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EKSPRESI "INSULIN-LIKE GROWTH FACTORS" DAN RESEPTORNYA 
PADA PERINGKAT PRAIMPLANTASI DALAM TISU REPRODUKTIF 

MENCIT DIABETES 
 
 
 
 

ABSTRAK 

Kami menghipotesis bahawa embrio praimplantasi yang berkembang dalam 

persekitaran diabetes mengalami kekurangan faktor pertumbuhan tertentu. 

Tujuan utama kajian ini adalah untuk menentukan kesan diabetes ke atas 

perkembangan embrio praimplantasi mencit secara in vitro dan menganalisis 

ekspresi mRNA dan protein IGF-1, IGF-2, IGF-1R dan IGF-2R dalam tisu 

fallopio dan uterus mencit kontrol dan diabetes. Mencit ICR betina yang matang 

secara seksual berusia 6 hingga 8 minggu dijadikan diabetes dengan suntikan 

streptozotosin (200 mg/kg, intra peritoneum). Embrio normal dalam peringkat 2-

sel diperolehi daripada mencit kontrol dan diabetes yang diseperovulasi pada 

48 jam pasca rawatan korionik gonadotropin manusia (hCG). Embrio dikultur 

secara berasingan dan diperiksa di bawah mikroskop songsang selama 3 hari 

berturut-turut. Tisu fallopio dan uterus diperolehi daripada mencit kontrol dan 

diabetes yang disuperovulasi pada 48, 72 dan 96 jam pasca rawatan hCG. 

Kuantifikasi ekspresi mRNA menggunakan tindak balas polimerase masa nyata 

menggunakan piawai internal homologus yang dibangunkan secara spesifik 

untuk setiap gen. Ekspresi protein menggunakan pewarnaan imunohistokimia 

dijalankan ke atas tisu dan skor semikuantitatif dibuat berdasarkan sistem 5-

skala piawai. Bilangan embrio 2-sel yang diperolehi daripada mencit diabetes 



 xxv

adalah sangat berkurangan apabila dibanding dengan mencit kontrol. Walau 

bagaimanapun, tiada perbezaan yang signifikan dalam peratus perkembangan 

embrio 2-sel mencit kontrol dan diabetes. Ekspresi mRNA IGF-1 tisu fallopio 

dan uterus mencit diabetes rendah secara signifikan masing-masing pada 72 

dan 96 jam pasca rawatan hCG. Ekspresi mRNA IGF-1R kekal tinggi dalam tisu 

fallopio tetapi rendah secara signifikan dalam tisu uterus mencit diabetes pada 

96 jam pasca rawatan hCG. Ekspresi mRNA IGF-2 tisu fallopio mencit diabetes 

tinggi secara signifikan pada 48 dan 96 jam pasca rawatan hCG tetapi rendah 

secara signifikan dalam tisu uterus mencit diabetes pada 96 jam pasca rawatan 

hCG. Ekspresi mRNA IGF-2R tisu fallopio dan uterus mencit diabetes tinggi 

secara signifikan masing-masing pada 48 dan 96 jam, dan 48 jam pasca 

rawatan hCG. Untuk ekspresi protein, skor imunohistokimia IGF-1 dan IGF-1R 

berkurang secara signifikan dalam tisu fallopio pada 96 jam pasca rawatan 

hCG. Skor IGF-2 dan IGF-2R sebaliknya bertambah secara signifikan dalam 

tisu fallopio mencit diabetes masing-masing pada 48 dan 72 jam, dan pada 72 

jam pasca rawatan hCG. Walau bagaimanpun, tiada perbezaan skor yang 

signifikan bagi IGFs dan reseptornya dalam tisu uterus mencit kontrol dan 

diabetes. Sebagai kesimpulan, peratus perkembangan embrio 2-sel kepada 

blastosista adalah serupa di dalam mencit kontrol dan diabetes tetapi tidak 

dapat disahkan sama ada kualiti embrio tersebut sama atau tidak. Ekspresi 

mRNA dan protein IGFs dan reseptor masing-masing mengalami perubahan 

yang signifikan akibat kesan diabetes ibu, mencadangkan wujudnya peranan 

mereka dalam patogenesis embriopati diabetes. 

