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PEMISAHAN ASID HIDROKLORIK DAN GLUKOSA  
MENGGUNAKAN ELEKTRODIALISIS 

 

ABSTRAK 

 

 Elektrodialisis (ED) merupakan kaedah yang berpotensi untuk pemisahan dan 

pemekatan asid hidroklorik manakala glukosa yang tidak bertindakbalas diguna 

semula. Dua bahagian eksperimen dijalankan; bahagian A dan bahagian B. 

Eksperimen bahagian A dijalankan menggunakan campuran asid hidroklorik dan 

glukosa dengan kepekatan asid hidroklorik yang berlainan di dalam aliran suapan dan 

produk; voltan yang dialirkan dan kadar aliran suapan menggunakan membran 

pertukaran anion (PC Acid 60) dan membran pertukaran kation (PC-SK) dalam mod 

kelompok. Parameter utama yang menentukan keupayaan proses adalah jangka masa 

pemisahan lengkap, paras maksimum perolehan semula asid, fluk purata produk, 

kecekapan arus dan penggunaan tenaga.  

 

Eksperimen bahagian B, dijalankan berdasarkan parameter yang dipilih 

daripada bahagian A, iaitu kepekatan asid hidroklorik di dalam aliran suapan, voltan 

yang dialirkan dan kadar aliran suapan, di bawah parameter tetap iaitu kepekatan asid 

hidroklorik (0.1M) di dalam aliran produk dan kepekatan glukosa (5g/L) di dalam aliran 

masuk. Ini dilakukan menggunakan rekabentuk ujikaji (DoE). Rekabentuk ujikaji 

gabungan pusat (CCD) dan metodologi permukaan sambutan (RSM) telah digunakan 

untuk mendapatkan nilai parameter yang optimum.  

 

Kesimpulannya dibawah nilai optimum (0.1M HCl di dalam aliran suapan dan 

produk, 1.47 mL/s kadar aliran suapan, voltan yang dialirkan sebanyak 21.21V dan 

masa pensampelan  100 min), keputusan terbaik bagi penggunaan tenaga, peratusan 

perolehan semula dan fluk purata produk ialah 37.93 kW.h, 97.4% dan 5.3 kmol/m2.s. 
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SEPARATION OF HYDROCHLORIC ACID AND  
GLUCOSE USING ELETRODIALYSIS 

 

ABSTRACT 

 

Electrodialysis (ED) is a method that shows a good potential to separate and 

concentrate hydrochloric acid while unreacted glucose are partially recycled. Two 

sections of experiment had been done; section A and section B. Section A of the 

experiment was carried out using hydrochloric acid and glucose mixture with different 

concentration of hydrochloric acid in feed and product stream; voltage supplied and 

feed flow rate using anion-exchange membrane (PC Acid 60) and cation-exchange 

membrane (PC-SK) in batch mode. The main parameters which quantify the 

performance of the process are the duration of completing the separation, the 

maximum recovery level of the acid, the average product flux, the current efficiency and 

the energy consumption.  

 

Section B of the experiment was done based on chosen effects  from section A, 

which were the concentration of  hydrochloric acid in feed stream, the voltage supplied 

and the feed flow rate, under constant parameters of concentration hydrochloric acid 

(0.1M) in product stream and glucose concentration (5 g/l) in feed stream. This had 

been done using design of experiment (DoE). A central composite design (CCD) and 

response surface methodology (RSM) were used to obtain the optimum values of the 

parameters. 

 

It can be conclude that under optimum conditions (0.1M HCl in feed and product 

stream, 1.47 mL/s of feed flow rate,voltage supplied of 21.21V and sampling time of 

100 min), the best results of energy consumption, recovery percentage and average 

flux were 37.93kW.h, 97.4% and 5.3kmol/m2.s.    
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CHAPTER ONE 
 

INTRODUCTION 
 

1.1     Research background 

1.1.1 Membrane technology 

Nowadays “membrane” has been extended to describe a thin flexible sheet or 

film, acting as a selective boundary between two phases because of its semi 

permeable properties. Membrane exists in solid and liquid. It functions as a separation 

agent that is very selective based on the difference of diffusivity coefficient, electric 

current or solubility. The membrane can be defined essentially as a barrier, which 

separates two phases and restrict transport of various chemicals in a selective manner 

(Wenten, 2002). 

 

Membrane technology began in 1960. Aided substantially by several key 

technical breakthroughs, membrane processes had come to compete favorably with 

more established technologies in such areas such as water desalting, water purification 

and gas separation. Several new membrane based industries have been established, 

and membrane research and development (R&D) is now being intensely pursued in the 

principal industrial countries (Torrey, 1984). 

