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PERUBAHAAN  FISIKO-KIMIA  MATKRIKS  GLUTEN  YANG  DISEBABKAN 

OLEH  TINDAKBALAS  MAILLARD  BERSAMA GLUKOSA    

 

 

Abstrak 

Kajian yang dijalankan ini berobjektif untuk mendapatkan penjelasan tentang 

kesan interaksi gula-protein terhadap sifat-sifat fisiokimia matriks gluten. Kajian 

dijalankan dengan menggunakan Kalorimeter Penskanan Perbezaan (DSC), 

Penganalisa Tekstur, Kolorimeter dan spektrofotometer untuk memerhati 

kesan-kesan pelbagai gula (glukosa, xilosa dan sukrosa) terhadap protein 

gluten gandum semasa kejadian tindakbalas Maillard. Kajian 'DSC' 

menunjukkan bahawa suhu denaturasi termal bagi protein gluten gandum 

bertambah dengan kehadiran glukosa dan sukrosa dan ini mungkin 

disebabkan keupayaan gula untuk menstabil gluten gandum asal. 

Walaubagaimana pun protein gluten gandum yang mengandungi glukosa dan 

sukrosa tidak menunjukkan transisi pautan silang (eksotermik). Gel protein 

gluten gandum (WG) yang samada mengandungi gula atau tidak telah 

disediakan dengan memanaskan serakan ramuan dalam kaleng tertutup, di 

dalam autoklof berskala makmal pada 121 oC selarna 30 minit, diikuti dengan 

pengolahan pada 4oC selarna 18 j. Tindakbalas Maillard menyebabkan 

pertukaran warna yang signifikan (p<0.05), pengurangan pH dan peningkatan 

pemerangan. Dalam proses ini kehilangan lisina tersedia (48%) dan 

kehilangan glukosa (62%) menunjukkan yang kedua-dua ini terlibat di dalam 

tindakbalas, sebaliknya tiada kehilangan sukrosa mencadangkan yang 

sukrosa tidak terlibat dalam tindakbalas. Pembentukan gel gluten gandum 



 xix

dengan glukosa (WG-G) menunjukkan sineresis yang paling kurang jika 

dibandingkan dengan gel yang mengandungi sukrosa (WG-S) dan tanpa 

apa-apa gula (WG). Gel WG-G juga menunjukkan daya pemegangan air 

(WHC) yang tinggi berbanding gel WG-S dan WG. Sineresis dan WHC yang 

bertambah baik bagi gel WG-G mungkin disebabkan oleh net cas yang lebih 

tinggi di molekul protein hasil dari tindakbalas Maillard. Sifat-sifat reologi gel 

protein gluten gandum dikaji dengan menggunakan 'Texture Analyser'. Ujian-

ujian stres-rehat bagi gel dalam mod pemampatan diukur dan respons 

dianalisa menggunakan persamaan Peleg. Parameter-parameter dalarn 

persamaan ini, keelastikan gel (K1 dan K2) menunjukkan yang ia sangat 

bergantung kepada system gula. Gel WG-G lebih elastic dari gel-gel WG-S 

dan WG. Berikutan ini daya pemecahan gel dan modulus residual taksimptotik 

bagi gel WG-G adalah lebih tinggi dari gel-gel WG-S dan WG. Adalah 

dicadangkan bahawa gel WG-G yang terbentuk oleh haba (Maillard Gel) 

bertambah kekuatan gel dan ciri-ciri viskoelastik secara signifikan (p<0.05) 

yang mungkin mengandungi gabungan silang (gabungan silang Maillard) 

dalam jaringan gel. Kajian keterlarutan protein dalarn larutan pemecah (2% 

natrium dodesil sulfat + 2%  - mekkapto-etanol) menunjukkan keterlarutan gel 

WG-G menurun dengan peningkatan kepekatan glukosa, kemungkinan ia 

disebabkan oleh pembentukan ikatan kovalen dalam jaringannya. 

 

 

 

 

 



 xx

PHYSICO-CHEMICAL CHANGES OF GLUTEN MATRIX AS A RESULT OF 
MAILLARD REACTION WITH GLUCOSE 

 

 

ABSTRACT 

 

The present study was undertaken with the objective of elucidating the effect of 

sugar-protein interactions on the physicochemical properties of gluten matrix. 

