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PENEMPATAN-FAIL PERMULAAN DALAM
PERSEKITARAN GRID DATA DENGAN

MENGGUNAKAN TEORI PERMAINAN DAN
LAKONAN REKAAN

ABSTRAK

Peruntukan data merangkumi peletakan atau migrasi data. Ini merupakan salah satu per-

timbangan utama dalam reka bentuk sistem perkongsian data teragih. Penggunaan persamaan-

persamaan yang hanya bergantung kepada parameter-paremeter masukan statik kebanyakan-

nya akan menyebabkan hanya pelayan-pelayan data terbaik terpilih. Ini akan membebankan

pelayan-pelayan data yang terpilih.

Tesis ini mencadangkan satu algoritma untuk mengoptimumkan penempatan fail pertama

dalam persekitaran grid data. Algoritma tersebut mempertimbangkan kandungan fail dan kea-

daan sistem sebagai parameter-parameter asas. Lakonan rekaan, sejenis peraturan pengajaran

berasas kepercayaan, disesuaikan untuk membantu dalam penjangkaan keseluruhan perlakuan

penempatan sistem. Teori permainan, sejenis teori untuk penyelesaian konflik, digunakan ke

atas kepercayaan dan sejarah pemindahan fail sistem untuk mewujudkan pengimbangan beban.

Disebabkan oleh sifat semula jadi sistem grid dan kekangan pelantar pengujian kami, al-

goritma tersebut dicadang untuk diuji melalui simulasi. Oleh itu, satu pensimulasi berturutan

(bersiri) yang berasaskan masa diskret telah dibangunkan. Merujuk kepada hasil simulasi,

penggunaan kepercayaan dan sejarah umumnya mencapai prestasi pertanyaan yang lebih baik

dalam kebanyakan kumpulan simulasi dengan 0.443 saat (0.137%) hingga 3.188 saat (2.067%)

xii



lebih pantas berbanding tanpa penggunaan kepercayaan ataupun sejarah. Walau bagaimana-

pun, dengan hanya penggunaan sejarah dapat mencapai prestasi terbaik dengan 5.462 saat

(3.161%) lebih pantas berbanding tanpa penggunaan kedua-duanya. Sementara itu, dengan

hanya penggunaan kepercayaan mencapai prestasi yang paling buruk di dalam salah satu si-

mulasi dengan 6.976 saat (4.344%) lebih lambat berbanding tanpa penggunaan kedua-duanya.

Prestasi-prestasi ini adalah disebabkan daripada cara algoritma tersebut memperhatikan dan

menduga perlakuan sistem keseluruhannya.
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INITIAL FILE-PLACEMENT IN DATA GRID
ENVIRONMENT USING GAME THEORY AND

FICTITIOUS PLAY

ABSTRACT

Data allocation comprises data placement or migration. It is one of the main considerations

in the design of a distributed data sharing system. The use of equations which only depends on

mostly static input parameters would cause only the best data servers to be selected. It would

eventually overload the selected data servers.

This thesis proposes an algorithm for optimizing initial file-placement in Data Grid Envi-

ronment (DGE). The proposed algorithm considers the content of the files and the condition of

the system as its basic parameters. Fictitious play, a belief-based learning rule, is adapted to

help predicting the overall placement behavior of the system. Game theory, a theory of conflict

resolution, is applied on top of the belief and the system’s file-transfer history to provide load

balancing.

Due to the nature of the Grid system and the limitation of our testbed, it was decided to test

the proposed algorithm using simulation. Therefore, a sequential (serial), discrete-time based

simulator was developed. From the simulation results, the use of both belief and history gen-

erally achieved better query performance in most of the simulation groups with 0.443 seconds

(0.137%) to 3.188 seconds (2.067%) faster than using none. However, the use of only his-

tory was able to achieve the best performance with 5.462 seconds (3.161%) faster than using

none. Meanwhile, the use of only belief achieved the worst performance in one of the simula-

xiv



tions with 6.976 seconds (4.344%) slower than using none. These results are due to how the

algorithm observes and predicts the overall system behavior.

