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PEMILIHAN CIRI BAGI RANGKAIAN NEURAL ARTMAP KABUR DENGAN 

MENGGUNAKAN SATU HIBRID ALGORITMA GENETIK DAN PENCARIAN TABU 

ABSTRAK 

Prestasi pengelas rangkaian neural amat bergantung kepada set data yang 

digunakan dalam process pembelajaran.  Secara praktik, set data berkemungkinan 

mengandungi maklumat yang tidak diperlukan.  Dengan itu, pencarian ciri merupakan 

suatu langkah yang penting dalam pembinaan suatu pengelas berdasarkan rangkaian 

neural yang efektif.  Tesis ini mempersembahkan penyelidikan tentang satu algoritma 

hibrid dalam pemilihan ciri bagi pengelas rangkaian neural ARTMAP Kabur dengan 

menggunakan Algoritma Genetik (GA) dan Pencarian Tabu (TS).  Algoritma hibrid 

yang dicadangkan, GA-TS, menggabungkan struktur ingatan baru-baru (recency) dan 

ingatan kekerapan (frequency) ke dalam proces pencarian GA.  Struktur ingatan baru-

baru TS membantu meluaskan pencarian GA.  Manakala, struktur ingatan kekerapan 

TS memberi panduan kepada operator genetik dan membantu dalam penyempitan 

process pencarian GA.  Satu siri kajian empirikal yang melibatkan masalah piawai dan 

masalah dunia sebenar digunakan untuk menilai keberkesanan algoritma hibrid yang 

dicadangkan.  Rangkaian neural ARTMAP Kabur digunakan sebagai pengelas asas 

dalam kerja penyelidikan ini.  Satu kaedah simulasi penyuntikkan ciri berlebihan juga 

dibangunkan bagi menilai keupayaan GA-TS dalam mengenalpasti dan mengeluarkan 

ciri berlebihan yang boleh mengurangkan kejituan pengelasan.  Keputusan eksperimen 

menunjukkan sistem GA-TS mempunyai prestasi yang lebih bagi berbanding dengan 

GA biasa dari segi kepadatan ciri dan kejituan pengelasan. 
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FEATURE SELECTION FOR THE FUZZY ARTMAP NEURAL NETWORK USING A 

HYBRID GENETIC ALGORITHM AND TABU SEARCH 

ABSTRACT 

The performance of Neural-Network (NN)-based classifiers is strongly 

dependent on the data set used for learning.  In practice, a data set may contain noisy 

or redundant data items.  Thus, feature selection is an important step in building an 

effective and efficient NN-based classifier.  In this thesis, the research of a hybrid 

algorithm of Genetic Algorithm (GA) and Tabu Search (TS) for feature selection in the 

Fuzzy ARTMAP NN classifier is presented.  The proposed GA-TS algorithm embeds 

the recency and frequency memory structures of TS into the search process of the GA.  

The recency memory structure helps induce an additional diversification mechanism in 

the GA search process.  On the other hand, the frequency memory structure provides 

guidance to genetic operator and helps intensify the GA search process.  A series of 

empirical studies comprising benchmark and real-world problems is employed to 

evaluate the effectiveness of the proposed hybrid GA-TS algorithm.  A simulated noisy 

feature injection method is devised to assess the capabilities of GA-TS in identifying 

and removing noisy features that can degrade classification accuracy.      Experimental 

results demonstrate that proposed GA-TS performs better in terms of feature 

compactness (the number of features reduced) and classification accuracy than the 

ordinary GA.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

1.1 Preliminaries 

One of the nice features of the human brain is its ability to learn many new things 

without forgetting things learned earlier.  Researches in both theoretical and 

experimental aspects of the brain have revealed that the human brain is composed of 

many individual processing elements, known as neurons (Etheridge and Brooks, 1994).  

The complex, nonlinear, and parallel information processing architecture of these 

biological neurons play an important role in processing information.  Linked with dense 

interconnections, these neurons have impressive capabilities in performing certain 

tasks, such as pattern recognition and perception (Bishop, 1995).  In the early days, 

brain researchers were mainly neurologists, psychologists, and physiologists who 

developed artificial models for biological nervous systems.  However, over the past few 

decades, these artificial models, commonly known as Artificial Neural Networks (ANNs), 

or simply Neural Networks (NNs), have become an active area of investigation.  To 

date, this area of research is highly interdisciplinary, and is extensively researched by 

professionals from various fields including computer science, mathematics, physics, 

and engineering.  Because of the intelligent behaviour of the human brain that can 

learn many new things, it would be highly desirable if we could impart the same 

capability to the NN models.   

 

In the following sections, an introduction to NNs and pattern classification is 

provided.  A review on various feature selection methods is presented.  Then, the 

problems and motivation, research objectives, research methodology and scope are 
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explained, and an overview of the organisation of this thesis is included at the end of 

the chapter.  