 

Membrane separations commonly used for water purification or other liquid 

processing. The driving force of the separation depends on the type of the membrane 

separation. Pressure-driven membrane filtration, also known as membrane filtration, 

included microfiltration, ultrafiltration, nanofiltration and reverse osmosis, and used 

pressure as a driving force, whereas the electrical driving force is used in 

electrodialysis (ED) and electrodeionization. Historically, membrane separation 

processes or systems were not considered cost effective for water treatment due to the 

adverse impacts that membrane scaling, membrane fouling, membrane degradation 
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and the efficiency of removing solutes from aqueous water streams. Advancements in 

technology have now made membrane separation a more commercially viable 

technology for treating aqueous feed streams suitable for use in industrial processes 

(Zeiher et al., 2005). 

 

ED is an electrochemical membrane separation technique for ionic solutions 

that has been used in industry for several decades. It can be used in the separation 

and concentration of salts, acids, and bases from aqueous solutions, the separation of 

monovalent ions from multivalent ions, and the separation of ionic compounds from 

uncharged molecules. It can be used for either electrolyte reduction in feed streams or 

recovery of ions from dilute streams. Industrial applications encompass several 

industries and include the production of potable water from brackish water, removal of 

metals from wastewater, demineralization of whey, deacidification of fruit juices, and 

the removal of organic acids from fermentation broth (Farrell et al., 2003). ED 

separation using of ion-exchange membranes was different from those involving 

ultrafiltration (UF) and reverse osmosis (RO) membranes: UF membranes permit 

electrolyte and low molecular weight (MW) organic solutes to pass through; while RO 

membranes reject all components apart from pure water (Koide et al., 2004). 

 

1.1.2  Membrane potential and its current status 

 Probably the leading concern for chemical engineers when evaluating a novel 

process was the process cost relative to alternative processes performing the same 

task. While there were a few examples in which the economics of the process have 

been reported. ED is reported to have superior economics compared to the existing 

technology, depending on the specific application (Chukwu et al., 1999; Lindheimer et 

al., 1993; Onuki et al., 2000). 
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The ion exchange membrane has been applied in ED. During the last 50 years, 

ion exchange membranes have evolved from a laboratory tool to industrial products 

with significant technical and commercial impact. Today ion exchange membranes 

were successfully applied for desalination of sea and brackish water and for treated 

industrial effluents. They are efficiently used for the concentration or separation of food 

and pharmaceutical products containing ionic species as well as the manufacture of 

basic chemical products. The evolvement of an ion exchange membrane does not only 

make the process cleaner and more energy-efficient but also recovers useful effluents 

that were now going to wastes (Xu, 2005). 

 

However, the use of electrodialysis in purification and reconcentration of spent 

acid has been limited by the deficiencies of commercial membranes: they suffered from 

an important proton leakage through the anion exchange membrane (AEM). This 

limited the concentration capacity and a poor selectivity of the cation exchange 

membrane (CEM), which affected the proton/bivalent cation separation. In recent 

years, new AEM’s with lower proton leakage have appeared on the market. These 

membranes are necessary in order to improve the performance of the electrodialysis 

process for spent acid recovery (Boucher et al., 1997). Therefore, the choice of 

membrane type will play an important role in this study. 

 

1.2 Problem statement 

From the viewpoints of both environmental protection and economy, the usage 

of waste can reduce the pollution (Blackburn, 1999). Waste acid solutions are among 

the most troublesome waste products produced by a manufacturing process and one of 

the most expensive to dispose of. One of the examples takes place in palm oil industry. 

In order to produce ethanol from palm solid wastes, the acid hydrolysis process is 

needed at the first place. However, the glucose produced had to separate from 

hydrochloric acid because the bacteria used in fermentation process could not life 
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longer in acidic media. After the separation and recovery of the concentrated 

hydrochloric acid, the sugars are suitable for further refinement and processing. 

 

Recognized the cost of acid and chemicals for neutralized the acid, the study of 

separation acid from the hydrolysis mixture have been investigated by many 

researchers (Forster et. al, 1980; Boeteng, 1991). Although the most frequently 

employed technique for the disposal of spent acid residues was the neutralization-

precipitation-discharge sequence, this practice was increasingly being questioned 

because of the environmental consequences related to the stocking of toxic solid waste 

(Boeteng, 1991). Other methods used were crystallization, solvent extraction and 

membrane technology. The disadvantages of crystallization method were due to the 

low yield; high chemical costs and waste production. While, solvent extraction is energy 

intensive, leads to problems of toxic waste disposal, and gives a product that requires 

further purification. Thus, new extraction technologies need to be established for 

enhancing recovery yields and reducing cost and environmental impact (Yao et al., 

1994). 

 

The modularity and profitability of membrane technology in a small scale which 

offered by the third process is a well suites technique to the treatment of the pollution. 