 

 



 xxvi

 

 
 
 

THE EXPRESSION OF INSULIN-LIKE GROWTH FACTORS AND THEIR 
RECEPTORS AT PREIMPLANTATION STAGE IN REPRODUCTIVE 

TISSUES OF DIABETIC MOUSE  
 
 

 
 

ABSTRACT 

We hypothesized that the alteration in the expression of IGFs and their 

receptors may create an abnormal intrauterine environment thus affect embryos 

development. Therefore, the aims of the present study were to determine the 

effects of diabetes on in vitro development of mouse preimplantation embryos 

and to determine the mRNA and protein expression of IGF-1, IGF-2, IGF-1R 

and IGF-2R in the fallopian tube and uterine tissue of control and diabetic mice. 

Sexually mature female ICR mice of 6-8 weeks old were made diabetic by 

streptozotocin (200 mg/kg, intraperitoneal). The normal two-cell embryos were 

obtained from superovulated control and diabetic mice at 48 post-hCG 

treatment. Embryos were separately cultured and examined under an inverted 

microscope for 3 consecutive days. Fallopian tubes and uterine tissues were 

obtained from the superovulated control and diabetic mice at 48, 72 and 96 

hours post-hCG treatment. The mRNA expression was measured using Real-

time PCR using specifically developed homologous internal standards for each 

gene. Protein expression was measured by immunohistochemical staining and 

a semiquantitative scoring was performed using a standardized 5-scale system. 

The number of normal two-cell embryos obtained from diabetic mice was much 

reduced when compared to control mice. However, there was no significant 



 xxvi
i 

difference in the percentage of two-cell embryo development in control and 

diabetic mice. The mRNA expression of IGF-1 in the fallopian tube and uterus 

of diabetic mice was significantly low at 72 hours and 96 hours post-hCG 

treatment, respectively. The mRNA expression of IGF-1R remained high in the 

fallopian tube but was significantly low in the uterus of diabetic mice at 96 hours 

post-hCG treatment. The mRNA expression IGF-2 in the fallopian tube was 

significantly high at 48 and 96 hours post-hCG treatment but was significantly 

low in the uterus of diabetic mice at 96 hours post-hCG treatment. The mRNA 

expression of IGF-2R in the fallopian tube and uterus of diabetic mice was 

significantly high at 48 and 96 hours, and at 48 hours post-hCG treatments, 

respectively. For protein expression, the immunohistochemical scoring for both 

IGF-1 and IGF-1R was significantly decreased in the fallopian tube of diabetic 

mice at 96 hours post-hCG treatment. In contrast, the score for IGF-2 and IGF-

2R was significantly increased in the fallopian tube of diabetic mice at 48 and 72 

hours; and at 72 hours post-hCG treatment, respectively. However, there was 

no significant difference in the score of IGFs and their receptors in the uterus of 

control and diabetic mice. In conclusion, the percentage of the two-cell stage 

embryos which developed to blastocysts was similar in control and diabetic 

groups but whether the quality of these embryos were the same could not be 

confirmed. Both the mRNA and protein expression of IGFs and their receptors 

were significantly altered by maternal diabetes, which suggest their role in the 

pathogenesis of diabetic embryopathy. 