 

1.2 Neural Networks 

NNs are relatively crude models of the neural structure of the human brain.  According 

to Marks II (1993), a NN represents a computational approach to intelligence, as 

contrasted with the traditional, more symbolic approaches.  The first major contribution 

on NNs was made by McCulloch and Pitts (1943; 1947).  Nevertheless, it was the work 

by Hebb (1949) that first triggered the concept of adapting the connections between 

nodes or processing elements, hence learning in NNs.  Ever since publication of 

Hebb’s law, a variety of different network architectures and learning paradigms have 

been proposed.  Amongst the earliest models are the “Perceptrons” (Rosenblatt, 1958), 

the “Adaline” (Widrow and Hoff, 1960), and the Hopfield networks (Hopfield, 1982; 

1984).  These artificial neural models may or may not be biologically plausible, but they 

always include connections and nodes analogous to biological nerve nets. 

 

The DARPA (1988) study provides a reasonable definition for the term NNs, as 

quoted:  

“A NN is a system composed of many simple processing elements 

operating in parallel whose function is determined by network structure, 

connection strengths, and the processing performed at computing 

elements or nodes.  NN architectures are inspired by the architecture of 

biological nervous systems, which use many simple processing elements 

operating in parallel to obtain high computation rates.”  

 

Research in NNs has found promising results in many fields, and they have 

been used as a problem-solving tool in various disciplines of science and engineering.  
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In the following, a list which represents only a sampling of areas in which NNs have 

been successfully implemented is presented:  

 i) Speech recognition (Lin et al., 2000)  

 ii) Handwritten character recognition (Wu et al., 2000; Hanmandlu et al., 1999)  

 iii) Personal Identification (Nagaty, 2003; Han et al., 2003; Ma et al., 2003)  

 iv) Electrical signal recognition (Engin, 2004; Khandetsky and Antonyuk, 2002)  

 v) Automatic vehicle control (Ohno et al., 1994; El Hajjaji and Bentalba, 2003)  

 vi) Medical diagnosis (Hayashi and Setiono, 2002; Zhou and Jiang, 2003; Leung 

and Mao, 2003; Ergun et al., 2004)  

 vii) Detection of explosives (Nunesa et al., 2002)  

 viii) Prediction of bank failure (Tung et al., 2004)  

 ix) Stock market prediction (Kim and Lee, 2004)  

 x) Prediction of protein secondary structures (Hu et al., 2004)  

 xi) Chemistry (Kewley , 2000; Winkler, 2004)  

 

 

 

1.3 Pattern Classification 

The task of recognition and classification is one of the most frequently encountered 

decision making problems in daily activities.  A classification problem occurs when an 

object needs to be assigned into a predefined group or class based on a number of 

observed attributes, or features, related to that object.  Humans constantly receive 

information in the form of patterns of interrelated facts, and have to make decisions 

based on them.  When confronted with a pattern recognition problem, stored 

knowledge and past experience can be used to assist in making the correct decision.  

Indeed, many problems in various domains such as financial, industrial, technological, 

and medical sectors, can be cast as classification problems.  Examples include 
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bankruptcy prediction, credit scoring, machine fault detection, medical diagnosis, 

quality control, handwritten character recognition, speech recognition etc. 

 

Pattern recognition and classification has been studied extensively in the 

literature.  Among some of the classic textbooks in pattern recognition and 

classification include Fu (1968), Fukunaga (1972), as well as Duda and Hart (1973).  In 

general, the problem of pattern recognition can be posed as a two-stage process, as 

shown in Figure 1.1 (Fu, 1968; Duda and Hart, 1973; Tou and Gonzalez, 1974; Young 

and Calvert, 1974):  

 (i) feature extraction – which involves selecting the significant features from an 

input pattern, and transforming them through some function that can provide some 

informative measurements for the input pattern;  

 (ii) classification – which involves devising a procedure for discriminating the 

measurements taken from the extracted features, and assigning the input pattern 

into one of the possible target classes according to some decision rule.  

 

 

 

 

 

Figure 1.1 A pattern recognition system consists of a feature extractor and a 
pattern classifier.  An input pattern is transformed into a set of 
measurements by the feature extractor, and assigned to one of 
the target classes by the classifier using some decision rules. 

 

The research work detailed in this thesis is focused on feature selection.  The 

fundamental problem addressed is to devise an automated feature selection algorithm 

to build a compact and concise data set for pattern classification using NN models.  

 

 

Feature 
Extractor 

Pattern 
Classifier Input 

pattern 
Decision on 
target class 

Feature 
measurement 

. 

. 

. 
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1.4 Classification Systems 

Generally, classification systems can be categorized into several categories.  Among 

the popular pattern classification systems include statistical-based and NN-based 

classification approaches 

 

1.4.1 Statistical classification 

Statistical classification approaches are generally based on probability models.  This 

type of approach is normally used by statistician, whereby the involvement of a 

statistician is needed in the overall process of structuring the problem. (Mitchie et al, 

1994). 

 

One of the earliest statistical classification methods is the discriminant analysis.  