The principal advantages of membrane processes compared to other separation 

processes are low energy consumption, simplicity and environmental friendliness 

(Wenten, 2002). The technology and innovation of membrane separation is rapidly 

growth. As a result, many different membrane separation processes have been 

developed and new processes are constantly emerging, which includes, besides other 

techniques, microfiltration, reverse osmosis and electrodialysis (ED). The use of ED, on 

the treatment of solutions containing complexes, has shown that this technique is 

effective not only to ions concentration but also to their separation (Rodrigues et al., 

2006). 
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ED was a feasible method for separation of acid from glucose. Removal (and 

recycling) of this acid from the products requires a separation process for which a 

membrane process (electrodialysis) has been proposed. Differ from other membrane 

separation processes such as ultrafiltration and reverse osmosis; ED process 

separates ions in aqueous solutions by exploiting the difference in electrical charges 

between them, instead of particle size. Therefore, ED can separate not only cations 

from anions, but also ions with the same charge but different valences, which are 

termed of permselectivity. The permselectivity is closely correlated to the characteristic 

of the ion exchange membranes and plays a very important role in the ED process, 

although other parameters, such as ion charge and mobility, solution conductivity, 

relative concentrations, and applied voltage also influenced the efficiency of the 

process. Therefore, there was great significance in using high-permselectivity ion 

exchange membranes in ED processes (Peng et al., 2003).  

 

ED was a technology that is well-suited for pollution prevention exploitation. It 

had the capability of separated ionic chemicals from nonionic chemicals in process or 

waste streams to achieve product purity or eliminate wastes, concentrated the 

separated chemicals relative to concentration in the initial process or waste streams to 

aid in reuse of the chemicals and being used as a reactor, both electrolytic and 

otherwise, to convert chemicals at high efficiencies to more desirable products. This 

technology did not required chemicals and was simple to operate. It adapted to no-

continuous feed supplied and different load. Besides, it was not very dependent on 

temperature (Blackburn, 1999). The product could be concentrated up to a certain 

amount together with the separation process (Thang et al., 2005). Further, ED had the 

capability to meet these function simultaneously in a single equipment assembly. It 

accomplished these tasks with low levels of pollution generation and high energy 

efficiencies relative to current technologies (Mohammadi et al., 2005).  

 



 6 
 

In spite of the advantages of ED, there were some problems can limit the 

efficiencies and operation of separation technologies using electrodialysis. The first 

problem is regarding the fouling which is become the most important limitations in ED 

processes. The fouling build-up can reduce the performance of the ED process by 

increasing the resistance and can eventually lead to membrane integrity alteration. 

Under certain conditions, fouling and integrity alterations are irreversible and 

membranes must be replaced. Researches on avoiding or preventing fouling are study 

in order to reduce the cost of cleaning and membrane replacement which is extremely 

expensive. Fouling is essentially caused by deposition of foulants on the membrane 

surfaces such as organics, minerals, colloids, biomass and particles causing 

deterioration in the membrane performance, in terms of flux decline and increase in the 

electrical resistance. Besides, the fouling sometimes causes a loss in selectivity of the 

membrane. If the fouling is irreversible, the membranes must be changed frequently, 

adding to the increased energy cost caused by fouling (Morantes, 2004). 

 

Second problem involved the concentrations of solutions which also affected 

the membrane resistance. A marked increase in fouling was observed when 

approaching the saturation concentration (Lindstrand et al., 2000). Membrane fouling 

easily occurred on the anion exchange membrane more than the cation exchange 

membrane. It was caused by the precipitation of colloids mostly on the anion selectivity 

membrane because the colloids are usually charged negatively. Particularly, fouling in 

the biological process was caused by organic compounds in the fermentation broth. In 

order to minimize fouling, the selection of suitable membrane (Nikbakht et.al, 2007) 

pre-treatment of foulants and optimization of operating condition, etc is needed (Kim 

and Moon, 2001). 

 

Another problem ; ideally, the separation of hydrochloric acid from the sugar by 

electrodialysis should provide a maximum yield of recovered acid at maximum 
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concentration with minimum power consumption using minimum membrane area. Most 

of experimental results made it obvious that these conditions cannot be met 

simultaneously. At the highest current efficiencies and, thus, the minimum membrane 

area, the final acid concentration in the concentration was too low. At the highest 

concentration of acid, the percentage of acid transferred decreased, and power 

consumption and membrane area increased (Goldstein, 1993). 

 

In order to solve these problems, several studies been approached. In the case 

of electrodialysis which is conducted to a solution containing organic substances as the 

solution to be treated using an ion-exchange membrane, periodical membrane washing 

is conducted with an alkaline solution for the purpose of removing fouling substances 

stuck in the ion-exchange membrane in order to maintain a stable operation for a long 

period (Aritomi et al., 1996). Many approaches have been examined to minimize 

fouling during membrane processes. This includes pretreatment of feed solution, 

turbulence in the compartment, optimization of process conditions and the modification 

of the membrane properties. However, relevant cleaning-in- place (CIP) is still need in 

practical processes although all the said methods can reduce fouling to some extent. 

