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SATU KAJIAN ANALISIS TENTANG BENTUK STRUKTUR  
KELOMPANG BERLENGKUNGAN KEMBAR BERLIPAT 

BARU YANG DIILHAMKAN ALAM SEMULAJADI
 

ABSTRAK 
 

Kajian ini mengenai daun dari tumbuhan  Johannesteijsmannia altifrons (J. 

altifrons) yang tergolong dalam keluarga palma telah diselidik.  Daun J.altifrons 

menyerupai struktur kelompang terjulur berkelengkungan kembar dengan lipatan yang 

berunjur dari anggota tunjang tengah. Tujuan penyelidikan ini dijalankan dengan 

mensasarkan dua perkara berikut : untuk mengkaji pengaruh bentuk dan lipatan keatas 

kelakuan struktur J.altifrons dan untuk menyiasat kelakuan model struktur dengan saiz 

sebenar mirip J.altifrons yang memenuhi keperluan praktikal menggunakan kaedah 

elemen terhingga. Satu kaedah tanpa-sentuh yang dikenali sebagai kaedah 

pencahayaan berstruktur telah digunakan untuk mendapatkan data permukaan daun 

yang dikaji. Satu algoritma yang berdasarkan geometri sebenar pemasangan 

pengukuran dengan tujuan untuk mengurangkan masalah paralaks telah dibangunkan 

dan digunakan dalam kajian ini.  Kelakuan struktur model analisis yang dijana 

berdasarkan bentuk daun yang dipilih telah diselidik dengan menggunakan kaedah 

elemen terhingga. Model analisis yang berkenaan telah dianalisa dengan 

menggunakan sebelas jenis spesis kayu.  Keputusan analisis menunjukkan prestasi 

struktur yang cekap dari segi kekukuhan dan kekuatan. Untuk tujuan menyelidik kesan 

lipatan keatas kelakuan struktur, permukaan melengkung tanpa lipatan, yang 

mempunyai bentuk permukaan yang serupa dengan daun kajian, telah dijana dan 

dianalisa. Model analisis dengan lipatan menunjukkan prestasi dari segi kekukuhan 

dan kekuatan yang lebih baik berbanding dengan model analisis tanpa lipatan. Model 

analisis dengan lipatan yang mempunyai bentuk melengkung “synclastic” dan 

“anticlastic” menghasilkan anjakan maksima sebanyak lebih kurang 70% dan 30% 

daripada nilai anjakan maksima model analisis tanpa lipatan. Perbandingan dalam 

magnitud tegasan tegangan dan mampatan memberikan nilai lebih kurang 40% dan 
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20% daripada tegasan dalam model analisis tanpa lipatan. Memandangkan sifat 

penyelidikan ini yang melibatkan bidang “biomimetic”,  satu kaedah yang mudah yang 

diberi nama sebagai “Source Reference Classification” (SRC) untuk tujuan 

pengkelasan pencapaian dalam bidang teknologi yang diilhamkan oleh alam 

semulajadi juga telah diperkenalkan. Satu prosedur baru yang berdasarkan CAD juga 

telah dibangunkan untuk tujuan penjanaan permukaan melengkung dengan 

lengkungan kembar yang berlipat. Satu kajian pengiraan berkomputer telah dijalankan 

keatas model yang dijana  untuk menilai prestasi struktur mereka dibawah keadaan 

beban berat sendiri dengan menggunakan bahan konkrit ringan. Keputusan analisis 

menunjukkan prestasi struktur yang memuaskan dari segi kekukuhan dan kekuatan 

dengan keupayaan simpanan bahan yang sangat besar terutamanya dalam 

menanggung tegasan mampatan (lebih kurang 88%). Kesemua 6 model menunjukkan 

anjakan maksima kurang daripada 15 mm berbanding dengan rentang julur lebih 

kurang 10 m.  
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A COMPUTATIONAL STUDY ON A NATURE INSPIRED 
NOVEL DOUBLY CURVED FOLDED SHELL STRUCTURAL FORM 

 
ABSTRACT 

 
In this research, the leaves of Johannesteijsmannia altifrons (J. altifrons) which belong 

to the palm family have been investigated. These leaves are doubly curved cantilever 

shell structures with folds extending from the central spine. The target of the study is in 

two folds: to investigate the influence of shape and folds on the structural behaviour of 

the J. altifrons and to investigate the structural behaviour of the J. altifrons like scaled-

up, realistic models under practical considerations using finite element analysis. A non-

contact method called structured lighting method has been used for capturing the 

surface data of the leaf. An algorithm based on the actual geometry of the imaging 

setup has been developed and used in this study. The leaves have been analysed 

using orthotropic material properties of eleven species of wood. The results show 

efficient structural performance of the leaves in terms of stiffness and strength. In order 

to study the influence of the folds on structural behaviour, non-folded versions have 

also been generated and analysed. Folded models showed better performance in 

terms of stiffness and strength compared to the non-folded versions. The synclastic 

and anticlastic folded models yielded maximum deflection values of about 70% and 

30% of the values in the corresponding flattened models, respectively. Similar 

comparison in terms of stresses yielded values of about 40% and 20% of the 

corresponding stresses in flattened models for both tension and compression. In view 

of the biomimetic nature of the study, a simple method called Source Referenced 

Classification (SRC) to classify nature inspired technological achievements is also 

presented. Novel CAD based procedures have also been developed for the purpose of 

generating doubly curved surfaces with folds. These procedures have been 

implemented to generate leaf-like scaled-up models. A computational study is carried 

out on these models to evaluate their structural performance under self weight 

condition, using light weight concrete. The results show satisfactory performance in 

 xxx



terms of stiffness and strength with considerable reserve in material capacity 

particularly in compression (about 88%). All 6 models showed maximum deflection 

values of less than 15 mm over cantilever spans of about 10 m. 
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CHAPTER 1 
INTRODUCTION 