Studies were conducted using Differential Scanning Calorimetry, Texture 

Analyzer, Colorimeter and Spectrophotometer to observe the effects of various 

sugars (glucose, xylose and sucrose) on the wheat gluten proteins during the 

Maillard reaction. The DSC studies revealed that the thermal denaturation 

temperature of wheat gluten proteins increased in the presence of glucose and 

sucrose, and this was probably due to their (the sugar) ability to stabilize the 

native wheat gluten. However, wheat gluten proteins containing glucose and 

sucrose did not show any cross-linking (exothermic) transition. Wheat gluten 

protein (WG) gels with or without reducing sugars were prepared by heating the 

dispersions in sealed cans in a laboratory size autoclave at 121oC for 30 min., 

followed by curing treatment at 4 oC for 18 h. The Maillard reaction caused a 

significant (p< 0.05) change in colour, a decrease in pH and increase in 

browning. In the process the loss of available lysine ( 48%) and loss of glucose 

( 62%) showed that these were implicated in the reaction, on the other hand 

there is no loss of sucrose suggesting that sucrose was not implicated in the 

reaction. Gelling of wheat gluten with glucose (WG-G) showed much less 

syneresis compared to that with sucrose (WG-S) and without any sugar (WG). 

The WG-G gels also showed higher water holding capacity (WHC) in 
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comparison to that of WG-S and WG gels. The improved syneresis and WHC of 

WG-G gel may be attributed to the higher net charge on the protein molecules 

as a result of the Maillard reaction. Rheological gel properties of wheat gluten 

protein gels were studied by Texture Analyzer. The stress relaxation 

experiments of the gels in compression were measured and the response 

analyzed using Peleg's equation. The parameters in this equation, the gel 

elasticity (K1 & K2) showed strong dependency on the sugar systems. The WG-

G gels were more elastic than the WG-S & WG gels. It follows that, the gel 

break strength and asymptotic residual modulus of the WG-G gels were higher 

than those of the WG-S & WG gels. It was suggested that WG-G heat-induced 

gel (Maillard gel) had a significant (p< 0.05) improvement in the gel strength 

and viscoelastic properties which may contain additional nondisulphide covalent 

crosslinks ("Maillard cross-links") within the gel network. Studies on protein 

solubility in disrupting solvent (2% sodium dodecyl sulphate + 2% -mercapto-

ethanol) revealed that the solubility of WG-G gels decreased with increasing 

glucose concentration, probably due to the formation of additional covalent 

bonds in their network.   
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CHAPTER 1 

 INTRODUCTION  

 

1.1 Background and significant implication of study 

 

The animal proteins (milk and egg) are now being replaced to plant base 

proteins by manufacturers of food items due to the consumers' attitude as well 

as the economic reasons. Gluten and soy protein are extensively being used as 

basic components for vegetarian food products especially in many Asian 

countries. Wheat gluten protein is an important raw material in the manufacture 

of foods for breakfast, infant, snack and pasta products. Gluten, which is a 

mixture of more than 100 heterogeneous polypeptides, is composed of two 

main storage proteins, namely, Gliadins and glutenins. Glutenins (with 

molecular mass of 69 to 88 kDa based on SDS-PAGE) (Anderson et al., 1988) 

are responsible for elastic behavior, whereas gliadins (with molecular mass of 

30 to 50 kDa) (Tatham et al., 1990) are responsible for viscous flow properties 

of the foods. 

 

The most significant aspect of gluten story for the food industry is the 

importance and the potential of gluten as a commodity, sold for a wide range of 

uses around the world. 'Vital Wheat Gluten' protein is now a significant 

ingredient in the food industry and important item of world trade (Krishnakumar 

& Gordon, 1995; Boland et al., 2005). Its rheological properties are the basis of 

the functional uses of vital gluten (Day et al., 2006). It is these properties that 

permit breads, cakes, biscuits and noodles to be made from wheat-flour 

doughs. Thus, gluten can be considered to be like a dough in which the diluting 
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effect of starch is no longer present. In the wet state, the protein molecules form 

a cohesive matrix which, in dough, also holds the starch granules within it. This 

matrix is also elastic, allowing it to stretch and expand. In aerated doughs, this 

elasticity permits the expansion of gas bubbles, which produce the texture of 

bread and cakes (Day et al., 2006). 

 

The nonenzymatic interaction between reducing sugars with amino groups of 

the lysine residue of proteins, known generally as the Maillard reaction, has 

proven to be extremely important in food science. Actually it is a group of 

complex reactions  which results in the formation of both large protein 

aggregates and low molecular weight products that are believed to impart the 

various flavour, aroma, and colour characteristics of foods (Sun et al., 2004). 

Over the past few years there has been growing interest in the interaction of 

reducing sugars and protein to understand structural functionality in 

compositionally complex food systems (Aoki et al., 1999; Aoki et al., 1997; 

Morgan et al., 1999). It has been reported that the glycated proteins could 

improve the functional properties of food, such as thermal stability, emulsifying 

ability, foaming properties (Kato et al., 1993; Kato et al., 1988; Kato et al., 

1995), antioxidative activity (Nakamura et al., 1992; Sun at al., 2004; Benzakul 

at al., 2005a, 2005b), and gelling properties (Easa et al., 1996b; Matsudomi at 

al., 2002; Sun at al., 2004; Yamul & Lupano, 2005). 

