UNIVERSITI SAINS MALAYSIA

First Semester Examination Academic Session 2007/2008

October/November 2007

EBB 512/3 - Phase Diagram & Phase Equilibra

Duration: 3 hours

Please ensure that this examination paper contains <u>SEVEN</u> printed pages and ONE page APPENDIX before you begin the examination.

This paper contains SIX questions.

<u>Instructions:</u> Answer any **FIVE** questions. If a candidate answers more than five questions, only the first five answers will be examined and awarded marks.

Answer to any question must start on a new page.

All questions must be answered in English.

- 1. [a] Calculate the amount of each phase present in a 1-kg alumina refractory with composition 70 mol % Al₂O₃ 30 mol % SiO₂ at:
 - (i) 2000°C
 - (ii) 1900°C and
 - (iii) 1800°C (Figure 1)

Take O = 16 amu, Al = 26.98 amu and Si = 28.09 amu.

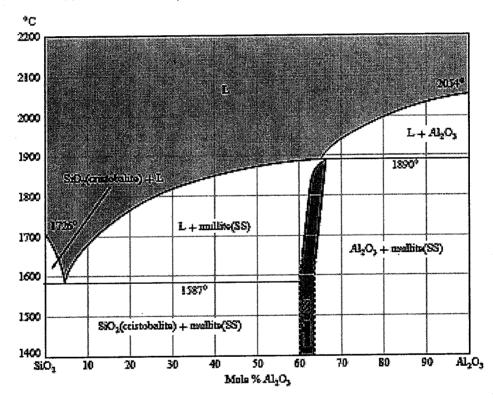


Figure 1

(50 marks)

- 2. [a] Explain the mechanical mixture and solutions with aid of diagrams. (50 marks)
 - [b] The following equilibrium data were determined for the reaction.

$$NiO_{(s)} + CO_{(g)} = Ni_{(s)} + CO_{2(g)}$$

Assuming; ΔG° = -RTlnK, where G° standared Gibbs free energy and K = equilibrium constant = [$a_{Ni} \times P_{CO2}$]/[$a_{NiO} \times P_{CO}$], a is the activity

T°C	663	716	754	793	852
Kx10 ⁺³	4.535	3.323	2.554	2.037	1.577

- (i) Find K, ΔG° , ΔH° and ΔS° at 1000K by using a plot.
- (ii) Would an atmosphere of 15%CO₂, 5%CO and 80%N₂ oxidies Ni at 1000K.

(50 marks)

3. At 1073K the partial excess free energy for the reaction $Zn(I) = Zn:Cu(\alpha)$ is given In J g atom⁻¹ by

RT In
$$\Gamma$$
 = -20,920 + 26,359 X_{zn}/X_{Cu}

(a) Find the vapour of zinc over the solid alloy containing 25 at % Zn at this temperature. Where Γ activity Coefficient, X fractional composition.

(50 marks)

(b) If the $\alpha/\alpha+\beta$ phase boundary at 1073K occurs at 30 at % Zn and the conjugate alloy in the β phase field contains 38 at % Zn, find the activity coefficient of Zn in this latter alloy relative to solid Zn.

For pure Zn

$$\log P_{zn(s)} = [-6850/T] - 0.755 \log T + 8.36$$

$$\log P_{zn(l)} = [-6620/T] - 1.255 \log T + 9.46$$

Where P is a pressure in atm and T is the temperature.

(50 marks)

4. ABC ternary system forms three binary eutectics and a ternary eutectic as shown below, Figure 3. Discuss equilibrium cooling paths for the overall compositions p, q and r indicated in the diagram. Discuss also the change in microstructure that should occur during cooling.