xv



CHAPTER 1

INTRODUCTION

Data management in a distributed data sharing system is one of the active research topics nowa-

days. “A distributed system is a collection of independent computers that appears to its users

as a single coherent system” (Tanenbaum and van Steen, 2002). The machines (computers)

in a distributed system can be utilized as a pool of resources. A user may subscribe for some

resources from the resource pool and use virtualization to deploy the OSes and environments

needed by the user’s applications. Virtualization allows a machine to run many different Oper-

ating Systems (OSes) and environments (called guests) on top of the existing OS (called host)

(Vallée et al., 2008). Virtualization isolates the guests from the host (Vallée et al., 2008; Uhlig

et al., 2005). A distributed data sharing system can isolates the users from the real, physical,

storage implementation. Hence, the system provides the users with storage virtualization.

Two examples of distributed system intended for data sharing and management are Dis-

tributed Database Management System (DDBMS) and Data Grid Environment (DGE). The

user of such systems does not need to know in which machines the requested data is actually

stored (the systems provide data transparency). Such kind of system also distributes the stored

data among the available machines. Hence, it balances the load over the machines. Two of

the key features of storage virtualization are storage allocation and the mapping of the stored

object (data) (Milligan and Selkirk, 2002). Therefore, DDBMS and DGE can be grouped as a

system which provides virtualization of data management.
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“A Grid is an infrastructure that allows for coordinated resource sharing and problem solv-

ing in dynamic, multi-institutional virtual organizations” (Foster et al., 2001). The vision of

Grid is to provide an environment in which the users can easily gain access to resources such

as computing power, storage, and applications without the need to know how those resources

were deployed. The key concept of Grid is in analogy with the concept of current power grid

in which users can subscribe for the resources they need (Foster and Kesselman, 1999) (some

people call it as “Utility Computing”). Grid provides the users with resources which are not

available for them locally (Jacob et al., 2005). Negotiation between the users (consumers) and

the owner of the resources (providers) can be arranged to determine what resources the users

can use.

Grids can be classified according to their primary purposes (Mambretti, 2006; Foster et al.,

2001). A Sensor Grid is a Grid which is a collection of sensors. A Computational Grid is a

Grid which provides the users with high computational power. A Data Grid (DG) is a Grid

which provides the users with storage. Please refer to Figure 1.1 for more details on the area

of classification and some work which have been done on the area.

A DG is a specialization and extension of the Grid system which emphasizes on sharing a

large amount of data between its users (Chervenak et al., 1999). A DGE provides its users with

an integrated view of the storage machines as if they were a single large storage (Chervenak

et al., 1999; Jacob et al., 2005). Hence, the actual location of the machines are transparent to the

users (Minoli, 2005). In a DGE, the machines can be owned by many different organizations

and individuals. Due to the different policies of the organizations and individuals, a DGE

would be more complex to manage than a DDBMS.

Data allocation is the process of allocating one or more data fragments into the machines in

the system (Hababeh, 2005). The term data fragment may refer to an individual file or to a more

2



Figure 1.1: Classification of Grids and Our Work Area

complex structure. For example, in the case of horizontal, vertical, or hybrid fragmentation

in a relational database, a data fragment will be the rows or the columns of a table. The

main purpose of data allocation is to allocate the data fragments optimally so that the overall

performance and reliability of the system are maximized while the implementation cost is

minimized (Özsu and Valduriez, 1999). Data allocation consist of the placement or migration

of data fragments into and between the machines (Indrayanto and Chan, 2008).

Some current solutions in data-related problem are implemented mainly based on static

equations (equations of which outputs depend only on mostly static input parameters). Exam-

ples of such algorithms are the Optimal algorithm by L.C. John, NNA (Near Neighborhood

3



Allocation) (Basseda et al., 2006), and the BGBR (Bayati et al., 2006). Some other algorithms

embed artificial intelligence (decision-making algorithms) and learning. The EFA (Evolution-

ary Fragmentation and Allocation Algorithm) (Grebla and Gog, 2005) adapts genetic algo-

rithm. The FNA (Fuzzy Fragment Allocator) (Basseda, 2006) utilizes fuzzy logic. Meanwhile,

the work by Grebla & Cenan (Grebla and Cenan, 2005) and Khan & Ahmad (Khan and Ah-

mad, 2005) adapt game theory. The work by Chervenak et al. (Chervenak et al., 2007) finds

optimal locations for placing data by examining the workflow that will be applied to the data.