 

The Maillard reaction may be desirable as in baked, fried or roasted foods or 

undesirable as in concentrated and dried foods. The Maillard cross-linking in 

protein can have a profound effect on the structure and function of proteins in 
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food. Nevertheless, the importance of protein cross-linking in food systems is 

less well studied, but it is clear that such specific modifications of the properties 

of a protein are, potentially, of great practical importance in the food industry. 

The protein gels prepared in the presence of reducing sugar are shown to have 

changed texture, reduced solubility, and enhanced gelation, due to change in 

pH, charge on the protein and critical protein concentration that are responsible 

for gel formation.   

 

Thus it is possible to modify the properties of wheat gluten gel through Maillard 

reaction in such a way that the "Maillard cross-links" are allowed to form within 

the gel network. The enhanced physicochemical properties of wheat gluten gel 

coupled with antioxidative properties will be of sufficiently high commercial 

values.  

 

1.2 Hypothesis 

 

The Maillard reaction taking place during heating of the wheat gluten dispersion 

containing reducing sugar may induce changes that are important in the 

subsequent functional properties of the protein. The induced changes due to the 

glycation of amino acid (lysine) side chains with glucose allow the generation of 

brown colouration which coupled with the formation of additional non-disulfide 

crosslinks within the gel matrix may improve some physicochemical properties 

of the gluten gel matrix. The enhanced properties of the gel matrix could be 

exploited for a good use in food processing technology. 
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1.3 Objectives 

 

The main objective of this project is to investigate the possible use of Maillard 

reactions to enhance the functional properties of wheat gluten protein. Several 

specific objectives can be outlined below: 

a) To develop a method or protocols for preparation of gluten gels containing 

reducing sugar that undergo the Maillard reaction during retort heating. 

b) To investigate the occurrence of the Maillard reaction in the gluten gel 

matrices as a function of sugar concentrations. 

c) To investigate the contribution of lysine and glucose on the improvement of 

gluten gel matrix. 

d) To investigate the contribution of sucrose and gluten matrix (prepared without 

any sugar) as control for the comparison of study. 

e) To investigate the contribution of the SH groups and SS bonds on the 

improvement of gluten gel matrix as a function of sugar concentrations. 

f) To investigate the occurrence and contribution of the additional "Maillard 

Cross-links" on the improvement of the gluten gel matrix. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction                            

 

Gels and foams provide traditional and novel structure in many foods. The 

ability to gel is an important function of proteins in food systems. Many proteins 

in food have the ability to form gels and provide structure. These include 

proteins of meat, milk, eggs, and soy which give structure to the products such 

as yogurt, gelatins, omelets, and surimi. The acceptability of many foods relies 

on their gel formation capacity that is determined by the protein's ability to bind 

water (Schnepf, 1989; Alting et al., 2004; Avanza et al., 2005). Protein gels can 

be formed in several ways but perhaps the most common method occurs by 

heating the solutions of protein, because  that is the most frequently used 

process in the food industry to obtain the safe products with a prolonged shelf 

life. Heat is also used to improve the sensory properties of food. However, it 

may also cause changes that decrease food quality. Many desired as well as 

undesired effects of heating are due to the Maillard reaction (Martins et al., 

2000). The gels formed in such processes are studied and discussed in the 

present thesis.   

 

2.2 Definition of terms 

 

The terms denaturation, gelation, coagulation, association, aggregation and 

precipitation are often used to describe changes to protein upon heating. It is 



 6

important to understand and differentiate between these terms. Upon heating, 

protein molecules may undergo full or partial denaturation. The dissociated 

molecules may then associate and hence form a coagulate, precipitate, or gel 

depending upon the conditions of heating. 

 

Denaturation refers to any process which causes a change in the 

three-dimensional structure of the native protein which does not involve rupture 

of peptide bonds. Protein-solvent interaction may be involved as well as 

changes in the physical properties of the protein (Schmidth, 1981). 

 

Aggregation refers to protein-protein interactions which result in the formation 

of complexes of higher molecular weight (Mulvihill & Kinsella, 1987). 

 

Coagulation is the random aggregation of already denatured protein molecules 

in which polymer-polymer interactions are formed over polymer-solvent 

reaction (Mulvihill & Kinsella, 1987). 

 

Protein gels are defined as the three-dimensional network in which 

polymer-polymer and polymer-solvent interactions occur in an ordered manner 

resulting in the immobilization of large amounts of water by a small proportion 

of protein (Mulvihill & Kinsella, 1987; Schnepf, 1989). Gelation may be induced 

by heat or divalent cations. 