The idea of this method is to divide the sample space using a series of lines to 

separate each class.  Fisher (1936) introduced the first version of discriminant analysis, 

which was known as Linear Discriminant.  Since then, various methods have been 

developed, e.g. Quadratic Discriminant and Logistic Discriminant. 

 

 Other statistical methods include density estimation (Fix and Hodges, 1951) and 

k-nearest neighbour (kNN).  Kernel density estimation is used in the classification of 

sample data in density estimation approach.  In kNN, it finds in the N-dimensional 

feature space the closest object from the training set to an object being classified. 

 

 As mentioned earlier, the use of statistical classification methods requires 

statistical knowledge to define the structure of the problem.  In other words, human 

intervention is required, and different problems may require different settings.  This 

forms the primary weakness of statistical-based methods in pattern classification, 
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whereby it is not robust, especially for non-statistical users (Mitchie et al, 1994).  One 

alternative for robust classification would be NN-based approaches. 

 

1.4.2 Neural network-based classification 

Perhaps feedforward networks especially the Multi-Layer Perceptron (MLP) (Rumelhart 

et al, 1986) and Radial Basis Function (RBF) (Broomhead and Lowe, 1988; Moody and 

Darken, 1989) networks are the most well-known NN-based classifiers.  The success of 

these NN models is based on its capabilities as a universal approximator.  Cybenko 

(1989) argued that network architectures using logistic functions are able to 

approximate any smooth function, under some mild conditions, to an arbitrary degree 

of accuracy.  Furthermore, a similar finding is also concluded for RBF networks.  

Poggio and Girosi (1990) and Light (1992) showed that a RBF network can 

approximate any multivariate continuous functions when given a sufficient number of 

radial basis function units.  Another advantage of feedforward NNs is their strength as 

a Bayesian probability estimator.  The MLP and RBF networks have been shown to 

exhibit this characteristic, in which their outputs can be regarded as estimates of 

posterior probability distribution (White, 1989; Wan, 1990; Richard and Lippmann, 

1991). 

 

However, although the theoretical results indicate the capabilities of feedforward 

networks, there are a number of difficulties in practical applicability of these networks 

owing to the network configuration and learning methodology.  For example, a problem 

that often arises is determination of the optimal number of nodes in the hidden layer(s) 

(Fujita, 1992).  Another problem with the MLP network trained with error back-

propagation (Rumelhart et al, 1986) is the existence of local minima (Lippmann, 1987).  

Even assuming that the optimal network configuration and the global minimum are 

attained, the applicability of feedforward networks, as well as many other networks, is 

constrained by their learning methodology. 
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1.4.2.1 The Stability-Plasticity Dilemma 

Learning in most NNs is essentially an offline process, which consists of a training 

phase and a test phase, using some data samples, i.e. pattern samples.  In order to 

accommodate new information, a previously trained NN has to be re-trained using the 

newly available pattern samples.  This is known as the sequential learning problem 

(McCloskey and Cohen, 1989; Ratcliff, 1990) or the stability-plasticity dilemma 

(Grossberg, 1980; Carpenter and Grossberg 1987a). 

 

In sequential learning, training is done on a sample-by-sample basis, and not on 

a batch mode.  This approach leads to a phenomenon called catastrophic forgetting in 

back-propagation learning of feedforward networks, i.e., previously learned information 

is catastrophically overwritten by newly acquired information (McCloskey and Cohen, 

1989; Ratcliff, 1990; French, 1991, 1992; Sharkey and Sharkey, 1995). 

 

The sequential learning problem is also addressed as the stability-plasticity 

dilemma by Grossberg (Grossberg, 1980; Carpenter and Grossberg 1987a).  This 

dilemma poses the fundamental questions in autonomous learning systems, i.e., how a 

learning system can preserve existing knowledge while continuing learning new 

information; how a learning system can prevent newly learned knowledge corrupted 

memories of prior learning.  In response to the stability-plasticity dilemma or the 

sequential learning problem, many researchers have proposed new network 

architectures and learning algorithms.  Among them, Carpenter, Grossberg and co-

workers have developed a family of neural network architectures called Adaptive 

Resonance Theory (ART). (Carpenter and Grossberg 1987a, 1987b, 1990). 
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 The family of ART networks provides several significant advantages over other 

types of NNs.  Among the important features that subscribed by ART to be a successful 

autonomously learning system include (Downs et al., 1995) 

 An ability to discriminate novelty from noise, and familiar events from rare but 

important ones; 

 Fast learning based on predictive success rather on predictive failure 

(mismatch); 

 Self-organisation, with few arbitrary parameter to tune, and automatic structure 

determination; 

 Linear rather than exponential scaling with problem size; 

 Straightforward revelation of embedded rule set; 

 Inherently parallel implementation. 

These features are essential for computational demanding tasks, e.g. feature selection 

in NN-based classification. 