 
 

1.1 General 
 

Shells are surfaces with high structural performance in terms of self-weight to 

load carrying capacity. Such a characteristic combined with the inherent stiffness and 

beauty always qualifies shells for special engineering applications where architectural 

beauty and coverage of large continuous spaces are the main functional requirements. 

Xochimilco Restaurant (Mexico City, Mexico 1958), TWA Terminal at JFK Airport (New 

York, USA 1962), Sydney Opera House (Sydney, Australia 1973), Aquatic Centre 

(Baden Württemberg, Germany 1987) and Putrajaya Convention Centre (Putrajaya, 

Malaysia 2003) are among the famous successful applications (Fig. 1.1). Over the last 

few decades, advancements in the structural analysis domain and computational tools 

enabled engineers to satisfactorily analyze and build shells of different complicated 

types and forms. On the contrary, shells with very wide variety of shapes and 

breathtaking elegance existed in nature since millions of years. 

Surfaces found in nature offer a rich source of ideas for possible applications as 

engineering structures. Animal shells, sea shells and plant leaves are among the 

natural surfaces that serve as potential sources of mimicry for new structural systems. 

Nature is very smart in optimizing shape and material; comprehensive understanding of 

how nature handles such tasks under tight environmental constraints that are limited as 

well as unfavourable is a key issue to many researchers today. Using ideas from 

nature is justifiable based on the fact that existing natural systems could survive over 

thousands of years through adapting to the prevailing environmental conditions using 

nature’s limited resources in an amazingly efficient manner. In case of engineering 

structures and materials the concern is cash cost whereas in case of natural systems, 

the cost is energy and the competition is not commercial but the more severe one of 

nature where the fittest survive and failures remain as fossils. 
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 (a) Xochimilco Restaurant, Mexico (b)TWA Terminal at JFK Airport, New York 

 

 

 

 

 

 

(c) Opera House, Sydney  

 

 

 

 

 

(d) Aquatic Centre, Baden Württemberg   

 

(e) Convention Centre, Putrajaya  

 

 

 

 

 

 

 
Fig. 1.1: Some Successful Shell Applications 

(http://en.structurae.de/structures/stype/index.cfm?ID=1009 –  
Accessed 24th June 2007) 
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1.2 Background of the Study 
 

A closer look at the features of engineered or man-made structures and 

structures in nature reveal striking similarities. Despite the fact that natural systems 

operate with different scales, functions and processes, ‘the design constraints’ and ‘the 

objectives’ remain similar to what humans create. Functionality, optimization and cost 

effectiveness are the main concern of engineering design. Likewise a minimized blend 

of material and energy consumption is the working principle of natural systems. As 

such, efficient, light and rigid structures in nature exhibiting high capacity to withstand 

internal and external forces in an optimum manner have always been a source of 

inspiration for many architects and engineers (Arslan and Sorguc, 2004). Nature 

inspired structures have been categorized into five groups based on their ‘animate’ and 

‘inanimate’ nature. These groups are: tree-like structures, web-like structures, shell-like 

structures, skeleton-like structures and pneumatic structures (Arslan and Sorguc, 

2004). 

Despite the uncertainty whether some remarkable engineering structures were 

inspired from nature or not, yet their counterparts in nature with striking similarities 

have been identified as can be observed from the examples described in the following 

paragraphs. 

A tensegrity structure is an assembly of rigid and flexible members called struts 

and cables/strings forming compression and tension members, respectively. They may 

also comprise rigid members only, carrying compression and tension forces. 

Equilibrium of tensegrity structures is a function of the relative arrangement of the 

compression and tension members that results in balanced distribution of the 

mechanical stresses. They fall under two categories including the geodesic domes (the 

Buckminster Fuller domes) and structures that attain stability through prestressing 

(sculptures of Kenneth Snelson) (Ingber, 1998). The design concept of the geodesic 

dome of Buckminster Fuller looks like the structure of an insect’s eye. The natural eye 

shape of the insect is a hemisphere containing several parts that are held together and 
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supported by a natural geodesic dome grid on the outside surface. The hemispherical 

grid serves as a strong interconnected structural framework providing a stiff support for 

the cornea (Gildea, 1998). Ingber (1998) stated that the principle of tensegrity can be 

observed at all detectable scales of the human body. Muscles, tendons and ligaments 

are the tension members which balance the 206 bones representing the compression 

members. At the micro level cells, proteins and molecules also stabilize themselves 

through the principle of tensegrity. 

Meadows (1999) wrote on the probable idea behind the design of the Crystal 

Palace which seems to be inspired from the giant leaves of Victoria amazonica (the 

water lily). Joseph Paxton, inspired by the water lily, built a greenhouse with a roof 

structure similar to that of the leaf’s ribbed surface. A further step to this was the 

Crystal Palace (London) that was 108 ft high, covering an area of 18 acres. The 

building was completed in 1851 and collapsed under fire in 1936. On the contrary, 

Vincent et al. (2006) argued that the corrugated structure of the Crystal Palace 

resembles more other types of leaves, such as beech or hornbeam, than the tapering 

beam-like structure of the water lily. 