 

 



 
 
 
 
 

CHAPTER ONE 

GENERAL INTRODUCTION 

 
 
 
 
1.1 PHYSIOLOGY OF PREIMPLANTATION EMBRYO DEVELOPMENT 

 

1.1.1 Proliferation and differentiation of preimplantation embryo 

Fertilization of the mouse ovum by sperm occurs in the ampullary region 

of the fallopian tube. Subsequent development occurs as the embryo moves 

down the fallopian tube and into the uterus over a period of about four days in 

mice, as compared to five and seven days in rats and humans, respectively 

(Figure 1.1). Approximately 24 hours after fertilization, the embryo undergoes 

relatively synchronous cell division resulting in the formation of two cells or 

blastomers. There are no junctions established between the individual cells, 

which are held together by ionic attractions on the opposing plasma membranes 

(Chavez, 1984). The cells are constrained within a physical shell, the zona 

pellucida, which is a matrix of four glycoproteins (Wassarman and Mortillo, 

1991). During this period, each blastomere is totipotent, retaining the capacity to 

form a complete fetus. Further mitotic divisions occur asynchronously at 

progressively shorter intervals so that from the eight-cell stage onwards, one 

cell cycle is approximately six hours. At the eight-cell stage, generation of two 

distinct lineages commences with the process of compaction when individual 

blastomers polarize, become epithelial-like and flatten on each other, 
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  Figure 1.1 Development of the preimplantation embryo in mice from 

 embryonic Day 1 through Day 4  

 (Adapted from Hogan et al., 1986) 

 

The fertilization takes place in the ampullary region of the fallopian tube and the 

developing embryo traverse down to the site of implantation in the uterine cavity. 



maximising cell contact and forming tight and gap junctions (Ducibella et al., 

1977; Magnuson and Epstein, 1981; Chavez, 1984; Fleming et al., 1992). This 

compacted morula stage coincides with the arrival of the embryo at the utero-

tubal junction. In the compacted morula, fluid is transported across the newly 

formed epithelium to form a blastocoel and at this point the embryo is referred 

to as a blastocyst. At this stage, two distinct cell populations can be recognized 

(Johnson, 1981). The eccentrically placed inner cell mass (ICM) eventually 

forms the embryo proper and some extraembryonic tissues. The trophectoderm 

(TE), which is a single epithelial layer of flattened cells surrounding the 

blastocoel and ICM, establishes the foci of adhesion with the uterine epithelium 

and gives rise to the fetal component of the placenta (Hogan et al., 1986). 

 

1.1.2 Metabolic activity of preimplantation embryo 

Mouse oocyte and zygote have an absolute requirement for pyruvate 

(Biggers et al., 1967); i.e. glucose cannot support early embryo development 

until the eight-cell stage (Biggers, 1971). From the two-cell to the blastocyst 

stage, the embryos experience an increase in the tricarboxylic acid (TCA) cycle 

metabolites and a dramatic increase in fructose 1, 6-biphosphate (FBP). The 

dramatic switch from a dependence on the TCA to a metabolism based on 

glycolysis occurs at the time of compaction. The only source of adenosine 

triphosphate (ATP) for the preimplantation embryo would be conversion of 

glucose to pyruvate and lactate via glycolysis. 

 

The blastocyst stage marks a new peak in cellular proliferation and 

growth. These changes create new biosynthetic demands on the embryos. 



Maintenance of a high rate of glycolysis is important for providing a “dynamic 

buffer” of metabolic intermediates for the biosynthesis of macromolecules 

(Newsholme and Newsholme, 1989) and increasing amount of glucose are 

converted to lactate at this stage in humans and rodents (Leese and Barton, 

1984). Interspecies variations in the rate of glycolysis have been reported, 

higher in human blastocysts (Leese et al., 1993) and lower in mouse 

blastocysts (Leese, 1991) compared to rat embryos. 

 

Blastocysts are actively engaged in the uptake and metabolism of 

maternally derived nutrients such as glucose (Leese, 1991). The major site of 

uptake regulation is likely to be the system of facilitative glucose transporters 

(GLUT) situated at the basolateral surface of the TE in mouse blastocysts 

(Aghayan et al., 1992).  

 

1.1.3 Influence of maternal factors on preimplantation embryo 

development 

Although the activation of the embryonic genome provides the conceptus 

with a number of vital developmental signals (Kidder, 1992; Schultz and 

Heyner, 1992), its progression through the preimplantation period is also 

influenced by maternal factors present in the oviductal and uterine environment.  