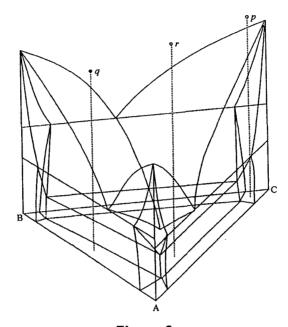


Figure 3

(100 marks)

- 5. With reference to the Figure 4
 - (a) State what surfaces enclose the following phase regions:
 - (i) $L + \alpha + \beta$
 - (ii) $L + \alpha$

(50 marks)

- (b) State what phase regions are separated by the surface:
 - (i) OGFO₂;
 - (ii) MNO;
 - (iii) NGO.

(50 marks)

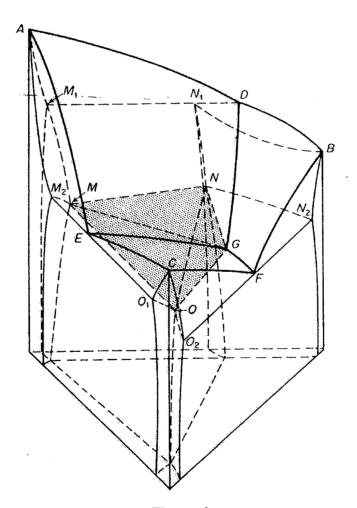
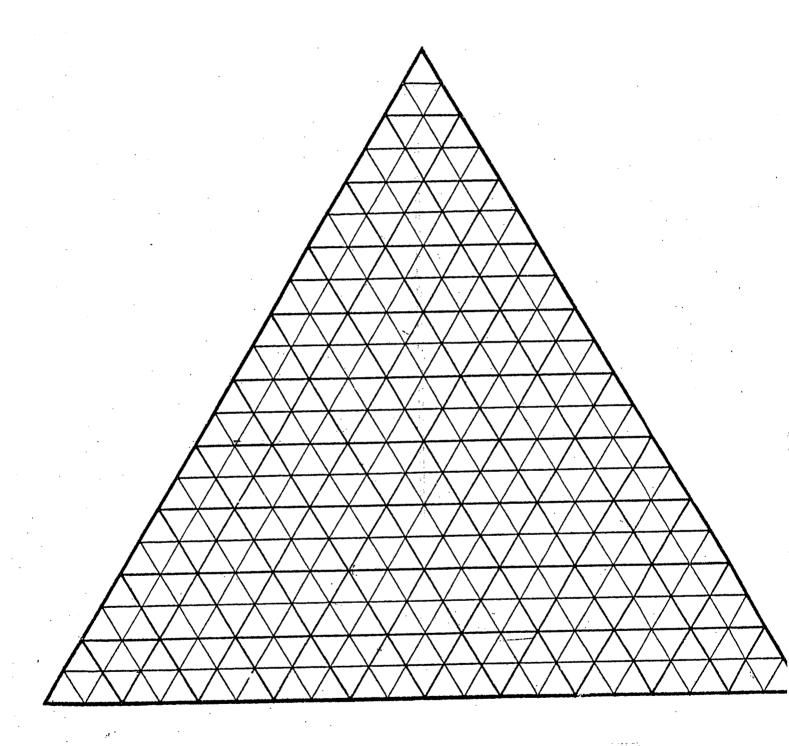


Figure 4

6. A ternary system ABC shows complete liquid solubility and partial solid solubility, forming primary solid solutions α , β and γ , based on A, B, and C, respectively. System BC contains a peritectic reaction (liquid + β = δ) at 800°C, in which δ is an intermediate phase containing 40% C,

The ternary system contains two invariant reactions as follows:

Temperature	Liquid composition	Solid phases involved
650°C	30%A, 32%B, 38%C	α, β, δ
620°C	37% A, 8%B, 55% C	α, δ, γ


The solid solubility ranges of α , β , γ and δ are very small (< 1 %).

Draw:

- (i) a liquidus projection for the system consistent with the data, and state the nature of the reactions shown;
- (ii) an isothermal section corresponding to a temperature of 600°C.

(100 marks)

APPENDIX