The structure of the trabecular struts in the head of the human femur or the 

tapered form of the tulip stem appear to have inspired the design of Paris’ landmark, 

the Eiffel’s tower (Vincent et al., 2006).  Hermann Von Meyer, professor of anatomy at 

Zurich observed that the femur head looks like a group of bones arranged in a curved 

path. Karl Cullman, a Swedish engineer, understood such a bone structure as paths 

along which the stresses, induced by the eccentric hip forces, are transferred to the 

bones of the leg. The French engineer, Gustaff Eiffel, implemented the idea in the 

design of the tower where four inverted femur-like components were employed to 

transfer the tower’s load to the foundation (Rao, 2003). 

In the context of this study, nature inspired structures are referred to as: 

structures inspired from non-biological systems and those inspired from biological 

systems.  Structures inspired from natural physical phenomena such as the soap film, 
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sagging strings/ropes and inverted hanging fabrics fall under the former category. On 

the other hand, structures inspired from human body, animals and plants belong to the 

latter category. A review with some examples belonging to each category is presented 

in the following two sections. 

 

1.2.1 Structures Inspired from Non-Biological Systems 
 

The soap film, the natural catenary shapes of hanging chains/ropes and the 

hanging reversed membranes are among the natural physical forms that inspired the 

design of many engineering structures of the twentieth century. 

From 1965 to 1991 Frei Otto and his interdisciplinary team of architects, 

biologists and engineers carried out studies on structures working on light weight 

principles. Among the structures investigated were those modeled after the “soap film” 

for tension membranes (Lewis, 2005). Soap films are minimal surfaces exhibiting 

proportionality of the energy of surface tension to the area of the surface. This 

illustrates a beautiful example in nature where the principle of minimum energy 

consumption is highlighted in the minimized area of the soap film (Jacobs, 2003). The 

most important requirement in the design of minimal surface membrane structure is the 

fulfillment of the equal stress criteria throughout the surface. Minimal surfaces can 

either be created using physical models or computer methods based on mathematical 

formulation. The Haj terminal at Jeddah International airport in Saudi Arabia is a 

minimal surface tension membrane structure (Bradshaw et al., 2002). 

Antonio Gaudi (Spanish architect, 1852-1926) applied the approach of inverted 

hanging models in the design of his structures. He assembled models of hanging 

chains with small sand bags, serving as point loads. The original shape of the hanging 

chain was changed by the simulated point loads leading to naturally shaped “inverted” 

spires; a frozen inverted model reversed the force nature in the chains from tension to 

compression (Lewis, 2005). 
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The free form shells built by the famous Swiss engineer Heinz Isler (born 1926) 

were inspired from hanging models. Isler applied an experimental method to create a 

square-plan form through pouring a plastic material onto a cloth cover held at the 

corners and supported on a solid surface. When the fabric is evenly covered by the 

plastic material the wooden support was lowered allowing free flow formation of a 

natural physical shape in pure tension. Upside down turning of the solidified model 

gave a shell form in pure compression. Bürgi Garden Centre in Camorino, Grötzingen 

outdoor theatre near Stuttgart are examples of shells designed using the “flowing 

method” (Billington, 2003). 

 

1.2.2 Structures Inspired from Biological Systems 
 

Spider web, honeycomb and seashells are natural biological structures that 

illustrate efficient performance of natural creatures in blending shape and material, 

seeking adaptation during their survival journey. 

Spiders fabricate webs that are resistant to water, rain and sunlight from barely 

visible fibers. Yet a spider fiber is estimated to be five times as strong as an equivalent 

steel wire (Benyus, 1997). Targeting adaptation, natural structures tend to employ 

tension members more efficiently than compression members that have the tendency 

to buckle. Such a feature can be observed in the spider web where maximum tension 

members are employed concentrating compression into localized zones. The web is 

fabricated with a network of tension strands; the spider and the captured prey act as 

localized compression struts. Frei Otto’s Olympic Stadium in Munich, Germany is a 

highly efficient tent structure inspired directly from the spider web (Johnson, 2003). 

Honeycomb is a wax structure containing many hexagonal shaped cells built in 

complete darkness using minimum amount of material. It offers optimal packing shape 

and provides maximum space required to contain the honey and the larvae. Moreover, 

honeycomb structures are very useful panel stiffeners. Combination of these merits in 

one structure led to several applications such as the sandwich panels and the 
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construction of control surfaces of an aircraft where high strength, large dimensions 

and light weight are the main requirements. The internal hidden structure of elevators, 

aircraft wings, tail and many other parts comprise honeycomb structures (Bar-Cohen, 

2006).   

Seashells in nature occur in a variety of type, shape and colour. First traces in 

the long history of studies on seashells can be found in the work of Henry Moseley in 

1838 (Jirapong and Krawczyk, 2003). Most of the work done on seashells focused on 

the mathematical aspects that control the overall geometry. A simple seashell may be 

represented as a surface generated through revolving a cross-section of constant 

shape along a spiral path about the shell axis. Different forms can be generated 

depending on the starting cross-section and the rate of change in its size. Based on 

this formulation, Jirapong and Krawczyk (2003) proposed a mathematical model to 

describe the spiral shell geometry with the objective of generating new architectural 

forms that can be used as input for structural analysis of the system. The model was 

integrated with CAD software that enables generation of new architectural forms (mesh 

models) through merely changing the model parameters. 