However, the work was specialized for scientific applications. Finally, the work by Lowen-

thal & Andrews (Lowenthal and Andrews, 1996) implements an adaptive data placement for

distributed-memory programming.

1.1 Problem Statement and Research Objective

The fore-mentioned algorithms work on already stored data or on specialized area. They try

to improve the overall access performance by migrating or replicating the data fragments. The

algorithms consider the access patterns of the data fragments and the properties of the destina-

tion locations (data servers). However, most of them do not consider the internal properties of

the data fragments such as the types and the contents of the fragment. The algorithms also do

not consider the possible existence of local interest and/or disinterest (organizational policy)

to certain types of data fragments. Other factors such as the overall placement behaviors and

dependencies are also not considered.

The fore-mentioned algorithms also do not explicitly specify how newly created data frag-

ments would be initially allocated (the first-time placement). If the data fragments were placed

in better locations from the start, the average future work to migrate them can be made less.

Possible occurrence of ping-pong effect would become fewer. Hence, the network bandwidth

wasted for re-migrating the fragments can be reduced.
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The main objective of the research would be: to find better starting locations for first-time

(initial) placement of files in DGE via dynamic load balancing. The research aims to distribute

the newly created files to the data servers in the system while still considering the properties of

the system and data as well as the possible existence of organizational policy.

1.2 Research Scope

The target domain of the research is on a DGE. Therefore, the research proposed and algorithm

that work on a collection of individual files. The proposed algorithm aims to find better location

for initial file-placement in DGE. Query performance (speed or time) would be the main output

parameter that will be considered to evaluate the algorithm.

The proposed algorithm considers parameters such as the properties of the files, the prop-

erties of the network and machines, the possible existence of local interest and disinterest, and

the possible existence of replicas of the files. The proposed algorithm would utilize game the-

ory (Turocy and von Stengel, 2001; Ozdaglar, Spring 2005; Brandenburger, 2002; Slantchev,

2004-2007) and fictitious play (Ozdaglar, Spring 2005). The work by Marden (Marden et al.,

2005) is an example of work which combines game theory and fictitious play.

1.3 Main Contributions

The main contributions of the thesis are as follows:

• an algorithm for finding better initial locations for initial file-placement in DGE;

• an application of game theory and fictitious play for solving the initial file-placement

problem; and

• a DGE simulator for simulating and testing the proposed algorithm.
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Table 1.1 shows the overall comparison between current solutions and the proposed solu-

tion. The main difference is that the proposed solution would apply decision making algorithms

on top of a more broad range of parameters to provide a dynamic load balancing for initial file-

placement.

Table 1.1: Overall Comparison between the Current Solutions and the Proposed Solution

Current Solutions Our Proposed Solution

most work on already
stored data

work on initial placement of data

access pattern is the main
consideration

considers the internal properties of the data
(file) and the properties of the destination
location

most do not consider
organizational policy

considers organizational policy (via local
interest and disinterest)

do not consider the
overall placement
behaviors and
dependencies

considers the overall placement behaviors
and dependencies

utilizes static equations,
artificial intelligence or
learning

utilizes static equations, decision making
algorithms, and learning

some can provide load
balancing

provides adaptive load balancing

some are specialized for
certain areas

could be adapted to a more broad area

1.4 Outline of the Thesis

Chapter 1 describes briefly about the area of the research, some current solutions and their

problems, research scope, description of the proposed solution, main contributions, and the

outline of the theses.
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Chapter 2 will explain about DGE and work related to data allocation in more detail. Some

possible solutions to the problem and the basic of game theory and fictitious play will be also

explained briefly.

Chapter 3 will explain about the design of the proposed algorithm. All the concept, equa-

tions, and flows will be explained in detail.