 

1.4.2.2 Fuzzy ARTMAP 

Among various types of ART networks, Fuzzy ARTMAP (FAM) (Carpenter et al, 1992) 

has emerged as a powerful supervised ART-based model for tackling pattern 

classification problems (Obaidat and Saudon, 1997; Lee and Tsai, 1998; Heinke and 

Hamker, 1998; Aggarwal et al, 1999).  FAM combines the salient properties of ART 

with fuzzy set theory.  FAM is very fast in training (Carpenter and Grossberg, 1994; 

Carpenter et al, 1995).  As compared with a large number of training epochs needed in 

other NN model (e.g. MLP), FAM requires relatively few training epochs, which can be 

conducted incrementally.  FAM also is proven to be noise tolerant (Charalampidis and 

Kasparis, 2001).  In the context of pattern classification, FAM has been shown to 

produce good performance in a number of benchmark classification tasks (Carpenter 

and Grossberg, 1994,1995).  FAM has also been applied to tackle various real-world 

applications involving pattern classification with good performance, such as medical 
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diagnostic (Ham and Han, 1996; Azuaje, 2001; Vigdor and Lerner, 2006)), fault 

detection (Aggarwal et al, 1999; De and Chatterjee, 2004; Tan and Lim, 2004), 

manufacturing decision support system (Tan et al, 2005) and biometrics (Obaidat and 

Saudon, 1997; Lim and Woo, 2006). 

 

The above characteristics make FAM an attractive NN model for investigation into 

the problem of feature selection in NN-based classification.  Therefore, FAM is selected 

as the base NN classifier in this research. 

 

1.5 Problems and Motivations 

 

1.5.1 Problems in NN-based Classification 

As highlighted earlier, the focus of this research is on the development of an automated 

feature selection algorithm to build a compact and concise data set for pattern 

classification using the FAM model.  Feature selection is a process of selecting a 

subset of n features from a set of N features based on some optimization criterion (Lee 

et al, 2004).  In NNs, feature selection has two major functions, i.e. to reduce the 

complexity of the NN model and to identify important features from a data set.  The 

former objective helps build a concise classification system whereas the latter objective 

helps eliminate redundant features or noise in the data set used.  The ultimate aim is to 

produce a NN classifier with a good performance in terms of accuracy (Chaika and 

Yulu, 1999). 

 

Rising of interest in feature selection recently is owing to several reasons.  One 

of the primary reasons is the wide implementation of NN-based classification system in 

various applications, particularly in pattern classification.  In classification applications, 

the priority is stressed on classification accuracy.  The learning mechanism in NN is a 

form of inductive learning; i.e., learning from specific data to form general rule.  
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Therefore, the performance of NN is strongly determined by data.  During data 

collection, a user deploys his/her experience to select data attributes or features that 

are assumed useful for the classification task.  In reality, the data set may contain noisy 

or redundant data without being realized by the user.  This may affect classification 

accuracy.  Therefore, there is a need for an automated feature selection algorithm for 

NN-based classifiers. 

 

The rapid developments of new application of NN models in dealing with vast 

amount of data such as medical data processing (Puuronen et al, 2000), data mining 

(Piramuthu 1998, Martin-Bautista and Vila 1999), and multi-media information retrieval 

(Lew 2001, Liu and Dellaert 1998, Messer and Kittler 1997) also contributes to 

researches in feature selection.  Fast processing of large volume of data is critical for 

these applications that require real-time response.  Thus, selecting the important 

features and limiting the number of feature into a manageable size is an essential 

requirement. 

 

1.5.2 Motivations in Using Hybrid GA-based Search Techniques 

In many NP-hard problems such as feature selection (Hyafil and Rivest, 1976; Blum 

and Rivest, 1992), the search space is complex and irregular.  Traditional search 

methods e.g. blind search, heuristic search; often perform less than desirables as they 

are not robust enough to escape from local minima (Miller et al 1993).  Hence a robust 

global search method is needed.  In Chaturvedi and Carroll (1997), Pudil et al (1994), 

Law et al (2004), Yang and Honavar (1998), various search methods including 

sequential forward/backward searches, floating search, beam search, bidirectional 

search, Particle Swarm Optimisation (PSO) and genetic algorithm (GA) are applied to 

feature selection.  To handle irregular and complex search spaces, the search should 

adopt a global strategy and rely heavily on intelligent randomization.  PSO, Ant Colony 

(AC) and GAs follow just such a strategy.  A review on these global search methods is 
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conducted on the next chapter.  Based on the review in section 2.4.4., PSO focuses 

more on local neighbour information during search, thus inheriting similar weaknesses 

of local search (Firpi and Goodman, 2004).  On the other hand, the review also reveals 

that AC is inclined more to solving routing, path finding, and decision tree like problems 

(Dormigo and Gambardella, 1997; Sim and Sun, 2003; Chiang et al, 2006), and is not a 

common approach to feature selection tasks.  Hence, this research is focused on the 

use of the GA for feature selection. 