 

1.3 Inspiring Source from Plants in Nature 
 

Plants in nature with countless number of shapes and sizes offer a rich source 

of ideas for engineers. Leaves are cantilever shell-like structures whereas stems and 

branches are cellular or tubular structures that act as supporting members. The main 

stem can be thought of as a column member and the branches as cantilever beams 

that support the leaves.  

Unlike the regular and conventional shapes of many man-made structural 

members, plant leaves show more complex shapes through folding, curling and rolling. 

They respond to the applied loads such as wind loads by changing shape thereby 

gaining structural stiffness without adding extra mass. King and Vincent (1996) carried 

out a study on a number of Phormium genotypes to calculate the stiffness with different 
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curl angles using CAD software. They concluded that gain in the structural stiffness of 

plants’ leaf is a function of the leaf curling along and/or folding about the midrib. The 

study did not reveal any correlation between size of the keel (midrib) or thickness of 

leaf and stiffness. 

  Kobayashi et al. (1998) modeled the leaves of hornbeam and beach as plane 

surfaces, with straight parallel folds, using numerical methods and studied their folding 

patterns for applications to areas such as solar panels, light weight antennae for 

satellites, deployable membranes such as tents, clothes or other coverings. 

Balz and Güring (2001) modeled the petal shapes of orchid blossom to study 

the shape-stability behaviour. They argue that blossoms are minimal constructions 

comprising 2% cellulose and 98% water. The double curved surface helps blossoms to 

attain stability in space. Stiffness is achieved from the inner cellular pressure and the 

double curved shell structure. They proposed this kind of structure for deployable or 

temporary buildings made of membranes and erected by air or water pressure. 

De Focatiis and Guest (2002) looked into the deployment of tree leaves to find 

patterns for folding membranes aiming to arrive at structure which can be reduced in 

size for transportation or storage, and then automatically deployed. 

Stuttgart airport terminal 3 in Germany is a modern engineering structure 

inspired from the world of plants; it very much resembles the stem and branches of a 

tree. The structure comprises 18 ‘steel tree’ strut construction that carries the 

enormous mono-pitch roof. Each steel tree takes the form of a big circular steel section 

with several smaller sections branching at different levels to make an overall diameter 

of 18m at 15m height (PERI, 2006). 

 

1.4 The Johannesteijsmannia altifrons 
 

Shells in nature occur in a variety of sizes and shapes; of special interest to this 

study are the shell-like surfaces with folds which can be observed in leaves of many 

plants. This thesis investigates the structural behaviour of doubly curved folded 
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surfaces inspired from a magnificent palm leaf called the Johannesteijsmannia altifrons 

(J. altifrons) for possible application as novel engineering structures. The leaves of J. 

altifrons resemble a cantilevered shell structure with folds extending from the central 

spine. Such combination of shell surface and folds might have contributed to the ability 

of the leaves of J. altifrons to extend to a span of about 6 m. Apart from such positive 

characteristic, from the point of view of load carrying capacity, existence of folds has 

also added element of aesthetic to the natural surface due to the interplay of shadows 

caused by the folds. Folded surfaces form a special category of shell structures; a 

corrugated sheet has better structural performance than a plane sheet of the same 

material, thickness and coverage area. Existence of folds on the surface adds to its 

overall depth thereby enhancing the stiffness with respect to bending of the structure. 

The inspiring source of this study, the magnificent leaf of J. altifrons belongs to 

the palm group (Fig. 1.2). In biological taxonomy it falls with other three species under 

the Johannesteijsmannia genus of forest palms. The other three species are 

Johannesteijsmannia lanceolata, Johannesteijsmannia dransfield and 

Johannesteijsmannia perakensis. They are native to southern Thailand, Peninsular 

Malaysia, Sumatra and western Borneo. The J. altifrons is the only species that is 

widely spread in southern Thailand, Peninsular Malaysia, western Sarawak, western 

Kalimantan and Sumatra. The other three species are mostly available in Peninsular 

Malaysia. The J. altifrons is also known as the “Joey Palm” or the “Diamond Joey” 

referring to its diamond-like shape. It is one of the most stunning and spectacular 

plants and the finest among the palm family. The habitat of the J. altifrons is the 

mountain rainforest slopes and ridge-tops that are about 500 m (1600 ft) high. Shady, 

wind protected subtropical and tropical regions are ideal for the Joey growth. It also 

shows good tolerance to cool climate. Shady location, abundant water, high humidity, 

warm temperature, well drained and rich soil that is slightly acidic are the favourable 

local conditions for the Joey growth and survival. The plant is very sensitive to root 

disturbance. When potting, removal of old soil and root trimming should be avoided as 
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these may lead to the plant death. Loss of habitat due to logging, deforestation, usage 

of the leaves for roof thatching and the seeds for export is threatening the existence of 

the four species. Lim and Whitmore (2000) reported that despite the widespread 

availability of the J. altifrons compared to the other species, it is considered under 

threat. Field observations over the last decade show a drastic drop in the J. altifrons 

population amounting to about quarter the original figure (Moore, 2003).  In Sarawak, 

the Joey is totally protected   and   is also listed   under CITES (Convention on 