Chapter 4 will explain about the implementation of the algorithm. Due to the complexity

of the system, it would be complicated to test the algorithm in a real-world system. Hence, the

algorithm was tested using simulations. The design of the simulator will be explained in detail

as well as the simulation processes.

Chapter 5 will discuss about the result of the simulations. Graphics and tables generated

from the simulation results will be presented. Summary of the results will be explained in

detail.

Chapter 6 will summarize the whole thesis. Possible improvements and future work re-

garding the proposed algorithm will be also outlined in the chapter.
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CHAPTER 2

LITERATURE REVIEW

Data Grid (DG) is implemented mainly to support data-intensive computing. Two core services

in a Data Grid Environment (DGE) are data access and metadata access. Higher level services

are implemented on top of those two core services.

The data access service provides the mechanism needed to access, manage, and transfer

the data stored in low-level storage system (Chervenak et al., 1999). The low-level storage

system may be implemented using many different hardware, operating system, and file system.

The data access service provides Grid applications with a uniform Application Programming

Interface (API). Hence, the applications need not to be aware of how the underlying storage

system is working.

The metadata access service provides the mechanism needed to access and manage infor-

mations about the stored data (Chervenak et al., 1999). The metadata may describe the data

itself, such as the size, the type, and the content of the stored data. The metadata may also

contains information about the fragmentation and replication scheme applied to the data. An

application can query the metadata catalog to find the needed data.

Due to the fact that a DG is a Grid emphasizing on data sharing, a DGE inherits many of

the Grid properties. A DGE has the following main properties :

• the machines belong to many different individuals and organizations (Laszewski and

Wagstrom, 2004);
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• aggregates storages into a larger virtual storage (Minoli, 2005);

• provides metadata service (Chervenak et al., 1999);

• location transparency is an important part of the implementation (Minoli, 2005);

• security is provided by Grid Security Infrastructure (GSI) (Jacob et al., 2005; Minoli,

2005; Laszewski and Wagstrom, 2004);

• enforce the policy implemented by the Virtual Organization (VO), example: via the Open

Grid Services Architecture (OGSA) standard (Minoli, 2005).

Figure 2.1 depicts the components of a DG in relation with the layered Grid architecture.

In the figure, a DG aggregates the storages provided by Distributed Database Management

System (DDBMS) and Distributed File System (DFS) to form a larger virtual storage. The

storage nodes (data servers) in a DGE can be owned by many different organizations and indi-

viduals. Centralized administration is not mandatory in a DGE. However, a specialized node

such as Storage Resource Broker (SRB) can be provided to ease the system management. The

communication between the nodes in the system is done by using Peer-to-Peer (P2P) technol-

ogy. A DGE would offer the users with an acceptable level of security due to the use of GSI

certificate authentication. A DG is an extension of the Grid, hence, the VO policies are auto-

matically enforced by the underlaying Grid middleware and toolkit. Extending a DG would

be similar with extending a Grid. Adding a new storage nodes would involve standard certifi-

cate exchange and user mapping. Data transparency, availability, and reliability can be also

provided by a DGE due to the fact that a DGE also allows for automated resource discovery,

catalog management, and data replication.
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Figure 2.1: Component of a Data Grid (DG) in Relation with the Layered Grid Architecture
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2.1 Data Management in DGE

The most common data-related operations in a DGE are:

• data security;

• data replication;

• data fragmentation; and

• data allocation.

Data security concerns with the fact that only authorized users may access the data. In a

DGE, data security is based on the GSI (Welch et al., 2003). Data replication concerns about

how to manage replicas. Data fragmentation concerns about how to fragment large data. Data

allocation concerns about how to allocate the data into the storage nodes.

Both data replication and data fragmentation are related to data allocation. After a data

fragment is replicated, the replica will need to be allocated. After a large data fragment is

fragmented, the fragments will also need to be allocated. Sometimes, it maybe also necessary to

move an allocated data to another storage node to improve performance. Hence, data allocation

comprises data placement or data migration (Indrayanto and Chan, 2008).

The work explained in this thesis is about initial data-placement. The focus of this thesis

is about where to place a newly created data. The target domain of the application area is on

a DGE. Hence, the algorithm described in this thesis works on a collection of individual files.