 

Biggers (1981) proposed a theoretical model summarizing the 

physiological processes that influence the microenvironment of the 

preimplantation embryo. The composition of the microenvironment is 

determined by several transport mechanisms: between the embryo and the 



secretions in which it is bathed, between the fallopian tube and uterus and the 

bathing secretions and further mixing is produced as the secretions flow up and 

down the reproductive tract as shown in Figure 1.2. 

 

Maternally-derived nutrients/factors can either be transudates from the 

maternal circulation such as glucose (Leese et al., 1979, Wales and 

Edirisinghe, 1989; Gonzalez et al., 1994) and insulin (Heyner et al., 1989; Smith 

et al., 1993), or secretions by various uterine cells into the lumen such as 

growth factors (Pollard, 1990; Song et al., 2000) and cytokines (Pampfer et al., 

1991; Robertson et al., 2001) during the preimplantation period.  

 

1.2 DIABETIC PREGNANCY 

The association between maternal diabetes and the increased risk of 

congenital malformations has a long history and was first reported by LeCorche 

(1885). It is generally accepted that congenital malformations are the leading 

cause of death in the offspring of diabetic women (Kitzmiller et al., 1978). The 

incidence of congenital malformations is approximately 6 to 9% in diabetic 

pregnancies, which is three- to four-fold higher than in the general population, 

and accounts for 33 to 66% of perinatal deaths (Reece and Hobbins, 1986). 

The congenital malformations most commonly associated with maternal 

diabetes are listed in Table 1.1 (Reece and Hobbins, 1986). However, none of 

the reported congenital malformations is pathognomonic for the diagnosis of 

diabetic embryopathy. 
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Figure 1.2 A theoretical model summarising the physiological processes that 

influence the microenvironment of the preimplantation embryo 

(Adapted from Biggers, 1981). 
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1.3 DEFINITION OF “DIABETIC EMBRYOPATHY” 

The term “embryopathia diabetica” was coined by Mayer (1952) and was 

later replaced by the term “diabetic embryopathy” (Passarge and Lenz, 1966). 

The concept of diabetic embryopathy initially encompassed the long-recognized 

newborn features such as macrosomia and organomegaly but was later 

broadened to include congenital malformations (Mayer and Camara, 1964). 

Presently, the same concept was separated into two different entities, diabetic 

embryopathy and diabetic fetopathy. Diabetic embryopathy occurs during 

embryogenesis, mainly from the end of blastogenesis until the period of 

organogenesis (between the 3rd and 7th week of gestation) and is associated 

with congenital malformations (Kousseff, 1999). In contrast, diabetic fetopathy 

occurs during fetal development, after the 10th week of gestation, and is not 

associated with malformations (Kousseff, 1999). Occasionally, diabetic 

embryopathy is associated with diabetic fetopathy. However, these two entities, 

both induced by maternal diabetes mellitus, have different windows of 

vulnerability and perhaps, different pathogenesis. 

 

1.4 AETIOLOGICAL FACTORS ASSOCIATED WITH DIABETIC 

EMBRYOPATHY 

It has been suggested that the absence of a specific malformation 

pattern for diabetic embryopathy signals the presence of several aetiological 

factors and mechanisms in diabetic pregnancy (Khoury et al., 1989). Likewise, 

the number of different teratogenic agents identified indicates that diabetic 

embryopathy is of complex aetiology (Sadler et al., 1989; Zusman et al., 1989; 

Buchanan et al., 1994). 



1.4.1 Maternal Hyperglycemia 

Hyperglycemia-induced teratogenic effects have been demonstrated in 

animal studies both in vivo and in vitro (Cockroft and Coppola, 1977; Baker et 

al., 1981; Horton and Sadler, 1983; Kalter and Warkany, 1983a & 1983b; 

Freinkel et al., 1986; Reece and Hobbins, 1986). The percentage of congenital 

malformations correlated with blood glucose levels (Reece et al., 1985) and 

glycosylated hemoglobin levels (Rose et al., 1988). 