International Trade in Endangered Species of Wild Flora and Fauna). The Joey leaves 

also resemble the crocodile tail; hence the local name “ekor buaya” (Chai, 1993). 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2: The Magnificent Palm – Johannesteijsmannia altifrons 
(http://davesgarden.com/pf/showimage/23678/ - Accessed 24th June 2007) 
 

 

The Joey is a medium size trunk-less palm with large diamond shaped 

undivided, leathery leaves that are about 3 m high when mature but, at times, may 

reach a height of about 6 m (Fig. 1.3). The giant leaves are characterized with serrated 

edges and approximately parallel pleats along their surface (Fig. 1.4). In engineering 

terms, the Joey looks like a cantilevered shell structure supported over the central 

spine. The leaf can be described as a rhomboid double curved or hyperbolic parabloid 

surface with nearly parallel folds extending throughout the leaf length. Combination of 
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these distinctive features qualifies the Joey as an ideal, highly competent natural shell 

illustrating striking performance in merging shape and material to enhance the load 

carrying capacity. 

 

 

 

 

 

 

 

 

 

 
Fig. 1.3: Heights Reached by the Johannesteijsmannia altifrons 

 (http://www.pacsoa.org.au/palms/Johannesteijsmannia/altifrons.html -  
Accessed 24th June 2007) 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.4: Picture Showing Serrated Edge and 

Fold Lines on the Johannesteijsmannia altifrons  
(http://www.lundkvistpalmgarden.com/Johannesteijsmannia.html - 

Accessed 24th June 2007) 
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1.5 Problem Statement 
 
 As mentioned in the previous section, the magnificent leaves of J. altifrons 

reach a height of about 3 m when mature and sometimes extraordinary height of about 

6 m. The shape/curvature and folds combination is likely to play a major role towards 

the structural behaviour of this natural system that has very small thickness relative to 

its surface area.  Despite the modern technological advancements, such an efficient 

structural performance is generally difficult – yet not impossible - to achieve in man-

made structures. Moreover, the existence of folds on the double curved surface of the 

J. altifrons gives a very pleasing appearance due to the interplay of shadows caused 

by the folds. Thus, the desired aspects of combining the structural efficiency and 

architectural beauty generally targeted in engineering structures are superbly displayed 

by the wonderful J. altifrons.  As such, this study is carried out to investigate the 

geometry (shape and folds) influence towards the structural behaviour of the leaves.  

Comprehensive understanding of the structural behaviour of the leaves may lead to 

new structural forms that fulfill both the structural as well as the architectural 

requirements in terms of material usage and functionality. Moreover, this research work 

is the first to deal with doubly curved surfaces with folds; so far folded surfaces have 

been limited to flat and single curved shapes as will be seen in the literature review 

(Chapter 2).  

 

1.6 Research Objectives 
 

The focus of this research is to study the geometry (shape and folds) influence 

on the structural behaviour of the leaf of J. altifrons for possible engineering 

applications comprising double curved surfaces with folds.  Therefore, the objectives 

are as follows: 
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i. To establish a modified algorithm based on the actual geometry of imaging 

setup for surface data acquisition of 3D objects derived from the conventional 

structured lighting method. 

ii. To establish CAD based methods/procedures for modeling double curved 

surfaces with folds inspired from the leaf of J. altifrons. 

iii. To investigate the influence of geometry on the structural behaviour of two units 

of J. altifrons leaves in their actual size and form. In this regard finite element 

analysis using orthotropic organic material (wood) is targeted.  

iv. To investigate the structural behaviour of CAD generated, scaled-up, concrete 

models inspired from the J. altifrons preserving the actual double curved shape. 

Models with different number of folds are to be investigated using finite element 

analysis with the use of conventional construction material (concrete). 

 

1.7 Scope of Research 
 

This study is of interdisciplinary nature, it touches the disciplines of biomimicry, 

image-based measurements and structural engineering. The study subject (J. altifrons) 

is inspired from nature. The research focuses on the geometry (shape and folds) 

aspects of the leaf towards its structural behaviour; the actual leaf material is not 

considered in this study. The leaf shape is mimicked through optical/image based 

measurements using structured lighting method. Structural behaviour of two units of J. 

altifrons leaves is investigated under self weight condition using wood material and 

static analysis; analysis under imposed loads and dynamic conditions are not covered. 

Scaled up models inspired from the J. altifrons, for realistic applications, are generated 

using CAD based procedures that are developed during the course of this research. 

Static analysis is carried out under self weight conditions only using concrete material; 

imposed loads and dynamic analysis are not considered. 
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1.8 Thesis Layout 
 

This thesis is complied in eight chapters. A brief outline of each chapter is given 

below: 

• Chapter 1 describes the general overview and background of the research. A 

brief description of the study subject (J. altifrons) is also presented. This is, 

then, followed by the research objectives, problem statement, scope of 

research and the thesis layout. 

• Chapter 2 presents the literature review on the subjects related to the research 

study.  Shell and folded surfaces in nature and man-made folded structures are 

reviewed. Highlights on the research status and recent work on folded plate 

structures are also given. 

• Chapter 3 introduces the idea of Source Referenced Classification (SRC) of the 

technological achievements inspired from biological systems. A method of 

cataloguing the different technological achievements inspired from nature is 

presented with illustrative examples. 