However, it would be possible to adapt the algorithm for other types of distributed data sharing

system.
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2.2 Some Work Related to Data Allocation

Several methods have been used in the current solutions for data allocation problem. They are:

• static equation;

• system observation;

• artificial intelligence (decision-making algorithms):

– fuzzy logic;

– genetic algorithm;

– game theory; and

– fictitious play.

2.2.1 Work that are Based on Static Equations

The Optimal algorithm by L.C. John, the Near Neighborhood Allocation (NNA) algorithm

(Basseda et al., 2006), and the BGBR (Bayati et al., 2006) are algorithms which are based on

static equations.

The Optimal associates a data fragment with counters. One counter for each node (data

server). Each time a node request for a data fragment, the counter that corresponds to the re-

questing node is incremented. If the total number of remote accesses to a certain data fragment

is larger than the total number of local accesses to the same data fragment, the fragment is

migrated to the corresponding remote node. However, according to the author, if the access

counter of a data fragment changes rapidly, the data fragment will be migrated over and over

again (called ping-pong or yo-yo effect). This would increase the overall response time and

delay as the system is busy migrating the fragment.
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The NNA tries to overcome the weakness of the Optimal algorithm. Instead of moving the

data fragment directly to the final destination node, the NNA moves the fragment step by step.

The NNA considers the network topology to determine the possible routes from the originating

node to the final destination node. Hence, the NNA would prevent over-migration of the data

fragment. According to the authors, the data fragment will be finally stored in a node which has

the average access cost. However, the NNA may still cause wasted movements as it converges

slowly by taking many hops.

The BGBR, of which name came from the abbreviation of the authors’ names, tries to

further improve the NNA algorithm. The BGBR would converge faster because it is aware of

the complete network topology. The BGBR models the network topology by using graph. A

matrix which defines the shortest paths from and to every node in the system is precalculated by

the BGBR. Using access counters and shortest path matrix, BGBR finds a node which is close

to all the other nodes that accessed the data fragment. The combination between the number of

accesses to a data fragment and the locations of the nodes (users) who accessed the fragment

is defined as access pattern.

Static equations are generally used as the basis for the more advanced methods. Many

parameters in a DGE can be considered as static. The capacity and reliability of a storage

node (data server), the bandwith of the communication network, and the VO policy would

not change frequently. Hence, using static equations would be a good basis for solving data

placement problem in a DGE.

Depending on what are considered as the input parameters, static equation might be able

to capture the dynamic nature of a system in a limited way. Static equation may not be able

to capture the dynamic interaction between the many nodes in a system. For example, a static

equation for selecting a data server based on the storage capacity might always select the data

13



server with the largest storage until the remaining free space falls below the second best data

server. This selection would happen not only from one source node, but from all nodes that

use the same equation. This would cause many data stored in the selected data server. In the

future, many queries to the data server might cause network congestion. Embedding some

kind of intelligence would be necessary to implement an algorithm which is able to capture the

dynamic interaction between the participants (the nodes which use the same algorithm).

2.2.2 Work that are Based on System Observations

Chervenak et al. (Chervenak et al., 2007) suggests that workflow management services together

with the VOs can provide some hints to data placement services. A data placement service

analyzes which data fragments (such as files) that will be used by a given workflow. Based on

the analysis, the service requests the system to place (move or replicate) the fragments to the

storage system associated with the workflow execution system. According to the authors, this

would allow the system to asynchronously prestaging the data before the workflow is executed.

Hence, the execution performance of the workflow can be improved.

The work by Lowenthal & Andrews (Lowenthal and Andrews, 1996) implements an al-

gorithm (named Adapt) which gathers information regarding communication and computation

performance in distributed-memory machines. Using the gathered information, Adapt per-

forms some calculations to determine in which nodes (machines) the data needs to be placed

for the next program iteration (hence, migrating or replicating the data). According to the au-

thors, the Adapt is able to perform adaptive run-time data placement during program execution

to ensure that the needed data is accessible by the program with less overhead. However, Adapt

itself would also incur additional calculation overhead.
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The two algorithms above observe how the system runs or performs. They collect and

analyze information from the system. The analysis are static because the same algorithm and

equations are used. However, the results are dynamic (depend on the condition of the system).