 

In gelation, polymer-polymer and polymer-solvent interaction as well as attrac-

tive and repulsive forces are balanced (Gossett et al., 1984). Gelation differs 

from coagulation and aggregation in that a well ordered matrix is formed. 
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Gelation is thought to proceed by a two step mechanism. First, protein begins 

to unfold which changes its conformation. This may be followed by aggregation 

of the protein. In the second step, which proceeds more slowly, the denatured 

protein molecules orient themselves and interact at specific points forming the 

three-dimensional network (Gossett et al., 1984; Mulvihill & Kinsella, 1987). 

 

The rate of the second step is critical and may determine some of the 

characteristics of the gel. If the second step is slow, the protein polymer will 

form a fine network. The gel will be less opaque, more elastic, and exhibit less 

syneresis. If step two is fast, a coarser network will be set up and the gel will be 

opaque with more solvent expressed (Gossett et al., 1984). 

 

Many complex interactive forces will determine whether a protein will form an 

aggregation, coagulum, or a gel. For a protein to gel, there must be a balance 

between attractive and repulsive forces. Coagulation occurs if excessive 

attractive forces dominate and, likewise, no gel would be formed if excessive 

repulsive forces are present. The types of forces that hold a gel together 

include hydrophobic interaction, hydrogen bonding, electrostatic interaction, 

and disulfide crosslinks or thio-disulfide interchange (Mulvihill & Kinsella, 1987). 

Protein association reactions generally refer to changes occurring at the 

molecular or subunit level while aggregation reactions generally involve the 

formation of higher molecular weight complexes from association reactions. At 

extreme conditions (i.e. rapid heating or change in pH) protein molecules may 

not have time to interact sufficiently and these results in less hydrated 

aggregates which precipitate. 
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2.3 Classification of gels 

 

There are two types of gels, the polymer network and the aggregated 

dispersion. 

 

(a) Polymer network 

 

Polymer networks are formed by gelatin and polysaccharides such as agarose 

and carrageenan. The network is formed by aggregation of disordered chains 

with regions of local order. These gels are characterised by their low polymer 

concentrations, fine texture and transparency. They may be formed by a variety 

of methods including pH adjustment, ion addition and heating or cooling. 

Gelatin is perhaps the most useful and versatile protein gelling agent in this 

category (Dickinson & Stainsby, 1982). 

 

(b) Aggregated dispersion 

 

Aggregated dispersions are usually formed following heating and denaturation 

of globular proteins. These gels are characterised by their higher polymer 

concentration (5-10 %), which is an order of magnitude greater than that of the 

polymer network gels.  

 

2.4 Gelling systems in this thesis 

 

In this thesis the studies are reported on Maillard gelation of wheat gluten. It is 

water insoluble globular protein (Mertz, 1967; Belitz & Grosch, 1999; Mehas & 
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Rodgers, 2002.). In the following paragraphs gelation due to aggregated 

dispersion is discussed in detail. 

 

2.5 Factors affecting the gelation of globular proteins 

 

The quality of the gels produced by heating a protein solution may depend on 

features that are associated with the protein, the solvent and the method used 

to produce the gel and, of course, a combination of these factors. Some of the 

relevant factors of the said gel are as follows:  

 

A protein network including the tertiary structure of individual polypeptides, is 

generally formed via non-covalent cross-links such as hydrophobic interactions, 

hydrogen bonds or electrostatic interactions, and less frequently by covalent 

interactions such as disulphide bonds. The relative contribution of each type of 

bond to a gel network varies with the properties of protein and environmental 

conditions (Smith, 1994). The physical integrity of the gel is maintained by the 

counter balanced attractive and repulsive forces between the protein 

molecules. The gelling mechanism is determined by this balance and 

protein-solvent interactions (Hermansson, 1979; Cheftel et al., 1985; Ziegler & 

Foegeding, 1990; Kinsella et al., 1994; Matsumura & Mori, 1996; Zayas, 1997). 

 

These protein-protein and protein-solvent interactions are influenced by factors 

that affect protein gelation, as well as affecting the type and properties of gels 

(Hermansson, 1979; Kinsella et al., 1994). These factors can be classified 

(Phillips et al., 1994), as intrinsic and extrinsic, and are listed in Table 2.1. 
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Table 2.1: Factors affecting the interactions in protein gel formation (Phillips et al., 
1994) 
Intrinsic factors Extrinsic factors 

Electrostatic Interactions Protein concentration 

Disulphide bonds pH 

Molecular weight Temperature 

Amino acid composition Ionic strength and type of Ion 

Hydrophobicity Pressure 

 

Intrinsic factors are related to the protein per se, and are: 

 

   a) Electrostatic interactions: The net charge of the protein molecule is 

modified by attractive and repulsive forces, affecting protein-protein and 

protein-solvent interactions (Phillips et al., 1994). These electrostatic 

interactions are promoted by changes in ionic strength or pH. 