• Chapter 4 deals with measurement aspects of the research subject. It presents 

the methodology followed in capturing the 3D surface data of the leaf of J. 

altifrons. Description of the conventional structured lighting method along with a 

modified version of the method to improve its outcome is introduced in this 

chapter. Verification of the proposed method is also carried out through 

measuring 3D objects of known dimensions. Measurement results and the 3D 

models of two units (Leaf (A) and Leaf (B)) of the J. altifrons are presented. 

These, represent the necessary input data to the finite element analysis of the 

leaves presented in Chapter 6.  

• Chapter 5 presents CAD based procedures, developed during the course of the 

study, for generating double curved folded surfaces inspired from nature. It 

introduces stepwise CAD modeling procedures for generating doubly curved 
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folded surfaces with a variety of shapes. A procedure for generating leaf like 

surfaces with folds based on the natural leaf of J. altifrons is also presented. 

These procedures are applied to generate the models investigated in Chapter 

7. 

• Chapter 6 presents the finite element analysis aspects of Leaf (A) and Leaf (B). 

Necessary modeling aspects under finite element analysis software 

(MIDAS/Gen) of the stem and surface with regard to section properties, 

material, loading and support condition are illustrated. Results of the analysis of 

Leaf (A) and Leaf (B) are presented and discussed in this chapter. 

• Chapter 7 consists of description on the generation of scaled-up versions 

inspired from Leaf (B) for realistic applications. Models with 4 and 6 folds, each 

in three different fold depths (10 cm, 15 cm and 20 cm) are analysed. Models 

details in terms of geometry and material are also presented. Results and 

discussion of finite element analysis using light weight concrete that fulfill 

important practical requirements are also presented. 

• Chapter 8 closes the study with conclusion and a list of recommendations. 
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CHAPTER 2 
LITERATURE REVIEW 

 
 

2.1 Shell Structures 
 

Shell structures are curved and warped or folded surfaces whose thicknesses 

are small compared to their other dimensions (Christiansen, 1987). Shells are highly 

efficient structures that possess several merits over conventional engineering 

structures of linear geometrical shapes. Shell structures of different shapes and 

materials are widely applied to serve many purposes. Besides their application as 

efficient roofing systems covering huge spaces, shells are also found in many industrial 

and engineering products such as ship hulls, car bodies, aircraft bodies, pipes, piles, 

dams, tunnels, off shore structures, chimneys, towers, bridges, storage tanks and 

pressure vessels. Concrete is the most widely used material in shell construction; 

however other materials have also been used such as welded steel plates, metal 

decking, plywood, multiple layer timber decks, and fiberglass-reinforced plastic. 

Man-made as well as natural surface structures can be broadly classified into 

two categories namely ‘flexible shells’ and ‘rigid shells’ (Schueller, 1996). Flexible, 

lightweight tensile membrane structures fall under the first category. Rigid shells are 

further classified as thin and thick shells, thin shells resist loads in pure membrane and 

shear action whereas thick shells provide flexural stiffness. 

 In view of the inspiring source of this study and the associated doubly curved 

surface with folds, this chapter covers shell or surface structures in general, folded 

surface/plate structures and a review on the recent works carried out on folded plates 

and folded plate structures. 

 

2.1.1 Shell Structures in Nature 
 

Shapes, mechanisms and processes found in nature have always been a rich 

source of inspiration for many technological and engineering successful applications. 

The inherent complicated multilevel behaviour, with respect to shape and material, of 
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natural systems in their adaptive response towards external environmental impacts that 

in many cases are harsh is difficult to understand at a full scale. Geometry in nature 

has always been the focus of many researchers who tried to understand and interpret 

conformity and order of proportions employing numbers, lines, surfaces and shapes. 

Many natural phenomena in plants and animals can be explained with the help of 

Fibonacci numbers, some examples are spirals of shells, number of petals on some 

flowers, and leaf arrangement in plants (Knott, 2006). 

Schueller (1996) discussed surface structures in nature both at the micro-level 

as well as the macro-level. At the microscopic level, we have skeletal shell structures of 

the diatoms (marine algae) and radiolaria (unicellular organisms). These skeletons 

occur in countless number of shapes and surface structures that disclose complex and 

delicate geometry. They illustrate nature’s correspondence to architectural 

constructions; they also illustrate nature’s implementation of the concept of basic 

building blocks such as using minimum solid ribs targeting least weight; properties of 

triangulated, stressed-skin shells are found in some radiolaria. On the other hand, 

shells of eggs, snails, turtles, mussels, skulls, animal’s hollow horns (e.g. goat, sheep), 

clay nests of ovenbirds, nests of weaverbirds, seashells, plant leaves, etc. are among 

nature’s surface structures at the macro-level (Fig. 2.1). 