Consequently, several cleaning methods including hydraulic and chemical cleaning 

methods have been use effectively. Consider to all the problems; the use of 

electrodialysis reversal in this study which can avoid membrane fouling is implemented. 

 

Beside that, a suitable membrane for the ED process can reduce the power 

consumption and achieve a stable long-term operation without membrane fouling. In 

general, the electrical resistance of ion-exchange membranes is one of the important 

characteristics that determine the energy requirement and membrane area needed for 

the ED process. A low electrical resistance membrane is required for the process to be 

operated at low energy consumption (Kim et al., 2001). For that reason, the membrane 

used in this study, is based on its low resistance and had been considered the 
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approach to obtain high efficiencies by electrodialysis in acid medium. Consider the 

high permeability of acids through standard anion exchange membranes; PC Acid 60 is 

used together with cation exchange membrane; PC SK, in this separation process.  

 

To improve the ED stack, the electrodialysis reversal (EDR) had been used. It 

can be enhanced by periodically reversing the polarity of the electrodes that reverse 

the direction of ion movement within the membrane stack. The dilute stream becomes 

the concentrate stream and vice versa. The reversal process is useful in breaking up 

and flushing out scales, slime and other deposits in the cells before they could build up 

and created a problem. EDR had an advantage with self-cleaning membranes, and the 

ability to easily disassemble membrane stacks for hand cleaning (Lee et al., 2002). 

 

1.3 Objectives of the research 

The goals of this project are:  

a) To determine the effects of hydrochloric acid concentration in feed and product 

stream, the voltage supplied and feed flow rate on separation process 

performance of acid-glucose solution. 

 

b) To characterize an EDR by means of the determination the optimum working 

condition with minimum energy consumption. 

 

c) To optimize the separation of hydrochloric acid and glucose using response 

surface methodology (RSM) followed with central composite (CCD) as 

statistical design. 
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1.4 Scopes of the study 

The aim of this study was to investigate the most favorable experimental 

conditions to separate acid and glucose using electrodialysis. The research project was 

divided into 2 main parts. The first part was deal with experimental to find the 

characterization of electrodialysis. The second part involves optimization using DoE 

(Design of Experiment).  

 

 The preliminary experiment has been done to evaluate the performance of the 

ED. Several parameters that affected the electrodialysis performance such as initial 

concentration of HCl in feed stream, initial concentration of HCl in product stream, 

voltage supplied and feed flow rate were studied. The influence of the initial 

concentration of HCl in feed and initial product stream manipulated were 0.1 M, 0.3 M, 

0.5, 0.7 and 1.0 M. Different voltage varied from 18 V to 24 V at same initial 

concentration of HCl feed stream and product was also studied. The pump was 

calibrated by manual experiment by varied it to respective number (range 0-10). The 

volume flow out was collected over time taken and the calibration curve is plotted as in 

Figure A2 (Appendix A). To minimize the range, the feed flow rates were varied from 

1.58 mL/s until 2.26 mL/s (respectively number 4-10). For the performances of the ED 

system, three important indicators were examined, namely energy consumption, 

product recovery percentage and average flux.  

 

1.5 Organization on the thesis 

This thesis has been organized into several chapters. 

 

Chapter One introduces the alternative of membrane separation and their advantage 

and disadvantages. The problem statement leads to the process study was then 

discussed in the next section followed by the objective of the research study.  
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Chapter Two reviews the previous finding and fundamentals related to the previous 

research. This chapter subdivided into 8 sections. The first section covers the entire 

topic about membrane such as membrane definition, separation alternatives, type of 

membrane and history of ion exchange membrane. The second sections cover the 

whole focus on definition of electrodialysis, development and commercialization and 

electrodialysis potential as a separator. The third section covers up all the principles, 

process description, modes and stack of electrodialysis, requirements for 

electrodialysis membrane and structure of ion membrane. The problem facing by 

electrodialysis technology and their problem solving has been discussed in section 

four. The next sections discussed on parameter affecting the electrodialysis 

performance followed by the key performance indicators. Finally, literature survey on 

the design of experiment (DoE) which is used to optimize the experiment is discussed.  

 

Chapter Three presents materials and methods will be discussed thoroughly in order 

to separate the mixture of acid and glucose. The first section show material and 

chemical used followed by flow chart of the overall experimental works. Specification of 

material and equipment were listed. Procedure to run the experiment was outlined 

properly. All stages of experiment were summarized in flow chart. 

 

Chapter Four presents all the result and followed by discussion. In this chapter, all 

experiments were listed in table form and graph. All figures and graphs were discussed 

analytically. The detail explanations of the results have been divided into section A and 

section B. Section A focuses on process in electrodialysis compartment, electrical 

resistance and characteristic study on electrodialysis system. Section B implements the 

design of experiment (DoE). The regression models, adequacy and the effects of 

process variable had been discussed through this section. 