 

The appropriateness of using the GA in feature selection problems can be seen 

from its good performance and wide implementation as documented in the literature 

(Brill et al, 1992; Raymer et al, 2000; Jack and Nandi, 2000; Zio et al, 2006).  However, 

extensive experimentation and experience from a large number of applications 

revealed some limitations and shortcomings of GAs.  GAs may be efficient in locating 

the optima in the search space.  But, GAs can suffer from excessively slow 

convergence before finding an accurate solution because of the characteristics of the 

use of minimal a priori knowledge and failure of exploiting local information (Renders 

and Flasse 1996).  To resolve this weakness, GAs have been combined with other 

search algorithms (Ackley 1987, Goldberg 1989, Kazarlis et al 1996, Miller et al 1993, 

Mitchell et al 1994, Mühlenbein 1992, Papadakis and Theocharis 1996, Petridis et al 

1998, Renders and Bersini 1994).  Hence, this research focuses on the investigation of 

a hybrid GA model for feature selection. 

 

 The earliest innovation in hybrid GA approaches is the integration of local 

search method with GA (Miller et al, 1993; Dengiz et al, 1997; Menozzi et al, 1996).  In 

most of the hybrid systems, local search is added into GA as an additional search 

operator.  The intention is to utilize the advantages of neighborhood search in local 

search methods to improve the GA efficiency.  However, adding extra operator implies 

the increase of computational load in GA.  Hence, the current trend has moved towards 
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hybridizing GA with other metaheuristic search methods such as Simulated Annealing 

(SA) and Tabu Search (TS).  In this approach of hybridization, the concept of each 

technique is mixed together to complement each other’s weaknesses.  This leads to 

the formation of enhanced search strategies without adding extra search operator. 

 

 SA can be viewed as an enhanced version of hill-climbing search, whereby the 

main advantage is the usage of the temperature parameter in SA to control the degree 

randomization (Kirkpatrick et al., 1983).  TS, on the other hand, utilizes various kinds of 

memory (recency, frequency, quality, and influence) as guidance in the search process 

(Glover, 1986).  In GA, the degree of randomization is controlled via a selection 

operator.  Hence, hybrid GA-SA algorithm caught less attention as compared with 

hybrid GA-TS systems. 

 

 For TS, context forms the fundamental of attributes definition and the 

determination of move neighbourhoods, and in the choice of conditions to define tabu 

restriction.  GAs, on the other hand, stresses the freedom of its rules from context.  

Crossover in GAs is a context neutral operation, whereby it is assumed to be 

independence from any condition of that solution must obey in a particular problem 

setting.  In practice, however, it is generally taken this as an inconvenient assumption, 

which makes the solution of interest difficult to find.  Consequently, a good deal of effort 

is to implement TS’s context in GA operations, particularly in crossover and mutation.  

Such implementation allows genetic operators to remove deficiencies of standard 

operators upon being confronted by changing context, hence addressing context 

directly and making it an essential part of the design for generating combinations.  

Hence this research focused on the integration of TS into GA. 
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1.6 Research Objectives  

In feature selection, a learning system is required as the fitness evaluator.  In order to 

have an efficient search, the learning system must be accurate, fast, and easy to 

configure.  As mentioned earlier, most NN models suffer from these problems, 

particularly on learning speed and configuration complexity.  The FAM network meets 

the requirements of such a fitness evaluator.  Its characteristics of fast learning, noise 

tolerance, and flexible configuration makes it a suitable fitness evaluator. 

 

All the above reasons drive this research to focus on the investigation of a hybrid 

algorithm of GA and TS for feature selection, and the incorporation of the resulting 

feature selection approach in FAM to tackle pattern classification problems.  

Specifically, the main objectives of this research are as follows: 

i. To examine the feasibility of the GA for feature selection in FAM; 

ii. To devise a hybrid GA-TS algorithm for feature selection for FAM; 

iii. To demonstrate the effectiveness and applicability of the hybrid GA-TS 

algorithm coupled with FAM in tackling pattern classification tasks. 

 

1.7 Research Scope 

As mentioned earlier, FAM is selected as the baseline NN classifier in this research 

because of its desirable characteristics in tackling the stability-plasticity dilemma and its 

good performances in handling pattern classification problems.  Since feature selection 

is a NP-hard problem, global search methods are much suitable as compared with local 

search methods.  Hence this research is focused on global search strategies for 

feature selection.  This research is also focused in wrapper-based feature selection 

techniques owing to it’s superiority in terms of classification accuracy.  Among various 

global search strategies, the GA is selected as the search method in this research 

owing to its strength in formulating a good platform for a parallel search using global 

information as well as its suitability in handling feature selection problems, as revealed 
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from the literature review (in section 2.5).  The enhancement to the GA search strategy 

is then introduced by integrating local metaheuristic search methods into the GA, and 

TS in particular is selected for investigation.  From the literature review, combination of 

GA and TS has been proposed and has shown good results.  However, the application 

of hybridisation of GA and TS to feature selection problems is still new.  Therefore, it is 

worthwhile to research into the effects of integrating TS into the GA with the most basic 

configuration, and compare the performances empirically on classification accuracy 

and network compactness.  In short, the main scope of this research is to develop an 

automated feature selection algorithm, based on a hybridisation of GA-TS, for FAM. 