 

   b) Disulphide bonds and thiol-disulphide interchange: Covalent disulphide 

bonds among polypeptide chains involved in protein gelation increase the 

apparent chain length of the polypeptide, rather than acting as an initial 

network stabilizer (Clark & Lee-Tufnell, 1986). Disulphide bonds are not 

essential for gelation of proteins, but their role in gelation is related to their 

ability to increase the weight-average molecular weight and hence the chain 

length (Wang & Damodaran, 1990). 

 

   c) Molecular weight: Variations in the formation of a self-supporting gel 

network, i.e. variations in gel strength, could be related to differences in the 

weight-average molecular weight and the hydrodynamic size of the 
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polypeptide species in the gel. The polypeptide critical molecular weight for 

gel formation is about 23 kDa (Wang & Damodaran, 1990). 

 

   d) Amino acid composition: Proteins that contain less than 31.5% of 

hydrophobic residues such as valine, proline, leucine, isoleucine, 

phenylalanine and tryptophane form a coagulum-type gel, whereas proteins 

containing above 31.5% hydrophobic residues form a translucent gel 

(Shimada & Matsushita, 1980).  

 

   e) Hydrophobicity: Non-polar amino acids are grouped, forming a 

hydrophobic nucleus surrounded by a polar residue layer in contact with the 

solvent water, which plays an important role in protein organization and 

should be taken into account in any protein-folding consideration (Mierovich 

& Scheraga, 1980). 

 

Because of the propensity of nonpolar amino acid residues to position 

themselves in the interior of protein molecules in solution, thus avoiding 

contact with the aqueous surrounding, only a portion of them could be 

considered as being effective in hydrophobicity. Effective hydrophobicity refers 

to the value representing the hydrophobicity of protein effectively involved in 

the interactions between proteins with the surrounding medium (Keshavarz & 

Nakai, 1979). 

 

The extrinsic factors are the environmental conditions surrounding the proteins. 

These can be relatively controlled in several ways to achieve a good gel 

formation: 
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a) Protein concentration: The cross-linking of macromolecules of an arbitrary 

initial size distribution is required for gelation and is proportional to the protein 

concentration. There must also be a minimal concentration of the protein itself, 

below which a continuous three-dimensional structure cannot be formed (Ferry, 

1948). Gel strength and deformability is highly dependent upon protein 

concentration (Samejima et al., 1986; Hongsprabhas & Barbut, 1997). 

 

    b) pH: The net charge of protein at its isoelectric point is zero but it get 

charged when away from its isoelectric point. Therefore, the greater the net 

charge on the protein molecule, the greater the electrostatic repulsion 

between molecules, preventing the interactions required to form a matrix 

(Cheftel et al., 1985; Hermansson, 1979; Kinsella et al., 1994; Zayas, 1997). 

 

c) Temperature: Temperature is one of the most important factors because it is 

a driving force to unfold protein domains. When the gelling temperature 

coefficient is high, the first gelation step (denaturation) is completed faster than 

second step (aggregation). For a given rate of denaturation, the rate of 

aggregation is slow if the attractive forces between the denatured protein 

chains are small, resulting in a fine network and a translucent gel (Ferry, 

1948). Consequently increasing temperature will improve a fine network 

formation because the peptides will aggregate to form the gel network during 

cooling (Pomeranz, 1991). 

 

d) Ionic strength: Ionic strength has a significant effect on water absorption, 

swelling and solubility of proteins, due to the formation of competitive linkages 

(Borderias & Montero, 1988). Ionic strength has an effect on the microstructure 
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of the gel matrix, where at low ionic strengths (< 0. 1M) of monovalent cations 

a fine-stranded matrix is formed.  On the other hand at ionic strengths > 0.1M 

the matrix becomes mixed (Foegeding et al., 1995). 

 

   e) Type of salt: Chloride monovalent ions (Li+, K+, Rb+, Cs+) form a fine 

stranded matrix at ionic strengths less than 0.1 M. The salt concentration 

required to change gel microstructure depends on the salt's position in the 

Hofmeister series. Matrix formation also occurs when the protein suspension 

contains low concentrations (10-20 mM) of divalent cation (Ca2+ , Mg2+, Br2+) 

chlorides at pH 7.0 (Foegeding et al., 1995). 

 

   f) Pressure: Pressure affects the sol-gel transition of protein solutions. High 

pressure modifies the native volume of proteins, which is due to  three 

contributions, (a) volume of constituent atoms (compositional volume), (b) 

volume of internal cavities, (c) contribution due to solvation. The native 

structure, that governs the biological activity of proteins, is a delicate balance 

between stabilizing and destabilizing interactions within the polypeptide chain 

and with the solvent (Balny & Masson, 1993). Changes in volume caused by 

pressure will affect these balances (Smith et al., 2000). 