 

Chapter five finally gives the conclusions and recommendations of the thesis. 
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CHAPTER TWO 
 

  LITERATURE REVIEW  
 

This chapter presents a review of the different separation methods; the 

conventional treatment and possible technologies. Electrodialysis has a great potential 

of becoming an excellent separation method for hydrochloric acid-glucose mixture, 

which is chosen to be applied in this study. Finally, the design of experiment (DoE) 

using response surface methodology (RSM) is presented at the end of this chapter.  

 

2.1 Membrane definition  

In the past few decades Membrane based separation has become one of the 

emerging technologies. The word membrane comes from the Latin word; “membrana” 

which means skin. Today’s word “membrane” has been extended to describe a thin 

flexible sheet or film, acting as a selective boundary between two phases because of 

its semi permeable properties. Membranes exist in solids and liquids. It functions as a 

separation agent that is very selective based on the difference of diffusivity coefficient, 

electric current or solubility (Wenten, 2002). The two phases separated by the 

membrane, i.e., the feed and permeate; could be present in the liquid or in the gaseous 

state. The driving force that was necessary for the transport was a transmembrane 

pressure gradient (∆P), a concentration gradient (∆C), an electrical potential gradient 

(∆E), or a temperature gradient (∆T) (Beerlage, 1994). A schematic drawing illustrated 

a membrane separation process was given in Figure 2.1. 
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       Driving force 

 

                   Retained solute                                       Membrane        Permeated solute 

Figure 2.1 Schematic drawing illustrating a membrane separation process 
(Beerlage, 1994) 

 
 

The principal advantageous of membrane processes compared to other 

separation processes are low energy consumption, simplicity and environmental 

friendliness. Membrane-based separation is a result of different rates of transfer 

between each substance in the membrane and not a result of phase equilibrium or 

mechanically based separation. Therefore, there is no need to add additive materials 

such as extractors and absorbers to precede the separation. We can then say that 

membrane technology is “clean technology”, in which no additive materials are, needed 

(Wenten, 2002). Figure 2.2 classifies membranes according to structure, production, 

essential transport mechanism and areas of application. 

 

Figure 2.2: Types of separation processes and their applications (Cheryan, 1998) 

Feed Product
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2.1.1 Types of membranes 

Advances in membrane technology, especially in novel materials, can make this 

technology even more competitive in comparison to traditional, energy intensive, 

environmentally undesirable and costly processes. There are six major membrane 

processes that are widely used in industrial application. They are classified based on 

various driving forces, some use pressure difference (micro filtration, ultra filtration, 

reverse osmosis, piezodialysis), while others use other driving forces such as 

concentration difference (gas separation, pervaporation, liquid membrane and dialysis), 

thermal (membrane distillation, thermo osmosis) and electric (electrodialysis). The key 

membrane performance variables are selectivity, permeability and durability (Wenten, 

2002). 

 

The proper choice of a membrane should be determined by the specific 

application objective. The types of following membranes were commonly used: 

 

a) Microporous membranes 

b) Homogenous membranes 

c) Asymmetric membranes 

d) Electrically charged membranes 

e) Liquid membranes 

 

Among these membranes, electrically charged membranes were one of the 

most advanced separation membranes. These are necessarily ion-exchange 

membranes which consisting of highly swollen gels that carrying fixed positive or 

negative charges. These are mainly used in the electrodialysis. The basic applications 

of the ion exchange membrane process are based on the Donnan membrane 

equilibrium principle and has been given  attention to solve two important 

environmental problems, for the recovery and enrichment of valuable ions, and the 
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removal of undesirable ions from waste water, especially to extract toxic metal ions 

from effluents (Nagarale, 2006). 

 

Electrically charged membranes are used together with electrodialysis in the 

separation of hydrochloric acid- glucose. Traditionally, ion exchange membranes are 

classified into anion exchange membranes and cation exchange membranes 

depending on the type of ionic groups attached to the membrane matrix. Cation 

exchange membranes contain negatively charged groups (such as –SO3−, –COO−,      

–PO3
2−,–PO3H−, –C6H4O−, etc.), fixed to the membrane backbone and allow the 

passage of cations but reject anions. Anion exchange membranes contains positively 

charged groups, such as –NH3
+, –NRH2

+, –NR2H+, –NR3
+, –PR3

+,–SR2
+, etc., fixed to 

the membrane backbone and allow the passage of anions but reject cations. According 

to the connection way of charge groups to the matrix or their chemical structure, ion 

exchange membranes can be further classified into homogenous and heterogeneous 

membranes, in which the charged groups are chemically bonded to or physically mixed 

with the membrane matrix, respectively. However, most of the practical ion exchange 

membranes are rather homogenous and composed of either hydrocarbon or 

fluorocarbon polymer films hosting the ionic groups (Xu, 2005). Figure 2.3 show the 

separation principle of the membranes.  