 

To evaluate the capabilities and applicability of the proposed algorithm, a series 

of empirical studies are performed using benchmark data obtained from public domain 

repositories.  The data sets used include Horse Colic, Thyroid, Iris, Pima Indian 

Diabetes (PID), Wisconsin Prognostic Breast Cancer (WPBC), Heart disease, 

Ionosphere, German credit ranking, Single Proton Emission Computed Tomography 

(SPECTF), and Hepatitis.  The selection of data sets used in each experiment is based 

upon the availabilities of published results for performance comparison purposes.  In 

addition, two real medical data sets, i.e. Myocardial Infraction and the acute stroke 

diagnoses, are tested to demonstrate the applicability of FAM coupled with the 

proposed GA-TS algorithm to medical pattern classification tasks. 

 

1.8 Research Methodology 

 A step-by-step methodology is applied to achieve the research objectives.  First, 

a standard GA is developed using the most basic configuration.  The GA parameters, 

particularly the crossover and mutation rates are set based on the rules of thumb e.g. a 

higher rate for crossover and a lower rate for mutation.  The capabilities and 

applicability of GA in feature selection are then evaluated using a series of experiment 

with benchmark data sets i.e. Horse Colic, Pima Indian Diabetes (PID), Iris and Thyroid 
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data sets, and the results are then compared with other published results.  First, an 

experimental study is conducted to justify the suitability of using FAM coupled with the 

GA in this research.  Then, an experimental study is conducted to demonstrate the 

effectiveness of using the GA as the search method for feature selection.  

 

 The research continues with the proposal of a hybrid GA-TS algorithm for 

feature selection.  Two memory structures of TS are integrated into the GA.  The 

performances of the proposed system are assessed and compared with those from the 

ordinary GA using WPBC, Heart disease, Ionosphere, German credit ranking, SPECTF, 

and Hepatitis data sets.  A performance comparison with other published results is 

conducted.  The bootstrapping method is also applied to quantify the performance 

indicators, i.e., classification accuracy and number of noisy features reduced, 

statistically.  The proposed approach is then evaluated using real-world data sets in the 

medical domain, i.e. Myocardial Infarction (MI) and acute stroke diagnoses.  Besides 

that, studies on the evolution process and the effect of GA-TS in terms of 

computational demand are conducted. 

  

 Next, the research is focused on the evaluation of the noisy feature reduction 

capability of the proposed GA-TS algorithm.  Two methods are devised to inject noise 

into existing data sets.  They are noise injection to existing feature and extra noisy 

feature injection.  The proposed GA-TS algorithm and standard GA are then put to test 

using WPBC, Heart disease, Ionosphere, German credit ranking, SPECTF, and 

Hepatitis data sets.  The performance comparison is focused on the capabilities of 

each method in identifying and removing simulated noisy features.  

 

 In the last step, real applicability of FAM coupled with the proposed GA-TS 

algorithm to medical data (MI and stroke) classification is studied.  Two additional 

performance measures, i.e. specificity and sensitivity that are commonly used in 
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medical data analysis, are employed to quantify the results.  Implications of FAM with 

GA-TS in medical data classification tasks are analysed and discussed. 

 The overall research methodology is summarised in Figure 1.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 An overall diagram of research methodology applied in this research 
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1.9 Research Contribution 

The applications of the GA in feature selection for FAM classification have been 

systematically investigated.  The main contribution of this research lies in the proposal 

of an approach for feature selection using hybridisation of the GA and TS.  Two 

memory structures, i.e. the recency and frequency memory structures, from TS are 

integrated into the genetic operators of the GA.  To accommodate the TS memory 

structures in the GA, a new statistical rule is introduced to keep track of the frequency 

memory within the evolution process of the GA.  The effectiveness of the proposed GA-

TS algorithm coupled with FAM is systematically evaluated using a series empirical 

studies comprising benchmark data sets, and the results are analysed and compared 

with those published in the literature.  In addition, the applicability of the proposed 

approach to medical pattern classification problems is demonstrated using real data 

sets collected from hospitals.  In summary, this research proposes a new automated 

feature selection algorithm based on GA and TS for NN-based classification systems. 

 

1.10 Thesis Outline  

This thesis is organized in accordance with the objectives mentioned above.  After an 

introduction to the research background in pattern classification and NN models, as 

well as an explanation to problems and motivations of the research, the research 

objectives, scope and methodology in Chapter 1, a general review on various search 

algorithms is presented in Chapter 2. 