 

The period and time of exposure to hyperglycemia as well as the level of 

hyperglycemia are all important for dysmorphogenesis to occur. The critical 

period of exposure to hyperglycemia is during organogenesis, which is 

considered to be between days 9.5 to 11.5 in rats and 8.0 to 9.6 in mice 

(Freinkel, 1988), corresponding to the first 5 or 6 weeks of human pregnancy. A 

minimum exposure time of two or more hours is needed to induce these 

malformations. A 20% malformation rate was induced at glucose levels that 

were approximately two-fold above normal concentrations; an almost 50% 

malformation rate was seen at glucose levels three-fold above normal 

concentrations; and approximately 100% rate at six times above normal 

concentrations (Reece et al., 1985).  

 

Maternal hyperglycemia adversely affects not only the postimplantation 

embryos but also preimplantation progression from one-cell to the blastocyst 

stage in a streptozotocin (STZ)-induced or a non-obese diabetic (NOD) mouse 

model (Diamond et al., 1989; Moley et al., 1991 & 1994). In the NOD model at 

96 hours after superovulation and mating, only 20% of the recovered embryos 



reached blastocyst stage in the diabetic compared to 90% among the non-

diabetic. This developmental delay is reversible by treating the mothers with 

insulin before superovulation and mating and during the first 96 hours of 

gestation. This early preimplantation delay may be manifested later in gestation 

as fetal loss, early growth delay or congenital malformation. There is now 

convincing evidence that severe developmental anomalies leading to fetal 

resorption or malformation can occur as a consequence of subtle damage 

inflicted to the embryos before or at the time of implantation (Rutledge, 1997). 

 

The mechanism of hyperglycemia-induced congenital anomalies remains 

unclear. Hyperglycemia-induced reduction in GLUT has been proposed to be 

one of the possible mechanisms. A paradoxical reaction to hyperglycemia has 

been demonstrated in preimplantation embryos (Moley, 1999). In embryos of 

diabetic mice, a pronounced intracellular hypoglycemia was found despite 

maternal hyperglycemia (Moley et al., 1998b). The decreased intracellular 

glucose concentration was associated with decreased GLUT namely, GLUT-1, 

GLUT-2 and GLUT-3 isoforms; both at the protein and mRNA levels (Moley et 

al., 1998b).  

 

Reduced availability of glucose associated with decreased GLUT in 

diabetic embryos, results in significantly lower FBP and higher pyruvate, 

indicating decreased glycolysis and increased pyruvate uptake by the embryos, 

respectively. The glycolytic changes lead to dysfunction of the outer 

mitochondrial membrane and subsequently trigger the apoptotic cascade (Chi 

et al., 2002). 



The decrease in GLUT especially GLUT-1 and -3 isoforms also explains 

the elevated extracellular dehydroascorbate (DHA) and reduced intracellular 

ascorbic acid (Rumsey et al., 1997) related to hyperglycemia as described 

previously (Ely, 1981). Ely (1981) proposed that reduced intracellular ascorbic 

acid resulted in decreased hexose monophosphate shunt activity (DeChatelet et 

al., 1972), which might suppress deoxyribonucleic acid (DNA) synthesis as 

shown in Figure 1.3. Reduced DNA synthesis may slow cell division, leading to 

impaired cell proliferation or anomalies. It has also been suggested that 

elevated extracellular DHA may inhibit mitosis or cell proliferation (Edgar, 1970).  

 

This decrease in intracellular glucose concentration leads to a lower cell 

number in the ICM, either by increased apoptotic rate (Pampfer et al., 1997b; 

Moley et al., 1998a), or by diminished proliferation of these cells (Pampfer et al., 

1990). Decrease in glucose transport and metabolism is not only related to 

progressive decrease in embryo viability but served as important regulatory 

points in the early apoptotic cascade (Johnson et al., 1996; Li et al., 1998; Shim 

et al., 1998; Bialik et al., 1999, Lin et al., 2000). Maternal hyperglycemia, 

moreover, can cause direct disruption of the highly regulated gene program that 

controls the expression pattern of crucial developmental determinants during 

early embryogenesis, including apoptosis (Phelan et al., 1997; Cai et al., 1998; 

Moley et al., 1998a; Pampfer et al., 2001).  