 

Figure 2.3: The two types of (mono polar) electrodialysis membranes. (a) cation 
exchange membrane , (b) anion-exchange membrane (Batchelder, 1986) 
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The development of the ion exchange membrane-based process began in 1890 

with the work of Ostwald who studied the properties of semi permeable membranes 

and discovered that a membrane can be impermeable for any electrolyte if it is 

impermeable either for its cation or its anion. To illustrate this, the so-called “membrane 

potential” at the boundary between a membrane and its surrounding solution was 

postulated as a consequence of the difference in concentration. In 1911, Donnan 

confirmed the existence of such a boundary and developed a mathematical equation 

describing the concentration equilibrium, which resulted in the so-called “Donnan 

exclusion potential”. However, the actual basic studies related to ion exchange 

membranes began in 1925 and was carried out by Michaelis and Fujita with the 

homogeneous, weak acid collodium membranes. In 1930s, S¨ollner presented the idea 

of a charge-mosaic membrane or amphoteric membrane containing both negatively 

and positively charged ion exchange groups and showed distinctive ion transport 

phenomena. Around 1940, interest in industrial applications led to the development of 

synthetic ion exchange membrane on the basis of phenol-formaldehyde-

polycondensation (Xu, 2005). 

 

With the development of stable, highly selective ion exchange membrane of low 

electric resistance in 1950 by Juda and McRae of Ionics Inc. and Winger in 1953, 

electrodialysis based on ion exchange membranes rapidly became an industrial 

process for demineralizing and concentrating electrolyte solutions. Since then, both ion 

exchange membranes and electrodialysis have been greatly improved and widely used 

in many fields (Morantes, 2004). The chronological development of ion exchange 

membrane and the related processes is shown in Figure 2.4. 
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Figure 2.4:Time line of ion exchange membrane development and their related 
processes (Xu, 2005). 

 

2.1.2 Structure of ion exchange membrane  

Commercially available ion exchange membranes are essentially sheets of 

ion exchange resins made up of (theoretically) a jumble of polymer chains with void 

spaces between the chains. Ion exchange membranes are selectively permeable to 

positively charged ions (cations) only or negatively charged ions (anions) only. The 

structure of an ion exchange membrane is show in Figure 2.5. The most important 

factor in the electrodialysis (ED) process is the permselectivity of the ion exchange 

membranes, which permit not only the separation of cations and anions in a solution, 

but also the separation of ions with the same sign but different valences (Peng at al., 

2004).  

 



 17 
 

 

Figure 2.5: Ion exchange membrane structure (Savitri, 2000) 

 

Table 2.1 presents the potential applications of novel ion exchange 

membrane-based processes, their state of development and possible advantages 

and experienced problems. 

 

2.1.3 Requirements for electrodialysis membrane 

Early commercial ion exchange membranes were limited due to the electrical 

resistance of membranes itself. It was cause of high energy consumption and high 

membrane cost. In additions, economical efficiency was low than that of the process. In 

the 1940's, ion exchange membranes of low resistance were developed by using ion 

exchange resins. Two types of membranes are available based on the nature of the 

functional groups attached to the matrix: cation-permeable membranes, called cation-

exchange (or cationic) membranes and anion-permeable membranes, called anion-

exchange (or anionic) membranes. Both of these membranes are monopolar; this 

means that they are permeable to only one type of ion (Bazinet et al., 1998). 
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Table 2.1: Potential applications of novel ion exchange membrane-based processes, their state of development and possible advantages 

and experienced problems (Xu, 2005) 

Applications State of process 
development 

Potential 
Advantages 

Problem related 
to application 

Electrodialysis with bipolar membranes (BMED) 
-Production of mineral acids and 
bases from corresponding salts 

Pilot plant operation Lower energy consumption Contamination of products and low current 
utilization due to poor membrane 

-Recovering/producing of organic acids 
from fermentation processes 

Commercial and pilot plant 
operation 

Simple integrated process, lower 
costs 

Unsatisfactory membrane stability and 
fouling application experience 

-Removal of SO2 from flue 
 gas 

Extensive pilot plant test Decreased salt production, reduced 
salt disposal costs 

High investment costs, long-term 
membrane stability 

-Recovering and recycling of H2SO4 
and NaOH from waste waters, such 
as the rayon production effluent 

Laboratory and pilot plant 
tests, some commercial 
plants 

Purity of the recovered products is 
not critical, savings in chemicals 
and sludge disposal costs 

No long-term experience, membrane 
stability under operating conditions, 
membrane fouling, high investment costs 