 

In Chapter 3, a review on GA is given.  A series of experimental studies to 

evaluate the suitability of GA in feature selection are also presented.  In Chapter 4, a 

review on TS is presented.  Then, a hybrid GA-TS algorithm is proposed.  A series of 

benchmark studies to evaluate the effectiveness of the proposed hybrid system are 

then presented. 
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The capabilities of the proposed hybrid system in noisy feature reduction are 

evaluated in chapter 5.  Application of the proposed system in real-world case studies 

are conducted in Chapter 6.  The results obtained are analyzed, compared, and 

discussed. 

 

Finally, conclusions are drawn and contributions of this research are set out in 

Chapter 7.  A number of areas to be pursued as further work are suggested at the end 

of this thesis. 
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CHAPTER 2 

 

A REVIEW ON FEATURE SELECTION FOR NEURAL-NETWORK-BASED 

CLASSIFICATION 

 

 

2.1 Introduction 

Neural Networks (NNs) is one of the branches of Artificial Intelligence (AI).  It is also 

known as connectionist systems, parallel distributed processing (PDP), neural 

computing, and artificial neural systems.  NNs try to mimic how a brain and nervous 

system works.  NNs are famous for their inductive learning ability, i.e., the ability of 

learning from examples.  Besides that, NNs are able to generalize and recognize 

previously unseen data.  NNs extract information without specifying a data model and 

possess the train-and-go characteristic. 

 
The next section discusses the importance of feature selection in NN models.  A 

classification of feature selection techniques is presented.  A thorough survey on 

search techniques, which constitute the main strategy used for feature selection and for 

optimization purposes, is included.  The operation of each search method is described.  

The advantages and disadvantages of the reviewed methods are also discussed.  

Then, a review on use of the Genetic Algorithm (GA) in feature selection is presented.  

A summary is presented at the end of this chapter. 

 

2.2 Importance of Feature Selection in NN Models 

In NN-based classification systems, disregard of the underlying NN model used, the 

classification performance is mainly dependent on the data set.  The variation of the 

learning methodology in NN models only helps boost the classification performance.  

Therefore, the task of selecting useful and meaningful data for NN-based classification 
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is utmost important.  In real-world situations, relevant features in a data set are often 

unknown a priori (Dash and Liu, 1997).  In such situations, many features are 

introduced with the assumption that all features can help represent the domain problem.  

However, many of these features may be partially, if not completely, irrelevant to the 

domain problem.  The existence of such redundant features can cause confusion 

during the learning phase, and also can increase the complexity of the feature space, 

which will result in a greater computational demand (Muni et al, 2006).  Therefore, 

feature selection is a very important topic in NN-based classification. 

 

Feature selection has caught the attention of researchers for quite some time.  

With the creation of new databases and new machine learning techniques, novel 

approaches for feature selection is in demand (Dash and Liu, 1997).  Parkins and 

Nandi (2005) implemented feature selection in handwritten digit recognition while 

Garret et al applied feature selection to MLP for EEG signal classification.  Mahil and 

Gao (2004) used feature selection on feedforward NN and RBF NN for machine defect 

classification problem.  Jack and Nandi (2000) applied a GA in feature selection of 

vibration signals for machine condition monitoring problems with the MLP NN.  

Although a variety of feature selection methods have been introduced, all feature 

selection approaches share some common goals (Steppe, 1998): 

 maximizing the classification accuracy while minimizing the number of features 

 improving the classification accuracy by removing irrelevant features 

 reducing the data complexity and computation cost 

 reducing the amount of data for the learning phase 

 improving the changes that a solution will both be understandable and practical 

 

2.3 A Classification of Feature Selection Techniques 

Generally, there are two categories of feature selection techniques (Law et al 

2004, Blum and Langley 1997, Kohavi and John 1997): filters and wrappers.  In filter 
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approaches, the data set alone is used to evaluate the relevance of each feature to the 

target output, regardless of the classification algorithm.  Some representative 

algorithms in filters approaches are RELIEF (Kira and Rendell 1992) and its 

enhancement (Kononenko, 1994).  The basic concept of these algorithms is to assign 

feature weights based on the consistency of the feature value in k-nearest neighbours 

of every data point.  An information-theoretic method is used in Battiti (1994) to 

evaluate the features, whereby the mutual information between a relevant feature and 

the class label should be high.  Besides, the concept of Markov blanket is used to 

formalize the notion of irrelevancy (Koller and Sahami, 1996); a feature can be 

regarded as irrelevant if it is conditionally independent of class labels given other 

features. 

 

 In wrapper approaches (Chaturvedi and Carroll, 1997), learning algorithms are 

used to evaluate the quality of each feature.  Specifically, a learning algorithm is run on 

a feature subset, and the classification accuracy of the feature subset is taken as a 

measure for feature quality.  Generally, wrapper approaches are more computational 

demanding as compared with filter approaches.  However, wrapper approaches often 

are superior in accuracy when compared with filters approaches which ignore the 

properties of the learning task in hand (Chaturvedi and Carroll 1997).  In most 

application of NN classification tasks, accuracy plays a greater role as compared with 

that of computational cost.  Therefore, this research focuses on wrapper approaches 

for feature selection. 