The above mentioned surface structures represent just a little of nature’s 

collection which inspired many research work particularly at the macro-level. Choong 

and Voon (2005) studied the shape of the egg shell through investigating the strength 

and rigidity versus shells of elliptical and spherical shapes.  The ample spiral shapes of 

seashells have always been the focus of many researchers as can be seen from the 

work of Jirapong and Krawczyk (2003); Selcuk et al. (2005); Fowler et al. (1992); Lim 

2003). Studies related to botanical surfaces considered several aspects such as 

photosynthesis process, mechanisms, shape influence on the structural behaviour and 

3D geometry modeling. Gust (1996) focused on the photosynthesis process for solar 

energy harvesting, medical imaging and many other applications. De Focatiis and 
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Fig. 2.1: Surfaces in Nature (Schueller, 1996) 

Guest (2002); Kobayashi et al. (1998) focused on the folding mechanism aspects of 

some plant leaves for applications like deployable structures such as membranes and 

tents, solar panels and light weight antennae and satellites. King and Vincent (1996) 

studied the influence of a leaf shape in terms of curl and fold on its structural stiffness; 

Ng (2003) modeled the folded surface of the leaf of J. altifrons to study the structural 

merits of this beautiful shell surface in presence of folds – further elaboration in relation 

to the current study is given in Section 2.4; Balz and Güring (2001) introduced the idea 

of deployable or temporary structures – made of membrane and erected with air or 

water pressure - based on the shape stability behaviour of the petal shapes of orchids. 

Dimian (1997) introduced a solution for generating computer based models of folded 

leaves of different shapes. 
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Continuing technological advancements enabled scientists and engineers to 

unveil secrets of more biological systems for mimicking purposes. However, we still 

remain limited in transferring the aspects we learn in the way they exactly take place in 

nature. Mimosa pudica is a folding plant with leaves formed of very tiny leaflets that fold 

rapidly when touched (Armstrong, 2006); on the other hand lies the plant leaves that 

curl, fold and add material where necessary to withstand the wind effects and to 

expose as much surface area as possible to light for the vital photosynthesis process 

(King and Vincent, 1996). The first example reveals an instantaneous natural response 

to external impacts whereas the second example reveals a response that takes place 

over a longer period of time. However, despite the advancements made in the analysis, 

design, material development, and manufacturing or construction methods, we remain 

far from being able to design structures that can show such a response. When we 

design, very often we consider the worst load case scenario a structure might face and 

place material that can sustain the likely adverse effects accordingly. Selection is 

always made based on suitable shape that remains the same throughout the life time 

of the structure; we are not yet able to design structures that can alter shape and/or 

add material where and when needed like the dynamic response of natural systems. 

 

2.1.2 Characteristics of Surface Structures 
 

A surface structure, be it rigid or flexible, is a form resistant structure such as 

folded plates, rigid shells and tensile membranes (Christiansen, 1987). This is the main 

feature that discerns surface structures from the conventional skeletal ones. Although, 

a pressure-vessel is made of physical components that are riveted, bolted or welded 

together, yet the overall structure has to be of continuous nature to contain a fluid at 

pressure. The ancient masonry dome or vault is not continuous at the level of its 

individual building blocks that may not necessarily be cemented together, yet the 

overall dome structure is in a state of continuous compression that holds the separate 

masonry blocks together. It is to be highlighted that the structural continuity of surface 
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structures is displayed through their ability in transmitting forces in different directions 

within the surface of the shell. On the other hand, skeletal structures such as braced 

frames transmit the forces along their individual structural components e.g. beams and 

columns (Calladine, 1983). 

A shell or surface structure is a term that is inherently related to nature 

expressing the characteristic of dynamic response found in natural systems. The soap 

film and the natural flowing surface of a suspended membrane are among the driving 

forces in shaping many of the successful engineering surface structures (refer Section 

1.2.1). These natural phenomena lead to minimal surface structures with economy in 

material and energy. In order to remain in tension, flexible membrane structures 

change shape in response to changes in live load. Surfaces obtained on flow principles 

(Billington, 2003); (Lewis, 2005) are in pure tension when hanging; an inverted frozen 

version of same become surface structures under pure compression. However, certain 

shapes of rigid shells result in compression, tension as well as tangential shear 

stresses. Tension in concrete shells can be taken care of by suitable steel 

reinforcement. A full compression response can be achieved through prestressing the 

shell. To avoid bending, direct shear and torsion a shell has to be quite thin e.g. egg 

shell; yet it has to be thick enough to avoid any buckling. Doubly curved thin shells 

show outstanding structural behaviour to withstand uniform loading in direct force 

action within its surface plane (Schueller, 1996). Presence of folds on a thin shell 

surface imparts high structural performance as demonstrated by the natural folded 

surface of the J. altifrons. 

A shell should not necessarily be a continuous solid surface. It may take the 

form of precast ribbed shell units with very thin panels or may be a network of 

members (Schueller, 1996). The leaf of J. altifrons, considered in this study, is a 

discontinuous doubly curved folded surface; the thin curved strips between successive 

ridge and valley lines may be visualized as long continuous shell strips which, at a 

smaller scale, may assumed to be a curved assembly of flat plate elements in a row.  
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Reinforced concrete, wood, steel, aluminum, plastic and ceramic are the most 

widely used materials in making surface structures. In case of reinforced concrete 

surface structures, material cost is relatively low; the very high span to thickness ratio 

of shells, compared to skeletal structures, render them very economical in terms of 

material cost. The complicated shape of shells, compared to conventional prismatic 

skeletal elements, is the dominating cost factor especially in countries where labour 

cost is high. Shells generally require labour intensive formwork to shape the end 

product. Reinforced concrete surface structures consisting of self supporting parts can 

be constructed using segmental type reusable formwork (Schueller, 1996). 