-Recycling of HF and HNO3 from steel 
pickling solutions 

Commercial plants 
 

Cost savings due to recovered 
acids and decreased salt disposal 

Relatively complex process, high 
investment costs 

-In food industry 
 

Laboratory and pilot plant 
tests 
 

Fewer by-products, less chemicals, 
and salt production and disposal 

Application experience, process costs, 
investment costs 

-Energy storage and conversion Only theoretical 
considerations 

Eventually economical advantages No experimental verification 

-Production of sodium methoxide from 
methanol 

Laboratory tests 
 

More economic than conventional 
production process 

No long-term experience 
 

 
EDI 
-Ultra-pure water production 

 
Commercial plants 
 

Continuous process without by-
products, high efficiency 

Higher investment costs, waste disposal, 
care pretreatment 

EED    
-Membrane electrolysis Commercial plants Continuous process, high efficiency High investment costs, membrane stability 

and selectivity 
ED and reactor 
-Denitrification of drinking 
water,fermentation process 

 

Pilot plant tests, some 
commercial plants 

Continuous process, high efficiency Membrane stability and selectivity, 
relatively complex process 

-Waste recovery Commercial plants Continuous process, more 
compacted process 

Relatively complex process, connection 
with care for each process 
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Ion selectivity is the most important of these properties. Perm selectivity is used 

to describe these membranes and indicates that they are permeable to selected ions. 

The manufacturers make ion-exchange membranes of various thicknesses and hence, 

the resistance is tabulated as membrane area resistance of unit’s ohms cm2 

(Strathmann, 1992). 

 

 Mechanical properties are important in the design of the support structures for 

the membranes. The membranes must have sufficient mechanical strength to 

withstand the fluid pressures and mechanical forces to which they are subjected. The 

method of sealing to prevent leakage is to clamp the edges of the membranes between 

flat surfaces so it is important for the membranes to be strong to resist fastening forces 

without deformation. The fluid pressures involved in an electrodialysis cell are those 

required to cause flow through very narrow passages in the spacers. The membrane 

must have the ability to maintain its stability under continued exposure to the feed 

compartment, containing various ions and having pH values from highly acidic to 

alkaline (Savitri, 2000). 

 

It is difficult to find all of these properties together in the commercially produced 

membranes. Electrodialysis is characterized by the use of ion-selective membranes 

and an electric field orthogonal to the membranes. In contrast to other membrane 

processes, membranes used for electrodialysis can be arranged only in plate and 

frame modules. The membranes themselves should be as large as possible and the 

distance between them should be as small as possible, since these conditions are 

favorable to the economics of the process (Kabay et al., 2003).  
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Essential requirements for electrodialysis membranes are: (Nagarale et al., 

2006): 

• High perm selectivity - an ion-exchange membrane should be highly 

permeable to counter-ion, but should be impermeable to co-ions 

• Low electrical resistance - an ion-exchange membranes should have low 

electrical resistance and thus there will be less potential drop during electro-

membrane processes 

• Good mechanical stability- the membrane should be mechanically strong 

and should have a low degree of swelling or shrinking in transition from 

dilute to concentrated ionic solutions  

• High chemical stability- the membrane should be stable over a pH-range 

from 0 to 14 and in the presence of oxidizing agents. 

• Low degree of water transport - Electroosmosis, the movement of water as 

a result of current flow, tends to reduce the electrodialytic efficiency of the 

system, and should be avoided. This can be almost achieved by keeping 

the porosity low, but cannot be avoided together. 

• Inertness - The membrane should not deteriorate in the presence of 

whatever chemical and biological agents with which it may come in contact. 

This requirement does not seriously limit the range of suitable membrane 

materials. 

• Low cost - The ion-exchange membranes represent the most important 

single item of capital investment for electrodialysis. The high cost of 

membrane replacement, and the limitations inherent in the properties of 

available membranes represent the most important obstacle to widespread 

usage of electrodialysis to desalt brackish water. 
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Higher cross linking improves the selectivity and stability of membranes by 

reducing swelling, but increases the electrical resistance. However, high charge density 

reduces resistance and increase selectivity, but promotes swelling and thus constrains 

higher cross linking (Nagarale et al., 2006). All these factors lead to the conclusion that 

ED has reached a level where it deserves to be considered as a separator. To obtain 

high efficiencies by electrodialysis in acid medium, there is the need of special ion 

exchange membranes because of the high permeability of acids through standard 

anion exchange membranes. Therefore, ion exchange membrane Acid 60 and PC-SK 

were chose regarding to the properties listed in Table 2.2. 