 

 Both approaches, filters and wrappers, usually involve combinatorial searches 

through the space of possible feature subsets.  In Chaturvedi and Carroll (1997), Pudil 

et al (1994), Law et al (2004), Yang and Honavar (1998), various search methods 

including sequential forward/backward searches, floating search, beam search, 

bidirectional search, and genetic algorithm are applied to feature selection. 
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2.4 A Review on Search Techniques 

The goal in optimization is to find an optimal arrangement, grouping, ordering, or 

selection of discrete objects normally finite in number (Lawler, 1976).  The approaches 

to combinatorial optimization problems are exact algorithms & approximate algorithms.  

Exact algorithms systematically search the solution space to find an optimal solution in 

finite time.  The results of an optimal solution is guaranteed, but the time needed to 

solve NP-hard of many combinatorial optimization problems may grow exponentially in 

the worst case.  On the other hand, approximate algorithms aim to get good and 

approximately optimal solutions in a reasonable time.  In contrast to exact algorithms, 

approximate algorithms cannot guarantee optimality of the solutions returned.  

However, approximate algorithms such as local search and solution construction 

algorithms proved to achieve short computational time.   

 

2.4.1 Blind search 

In traditional search algorithms, the search process can be defined as a form of search 

tree where a goal state is defined.  A node in the tree represents a solution, and its 

successors, or children, are defined by the operators.  Search strategies, such as blind 

search, are defined to search the tree.  Blind search methods typically do not have 

information of the problem domain.  It is able to distinguish a non-goal state from a goal 

state.  The two main blind search strategies are depth-first (Tarjan, 1972;Skiena, 1990) 

and breadth-first (Skiena, 1990) searches. 

 

Breadth-first search is a systematic search where it generates all the 

successors of the root node in the search tree.  Next, it generates all the successors of 

those nodes. It considers all nodes at each level of the tree and continues until a 

solution is found.  Thus, it is guaranteed to find a solution if the solution exist.  On the 

other hand, in depth-first search, a single successor of the root node is generated.  It 
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follows by generating one successor to that node and continues until a maximum depth 

is reached.  It explores though one branch of the tree and backtracks to the previous 

root node and generates another successor if no solution is found.  It does not 

guarantee to reach goal state and may not reach the optimal solution.  

 

Blind search methods are costly if the problem domain has a large search 

space.  In the worst case scenario, a search problem cannot be solved in polynomial 

time of the size of the problem instance.  As such, if the decision problem is in the NP 

hard complexity class, the optimization or search problem must also be at least as hard 

(Papadimitriou and Steiglitz, 1982). 

 

2.4.2 Heuristic search 

Heuristic search is introduced to solve problems with a large search space. It is an 

approximate method, which uses rules-of-thumb to define the problem structure.  Such 

definition allows the generation of a possible solution in a combinatorial optimization 

problem or a search strategy that finds good solutions in a reasonable time (Reeves, 

1995).  Heuristics can improve time complexity in search problems by only considering 

a subset of all possible solutions or by only generating solutions that are closest to the 

goal state.  A move in heuristic search is often made by applying a small random 

change on the current solution.  Such operator is known as mutation, and normally it 

does not require any domain knowledge. 

 

Hill-climbing or steepest descent (Arfken,1985) is an example of heuristic 

search.  It only keeps track on one current state and moves on to the path that leads 

closer to the goal state.  It begins with a randomly generated initial state.  It then takes 

the successors of the current state and uses the evaluation function to assign a score 

to each successor.  The successor with a better score is then set as the new current 

state.  This process repeats iteratively until no changes in the current state occur.  
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Local optima may be reached and may cause incomplete search.  Hill climbing search 

works well if an accurate heuristic measure is available in the domain, and if there are 

no local maxima. 

 

Several variants of hill-climbing are proposed, e.g. Stochastic hill-climbing 

(William, 1988) and multi-start hill-climbing (Torn and Zilinskas, 1989).  Unlike normal 

hill-climbing, stochastic hill-climbing also accepts neighbors that are equivalent to the 

current solution.  The multi-start hill-climbing method starts the search by several 

random initial states in its attempt to improve the search.   

 

Another simple heuristic search method is best-first (Pearl, 1984).  This method 

starts with generating a set of neighbor solution based on the current solution.  The 

best solution of the neighbour is selected.  Then, based one best solution found in the 

neighbor solution, a new set of neighbor solution is generated.  This process continues 

until no improvement can be found.  Beam search, another search technique, is similar 

to best-first, but the difference is beam search will return to previous neighbor if no 

improvement can be found.  

 

Heuristic search is often known as local search, as it focuses on searching for 

improved solution within the local neighbourhood of the current solution.  Domain 

knowledge is only required as an evaluation function in heuristic search to measure the 

distance between current solution with the desired goal.  Based on the improvement 

within local neighbours, the search will continue its move towards the desired goal.  

The heuristic evaluation function is also known as cost function, objective function, or 

fitness function. 
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