 

Gel-induction: 

 

Gelation is a phenomenon, therefore its definition and the gel formed depends 

on the observer's perspective and the technique(s) used to evaluate it (Ziegler 

& Foegeding, 1990). A simple definition could be that protein gelation is an 
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aggregation of denatured molecules with a certain degree of order, resulting in 

the formation of a continuous network (Wong, 1989). Gelation is basically a 

two step process: denaturation and aggregation (Kinsella et al., 1994; 

Matsumura & Mori, 1996).  Totosaus et al., (2002) has given a list of the 

physical and chemical means to induce protein gelation that are listed in Table 

2.2. 

 

Table 2.2: Physical and chemical means to induce protein gelation (Totosaus et al., 
2002) 
Physical Heat Native protein partially unfolded by heat to form a 

network. Ordered matrix, by aggregation of the 

molecules. 

High pressure Pressure (200-500 MPa) induces hydrophobic 

interactions and disulphide bonds between protein 

molecules, resulting in a rearrangement gel structure. 

Chemical Ion After initial heating and salt addition, electrostatic 

repulsion or charges are shielded, forming a gel. 

Disruption of secondary structure induces a 

hydrophobic effect. 

Urea Urea promotes intermolecular thiol-disulphide oxidation 

of thiol groups, resulting in a network formation. 

Acid Slow pH reduction allows denaturation to form clusters 

or aggregates. These fractal clusters may be 

considered as the building blocks of the gel. 

Enzymatic Enzyme catalyses cross-linking between protein 

glutamine residues to form a gel structure. 

 

Heat-induced gelation: 

 Heat induced gelation is the most commonly studied phenomenon in food 

science, mainly because it is responsible for the structure of many everyday 

heat-set foods. 
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Ferry (1948), proposed a two step mechanism for protein gelling: firstly, the 

unfolding or dissociation of protein molecules provoked by heat, followed by the 

second step in which the association and aggregation reactions resulted in a 

gel system, this would only form in the presence of adequate environmental 

conditions. 

 

In this manner, proteins progressively pass from a native state to a denatured 

or unfolded transition and then to an aggregated network that forms a sol state, 

that eventually reaches the final rigid gel state. It is important that the rate of 

the second step remains lower than the first one, because protein aggregation 

will then be ordered enough to allow gel formation (Schmidt, 1981; Damodaran, 

1989; Kinsella et al., 1994; Aguilera, 1995). Upon heating, a marked increase in 

the effective hydrophobicity is an indication of protein unfolding, and when too 

many hydrophobic sites are exposed then interactions are inevitable between 

the exposed hydrophobic sites causing aggregation of protein molecules 

(Nakai, 1983). Figure2.1 represents a schematic diagram of some propositions 

for heat-induced gelation of globular proteins (Shimada & Matsushita, 1980; 

Foegeding et al., 1986; Damodaran, 1988, 1989; Oakenfull et al., 1997).  

 

Heating rate and/or time of heating affect the unfolding and appear to influence 

the kind of protein formed (Foegeding et al., 1986). Excessive heating of the 

protein sol to a degree far higher than needed for denaturation leads to a 

metasol state which does not set into a gel upon cooling (Damodaran, 1989; 

Oakenfull et al., 1997). This may be related to -elimination of disulphide bonds 

and scission of peptide bonds, which involves aspartate residues at high 
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temperatures (Damodaran, 1989). During cooling, the unfolded proteins can 

adopt a refolded conformation. Partial refolding of the protein would decrease 

the availability of the number of functional groups for intermolecular 

cross-linking and thus prevent formation of a self-supporting gel network 

(Damodaran, 1988).  

 
 
 
 

 
 
 
                                                                                           
    
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.1: Schematization of heat-induced gelation of globular protein.  
T0 = temperature,  TD = denaturation temperature (Totosaus at al.,2002). 
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Depending upon the molecular properties of the protein in the unfolded state, it 

undergoes either of two types of interactions: proteins that contain high levels 

of apolar amino acid residues undergo hydrophobic aggregation, resulting in a 

coagulum type gel. On the other hand proteins that are below a critical level of 

apolar amino acid residues form soluble aggregates, set into a translucent type 

gel (Damodaran, 1989). The protein solution becomes opaque if low molecular 

weight and low protein concentration conditions produce an aggregate, while in 

conditions of high molecular weight and high protein concentration (because of 

protein chain entanglement), it forms a coagulum (thermo-irreversible gel). On 

the other hand, a transparent protein solution remains in the sol state under 

conditions of low molecular weight and low protein concentration, but forms a 

gel when cooled if the molecular weight and protein concentration are high 

(Shimada & Matsushita, 1980). 