 

Table 2.2: Properties of ion-exchange membranes 
 Anion- Exchange 

Membrane 
Cation-Exchange 

Membrane 
Commercial name PC Acid 60 PC-SK 

Thickness, µm  110 110 

Ion-Exchange capacity, 
equiv/g-dry.membrane 

ca.0.35 ca 0.95 

Transport number, N 0.55 0.96 

Water per g dry membrane ca 0.15 ca 0.3 
 

The physical properties of some commercially available membranes are listed 

in Table 2.3. These properties include manufacturer, type, thickness and area 

resistance of the membranes. The exchange capacity of the membranes is very 

important and is represented by the exchanged sites within the plastic matrix. It is 

usually expressed in terms of milliequivalents (meq) of ion-exchange capacity per gram 

of dry membrane.  
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Table 2.3: Main properties of some commercially available homogeneous ion exchange membranes (Xu, 2005) 
Membrane Type Thickness (mm) IEC(mol/g(meq/g)) Area resistance (Ωcm2) Remarks 

Asahi Chemical Industry Co: Japan 
Aciplex K-192 CEM 0.13-0.17 - 1.6-1.9 Univalent selective 
Aciplex -501SB CEM 0.16-0.20 - 1.5-3.0  - 
Aciplex A-192 AEM >015 - 1.8-2.1 Univalent selective 
Aciplex-501SB AEM 0.14-0.18 - 2.0-3.0 - 
Aciplex A201 AEM 0.22-0.24 - 3.6-4.2 Desalination 

      
Asahi Glass Co. Ltd, Japan 

Selemion CMV CEM 0.13-0.15 - 2.0-3.5 Strongly acidic 
Selemion AMV AEM 0.11-0.15 - 1.5-3.0 Strongly basic 
Selemion ASV AEM 011-0.15 - 2.3-3.5 Strongly basic, univalent 
Selemion DSV AEM 0.13-0.17 - - Strongly basic, dialysis 
Flemion - - - - Chlor-alkali 

      
Ionics Inc, USA 

CR61-CMP CEM 0.58-0.70 2.2-2.5 11.0 ED whey 
CR67-HMR CEM 0.53-0.65 2.1-2.45 7.0-11.0 ED whey 
CR67-HMP - - - - EDI 
AR103QDP AEM 0.56-0.69 1.95-2.20 14.5 ED whey 
AR204SZRA AEM 0.48-0.66 2.3-2.7 6.2-9.3 EDR 

      
Mega a.s, Czech Republic 

Ralex MH-PES AEM 0.55 (Dry) 1.8 <8 ED, EDI 
Ralex CM-PES CEM 0.45 (Dry) 2.2 <9 ED,EDI 

      
PCA Polymerchemie Altmeir GmbH, Germany 

PC 100 D AEM 0.08-0.1 1.2 Quat 5 Small organic anions 
PC 200 D AEM 0.08-0.1 1.3 Quat 2 Medium organic anions 
PC Acid 35 AEM 0.08-0.1 1.0 Quat - HCl production 
PC Acid 60 AEM 0.08-0.1 1.1 Quat - Pickling acids (HNO3/HF) 
PC Acid 100 AEM 0.08-0.1 0.57Quat - Sulphuric acid production 
PC-SK CEM - - - Standard CEM 
PC-SA AEM - - - Standard AEM 
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2.2     Electrodialysis  

2.2.1 Definition  

Electrodialysis (ED) is a membrane-based separation process in which electrically 

charged membranes and an electrical potential difference are used to separate ionic 

species from an aqueous solution. It can be operated only with solutions at the same 

temperature to eliminate the energy consumption for the formation of a new phase as 

distillation process (Luo et al., 2002). 

 
ED is usually considered as a desalination process, but there is much wider scope 

for this technique because ED is in many cases a powerful separation method when 

charged compounds have to be separated from a solution (Min-tian et al., 2004). It is an 

environmentally friendly membrane separation process. It is also an alternative to the 

chemical treatment process of recovering hydrochloric acid from the hydrolysis mixture. 

ED is gaining an increasing attention and has been widely investigated in many chemical 

fields such as production of H2 and O2 from water. ED is a membrane separation process 

in which ionic species are separated from water, macro solutes, and all uncharged solutes. 

Ions are induced to move by an electrical potential, and separation is facilitated by ion-

exchange membranes. Membranes are highly selective, passing either anions or cations 

and very little of anything else (Perry & Green, 1998). 

 

Electrodialysis has been used in a multitude of applications which include the 

separation of cations, anions, monovalent from multivalent ions, ionic species of the same 

or different electrical charge, acids from elements in ionic form, amphoteric elements, 

compounds of different conductances and degree of dissociation in solution, and ionic 

species from non dissociated organic compounds (Boateng, 1992).  
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Figure 2.6 shows the separation technologies which use electricity as the source of 

power. The technologies are divided into electrolysis and electrodialysis. The difference 

between an electrolytic and an electrodialysis cell is the configuration of the cell. In 

electrodialysis, cation and anion exchange membranes are alternated between two 

electrodes and a repeated cell-pair pattern can be formed, thus several cell pairs can be 

assembled between the electrodes. In the case of an electrolytic cell unit, the addition of 

cell pairs requires the addition of electrodes (Morantes, 2004). 

 

 

Figure 2.6: Electrotechnologies (Marcotte et al., 2003 ) 
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