 

2.1.3 Advantages of Shell Structures 
 

Structural simplicity, significance of form and structural economy and safety are 

major advantages of shells. The thin continuous nature of shell element between inside 

and outside the structure leads to the same internal and external shape; this shape has 

to follow strict laws of static in order to be both safe and economical.  The natural 

outstanding strength of shell structures is a function of their curved shape and 

membrane action; synclastic shells (domes) and anticlastic shells (hyperbolic 

paraboloids) are strong thin shells of wide application.  Shell structures are very useful 

to span huge areas where internal supports are not desirable to provide large open, 

unobstructed interior spaces. Highly efficient thin shells result in material economy, 

remarkable reduction in cost is achieved in case of concrete shells; the very special 

characteristic of concrete, being inexpensive and easily cast into compound curves 

render them very suitable and highly economical in shell construction. Reinforced 

concrete shells, when properly designed and constructed, show outstanding strength 

and safety. Monolithic domes were reported to resist hurricanes and fires; and are 
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widely considered to be strong enough to withstand F5 tornadoes∗ (Wickipedia, 

2007a). 

2.1.4 Behaviour of Shell Structures 
 

Shells are characterized by their three dimensional load-carrying behaviour 

determined by their geometry, boundary and support conditions, and the nature of the 

applied loads. Simplified structural behaviour of shell structures is derived through 

modeling a shape that will transfer the applied loads into direct forces in the middle 

surface of the shell called a membrane surface. Stresses in the membrane surface are 

membrane state of stresses that does not include bending about any axis in the shell 

(membrane hypothesis). In-plane compressive and shear forces are likely to develop, 

hence a shell must have some stiffness in order to remain stable and retain its shape. 

Shells are usually bounded by supporting members and edge members, provided to 

stiffen the shell and distribute or carry loads in composite action with the shell 

(Christiansen, 1987). Static equilibrium of shells according to the membrane hypothesis 

considering all bending, twisting and normal shear-stress resultants to be zero 

throughout the shell is dealt with in detail by (Calladine, 1983). Methods of preliminary 

design of different kinds of shells and folded plates along with some examples were 

given by Ketchum (1987). 

In contrast to the simplified behaviour based on the membrane hypothesis, 

loads on shells are carried by a combination of ‘stretching’ and ‘bending’ action in 

general (Calladine, 1983). Treatment of the subject of shell behaviour considering 

these two effects are given in Billington (1982); Calladine (1983). The approach has 

been based on considering two distinct surfaces that are arranged to sustain the 

‘stretching’ and ‘bending’ stress resultants, respectively. The stretching surface has 

been considered to be identical to a shell analysed according to the membrane 

                                                           
∗ According to Fujita scale, or Fujita-Pearson scale, F5 tornado is classified as a violent tornado of potential damage 

with a speed range of 216-318 mph (416-510 km/h). It shows terrific power in destroying frame structures, debarking 
trees and badly damaging reinforced concrete structures. 
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hypothesis whereas the behaviour of the bending surface has been closely related to 

that of a flat plate. 

Fig. 2.2 shows a shell element under normal and tangential loading of intensity 

p, qx and qy. Nx and Ny are the membrane direct forces whereas Nxy and Nyx are the 

membrane shear forces. On the other hand, Qx and Qy are the out of plane shear 

whereas Mx, My, Mxy and Myx (=Mxy) are the out of plane bending moments and twisting 

moments, respectively. 
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 Fig. 2.2: In-Plane and Out of Plane Forces on a Shell Element (Calladine, 1983) 

 

2.1.5 Classification of Shell Systems 
 

Shell systems are generally classified based on two main features namely 

Gaussian curvature and geometrical shapes. 

Classification based on Gaussian curvature is illustrated in Fig. 2.3. Synclastic 

shells are formed by two families of bent lines curving in the same direction, also 

known as shells of positive Gaussian curvature such as spherical domes and elliptic 

paraboloids. Shells formed by only one family of curves are shells of zero Gaussian 

curvature; some examples are cylinders and cones. Shells formed by two families of 

curves each in opposite direction are called anticlastic shells; these are shells of 

negative Gaussian curvature such as hyperbolic paraboloids and hyperbolas of 
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revolution. Gaussian curvature (K) of a surface is a function of the principal curvatures 

of the curves generating that surface as illustrated by Eq. 2.1 (Billington, 1982). 
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where rx and ry are the radii of curvature of the adjacent sides of the shell (Fig. 2.3). 
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Fig. 2.3: Definition of Curvature (Billington, 1982) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

The other useful classification categorizes shells into rotational and translational 

systems. A surface generated by translating a plane curve over another plane curve is 

a shell of translation (Fig. 2.4(a)); some examples are elliptic paraboloids and 

hyperbolic paraboloids. On the other hand, a plane curve rotated about an axis lying in 

the plane of the curve generates a shell of revolution such as domes and cylindrical 

tanks (Fig. 2.4 (b)). Classification of shell structures by geometry is given in Table 2.1. 

In view of the above classification systems, we observe that the surface of the 

leaf of J. altifrons cannot, distinctively be placed in either of the above mentioned 

categories. In fact the J. altifrons is a combination of doubly curved surface (synclastic 

or anticlastic) surface with approximately parallel folds extending from the central spine 

(Figs. 1.2, 1.3 and 1.4). As such, this beautiful combination of surfaces presented by 

nature, perhaps, partially contributed for such leaves to sometimes grow to a height of 
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