 

2.6 Study of the Maillard reaction 

 

The Maillard reaction is important in foods containing reducing sugars and 

protein. The Maillard reaction has played an important role in improving the 

appearance and taste of foods during cooking. It has been a central and major 

challenge in food industry, since the Maillard reaction is related to aroma, taste 

and colour,  particularly in traditional processes such as the roasting of coffee 

and cocoa beans, the baking of bread and cakes, the toasting of cereals and 

the cooking of meat.  Moreover, during the Maillard reaction a wide range of 

reaction products are formed with significant importance for the nuttritional 

value in foods.This can be reduced by decrease of digestibility and possible 

formation of toxic and mutagenic compounds, but can also be improved by the 
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formation of antioxidative products (Martins et al., 2000). The Chemistry 

underlying the Maillard reaction is very complex. It incompasses not one 

reaction pathway but a whole network of various reactions. The original 

comprehensive reaction scheme of Hodge (1953) (Fig.2.2) has been developed 

and elaborated by food technologists ever since, so the understanding of the 

reaction is advancing steadily.Nevertheless the extent of  Maillard reaction is 

notoriously difficult to control.Various factors involved in food processing 

influence it and they can be considered as food processing variables. 

 

Figure 2.2 : Maillard reaction scheme adapted from Hodge (1953) 
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The studies are often associated with products of low water activity. Studies to 

elucidate the mechanisms and the chemical components are normally carried 

out on a model system consisting of a single amino acid and a reducing 

sugar(Fig.2.3). However, it is known that even in these simple systems many 

compounds are being generated via the reactions (Apriyantono & Ames, 

1993).Similarly it is expected that many of these compounds can also be 

generated when a protein, such as wheat gluten is reacted with a reducing 

sugar(Gerrard et al., 2003a). It might be expected that the compounds formed 

in the Maillard reaction may then interact with the protein changing thereby the 

subsequent behaviour of the protein. 

 
Figure 2.3: Molecular events in the initial stages of the Maillard reaction ( Finot et al., 
1977; Friedman,1982) 
 

2.6.1 Maillard reaction in wheat gluten 

 

Wheat is unique amongst the cereals in that its flour, when mixed with water, 

forms viscoelastic dough capable of producing bread upon baking (Bushuk, 

2000). The functional properties of dough are largely attributed to the 
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characteristics of the endosperm storage proteins in the flour, often referred to 

as gluten proteins (Wrigley et al., 2000). The crosslinking of these glutens has 

an influence on the properties of the dough and the subsequent baked product 

(Gerrard et al., 2003a).  

 

Traditionally, only type of protein crosslinking that was considered in the 

context of wheat dough was disulfide bonding (Kaufman et al., 1986). However, 

previous work in this laboratory has established that non-disulfide crosslinks, 

specifically those introduced by the enzyme transglutaminase, can also 

influence dough properties (Gerrard et al., 1998b; Gerrard et al., 2000; Gerrard 

et al., 2001). Tilley has also espoused the importance of dityrosine crosslinks in 

dough (Tilley et al., 2001). Thus it seems that the chemical nature of the protein 

crosslink itself is not important, and novel methods to introduce crosslinks have 

the potential to improve cereals processing and quality of cereal food products.  

 

The Maillard reaction is known to result in protein crosslinking, and yet its 

effects on wheat proteins, and whether these have a functional influence on 

dough, have received little attention (Gerrard et al., 2003b). Gerrard et al., 

(2003a) explored the potential of glutaraldehyde, formaldehyde and 

glyceraldehyde as crosslinking agent for wheat proteins. The crosslinking 

experiments were performed both in vitro, on purified wheat proteins, and in 

situ in the dough itself, in order to assess the differential reactivity of the 

compounds in the test tube and within an actual foodstuff. 

 

The addition of glutaraldehyde and formaldehyde to dough increased 

relaxation times compared to the controls, containing no additive. This is 
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indicative of an increase in dough development, presumably due to the 

introduction of additional crosslinks to the gluten network, via the Maillard 

reaction (Gerrard et al., 2003b). This corroborates earlier work (Gerrard et al., 

1998a; 2000), and contributes to the growing evidence that crosslinks of any 

chemical nature are extremely important in dough development. The fact that 

the improving effect of glutaraldehyde on dough development was more 

substantial than ascorbic acid, suggests that the Maillard reaction, suitably 

harnessed, could have great potential as a mechanism for dough 

improvement. Whether sufficiently reactive, food-allowed, molecules, that can 

undergo protein crosslinking chemistry via Maillard reactions, can be 

generated in situ remains to be elucidated. However, the results described 

herein provide proof in principle, that such molecules could be used to 

manipulate the properties of food (Gerrard et al., 2003b). 

 

Use of glutaraldehyde in dough helps in making loaves of smaller size, with 

good crumb texture and improved crumb strength. It shows that the crosslinks 

produced by glutaraldehyde, strengthen the gluten network, providing good 

crumb strength, but reducing the ability of the gas cells to expand during 

proving and baking (Gerrard et al., 2003b). 