 

Three cell death paradigms that are linked to decreased GLUT include, 

(i) induction of ATP depletion and stimulation of the mitochondrial death 

cascade or (ii) induction of oxidative stress and triggering of Bax-associated 
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Figure 1.3  Mechanism of hyperglycemia-induced alterations in cell division and   
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                    (Adapted from Ely, 1981) 



events including the c-Jun N-terminal kinase (JNK) and mitogen-activated 

protein kinase (MAPK) signalling pathways or (iii) regulation of expression of the 

gene encoding hypoxia-inducible factor 1 (HIF-1) and the stabilization of p53 

by HIF-1 binding, leading to an increase in p53-associated apoptosis and, in 

turn, increased expression of Bax, and thus exaggerated apoptosis within 

blastocysts during glucose deprivation (Chi et al., 2000; Moley and Mueckler, 

2000; Keim et al., 2001).  

 

The outcome of apoptosis during preimplantation stage will depend on 

the percentage of cell death, if more than 60% of ICM undergo cell death, the 

pregnancy may result in fetal loss and resorption. However, the death of fewer 

cells (e.g. 40-45%) can result in either fetal resorption or malformation if this cell 

death involves key progenitor cells in development (Tam, 1988; Moley, 2001). 

 

Another possible mechanism of hyperglycemia-induced congenital 

anomalies that has been put forward is related to dysregulation in the uterine 

cytokine secretion (Pampfer, 2001). Diabetes-induced modifications in the 

oviductal and uterine concentrations of nutrients (such as increased glucose 

levels), hormones (such as decreased insulin levels), growth factors, and 

cytokines (increased local synthesis of inhibitory factors or decreased local 

synthesis of stimulatory factors) are likely to elicit alterations in embryo 

development before implantation and organogenesis. 

 

Studies in STZ- and alloxan-treated diabetic mice exhibit an increased 

amount of tumour necrosis factor- (TNF-) messenger ribonucleic acid 



(mRNA) and protein in the uterus and placenta of diabetic mice (Pampfer et al., 

1995; Flein et al., 2001) as well as a marked reduction in pregnancy rate and a 

high incidence of litters with severely malformed fetuses (Torchinsky et al., 

1997, Machado et al., 2001). In addition, overexpression and excessive 

secretion of TNF-α by uterine cells in diabetic pregnancy may induce a 

decrease in cell number of the ICM as reported in an earlier study (Pampfer et 

al., 1997b; Wuu et al., 1999).  

 

TNF- acts in a cell type- and stimulus-dependent manner, to generate 

apoptotic-signalling pathways (Baud and Karin, 2001; Gupta, 2001). The 

apoptotic action of TNF- could occur mainly through its binding to the type 1 

receptor TNF-, followed by the activation of caspase 8 (Slee et al., 1999; Mohr 

et al., 2002; Torchinsky et al., 2003), which is considered to be among the main 

mediators of apoptosis (Baud and Karin, 2001; Gupta, 2001). The apoptotic 

action of TNF- could be mediated through interleukin-1ß (IL-1ß) secreted by 

macrophages (Pampfer et al., 1999) localized at the subepithelial region of the 

uterine stroma (Takacs et al., 1988). 

 

The mechanism of hyperglycemia-induced IL-1ß secretion has been 

proposed to be via the formation and interaction of advanced glycation end 

products, AGE (Vlassara et al., 1988). Macrophages have a receptor that 

recognizes the AGE moiety and mediates the uptake and degradation of AGE 

proteins. This removal process is associated with the production and secretion 

of TNF- and IL-1. The localized release and action of these cytokines may play 
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