and 

their effect on etching (Coburn, 1982). For example, the difference between the 

plasma and floating potential determines the maximum energy with which ions 

bombard an electrically floating surface. The plasma, because of its degree of 

ionization and high conductivity, for practical purposes can be regarded as an 

equipotential volume. It assumes the highest potential of the system, V p· Most of the 

voltage drops across the sheath because of its high resistance. The sheaths can be 
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