 

Breadmaking involves three steps: dough-mixing (flour, water, yeast, and salt), 

dough fermentation, and baking. During the baking process, the starch is 

gelatinized and the proteins denatured at an internal temperature of 60-80 C 

and then the raw dough is transformed into a light, porous, and readily 

digestible product (Erbersdobler & Hupe, 1991; Ramirez-Jimenez et al., 2000). 
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The chemical reactions involved in this process are essentially the Maillard 

reaction and caramelisation (degradation of sugars). The Maillard reaction is 

favored in foods with a high protein and carbohydrate and an intermediate 

moisture content at temperatures above 50 C and at a pH of 4-7 (Kroh, 1994), 

producing changes in colour (melanoidins), flavor (aldehydes and ketones), 

functional properties, and nutritional value (blocking or destruction of lysine) 

(O'Brien & Morrisey, 1989; Reineccius, 1990). Caramelization needs more 

drastic conditions (temperatures >120 C, pH < 3 or pH > 9, and low aw) (Kroh, 

1994). The water content distribution and temperature play an important role in 

developing the sensory characteristics of these products. During baking, the 

water content on the surface of the loaf becomes lower than in the middle and 

this, combined with the high temperature, is one of the factors that makes the 

crust different from the crumb (Thorvaldsson & SkjÖldebrand, 1998). 

  

The early stages of the Maillard reaction can be evaluated by the determination 

of the furosine (-N-(furoyl-methyl)-L-lysine) amino acid. The later is formed 

during acid hydrolysis of the Amadori compounds fructosyl-lysine, lactulosyl-

lysine, maltulosyl-lysine produced by reaction of -amino groups of lysine with 

glucose, lactose and maltose (Erbersdobler & Hupe, 1991). Furosine 

determination has been used in cereal to control the processing of pasta 

(Resmini & Pellegrino, 1994), bakery products (Henle et al., 1995), baby 

cereals (Guerra-Hernandez et al., 1999), and toasted sliced bread (Ramirez-

Jimenez, 1998).                   
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2.7 Chemistry of the Maillard reaction 

 

The Maillard reaction has been named after the French chemist Louis Maillard 

(1912) who first described it but it was only in 1953 that the first coherent 

scheme was put forward by Hodge (1953) (Fig.2.2). In essence, it states that in 

an early stage, a reducing sugar, like glucose, condenses with a compound 

possessing a free amino group (of an amino acid or in proteins mainly the 

-amino group of lysine, but also the -amino groups of terminal amino acids) 

to give a condensation product N-substituted glycosilamine, which rearranges 

to form the Amadori rearrangement product (ARP). The subsequent 

degradation of the Amadori product is dependent on the pH of the system 

(Fig.2.4). At pH 7 or below, it undergoes mainly 1, 2-enolization with the 

formation of furfural (when pentoses are involved) or hydroxymethylfurfural 

(HMF) (when hexoses are involved). At pH > 7 the degradation of the Amadori 

compound is thought to involve mainly 2,3 enolisation where reductones, such 

as 4-hydroxy-5-methyl-2,3-dihydrofuran-3-one (HMFone), and a variety of fission 

products, including acetol, pyruvaldehyde and diacetyl are formed.  

 

All these compounds are highly reactive and take part in further reactions. 

Carbonyl groups can condense with free amino groups, which results in the 

incorporation of nitrogen into the reaction products. Dicarbonyl compounds will 

react with amino acids with the formation of aldehydes and -aminoketones. 

This reaction is known as the Strecker degradation. Subsequently, in an 

advanced stage, a range of reactions takes place, including cyclisations, 

dehydrations, retroaldolisations, rearrangements, isomerisations and further 
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condensations, which ultimately, in a final stage, lead to the formation of brown 

nitrogenous polymers and co- polymers, known as melanoidins. 

 

 

Figure 2.4: Scheme glucose/ glycine Maillard reaction adapted from Tressl et al., 
(1995). AMP (Advanced Maillard Products);1-DH (1-deoxy-2,3-diketose); 3-DH (3-
deoxyaldoketose);  4-DH (4- deoxy-2,3-diketose). 
 

The complexity and the variety of the Maillard reaction products has, 

throughout the years, raised the interest of scientists in different fields of 

research (Ericksson,1981; Waller & Feather,1983; Fujimaki et al.,1986; Finot, 

1990; Labuza et al.,1994; Ikan, 1990;). New important pathways, not 

accounted for by Hodge (1953), have been established. McWeeny et al., 

(1974) reported that the most important intermediates in colour formation are 

3-deoxyosuloses and 3,  4-dideoxyosulos-3-enes, which in the case of glucose 

is 3-deoxyhexosulose (DH) and 3, 4-dideoxyhexosuloses-3-ene (DDH). Later, 
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