Hence, such kind of algorithms can be said as adaptive or capable of learning.

A DGE is a dynamic environment. An individual or organization can join and leave the

system at any time. This would imply that at one time, many new data may need to be placed.

However, at another time, maybe only few new data need to be placed. The types and contents

of the data may also vary greatly. The selected storage nodes (destination data servers) would

also vary greatly due to the types and contents of the data. Therefore, system observation would

be an important method for solving data placement problem in a DGE.

2.2.3 Work that are Based on Decision-Making Algorithms

Heavily accessed data fragments may have their access patterns changing frequently. This

would cause the fragment to be migrated over and over again (oscillation). Due to a migrat-

ing data fragment is locked and thus cannot be accessed by users, oscillation may degrade the

system performance. The Fuzzy Fragment Allocator (FNA) algorithm (Basseda, 2006) is an

algorithm which adapts fuzzy logic to detect possible oscillation. The FNA is a supplementary

algorithm. When an algorithm decided that a data fragment should be moved, the FNA will

check if the movement would cause oscillation. The FNA considers the access patterns, differ-

entiated access patterns, and distance vectors of the data fragments to detect oscillation. If an

oscillation is likely to occur, the affected data fragment would not be moved.

Fuzzy logic is a decision-making algorithm. Fuzzy logic maps input variables to output

variables similar to the way humans think. Fuzzy logic uses linguistic rules rather than numeri-

cal rules (Kulkarni, 2001). For example: instead of only two conditions, empty and full (binary
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0 and 1), fuzzy logic can also represent almost empty, moderate, and almost full. Hence, fuzzy

logic would be able to make “smarter” decisions.

Fuzzy logic uses membership functions to map between the measured numerical values

to their linguistic values. Calculations are done based on the linguistic values rather than the

real numerical values. The final results are then mapped back to their numerical values. The

membership functions can be made static or dynamic. Information from the current system

condition can be applied to generate dynamic membership functions. Hence, the fuzzy system

would become capable of learning (Khuen et al., 2005).

While fuzzy logic is now widely adopted in many fields, it is not specifically designed for

solving conflicts. Data placement is competition (and conflict) to find the best locations. There-

fore, it may be better to use other method which is designed more towards conflict resolution.

Selecting the best location (node) is similar with the evolution of nature known as the

“Survival of the Fittest” (The Complete Work of Charles Darwin Online, 2007) because the

available nodes are limited. Based on this idea, the Evolutionary Fragmentation and Allocation

Algorithm (EFA) (Grebla and Gog, 2005) adapts genetic algorithm to find the best node. The

EFA also models the network topology using graph. In EFA, the population is defined as the set

of tuples (data fragments) to be distributed to the nodes. A chromosome (a potential solution)

is a string of constant length of which genes indicate to which nodes the tuples belong to. The

fitness function is a function which minimize the cost sum between the number of requests

from particular nodes and the corresponding edge cost. The EFA performs recombination and

mutation to obtain the best chromosome (solution).

Genetic algorithm transforms solutions into better solutions (Poli et al., 2008). The pro-

cess is done by crossover and mutation. Crossover generates a child solution by combining

16



random parts from two parent solutions. Mutation generates a child solution by changing parts

randomly from one parent solution. The parent solutions are selected from the collection of

solutions based on fitness values. The selection is done by applying a function to score the fit-

ness values of the solutions. The two best solutions are selected to become the parents. Hence,

genetic algorithm is a learning algorithm which mimics the evolution of nature in which only

the best individuals (solutions) will prevail.

While genetic algorithm is already adapted in many fields, it may not be suitable for every

problem. Genetic algorithm needs many iteration before reaching the final solution. This would

imply that many calculations need to be done. The randomness factor in genetic algorithm may

also cause the solution to be non-deterministic. Given the same input parameters, the final result

may not be the same between calculations. Hence, it may be not an ideal method for solving

data placement problem.

Selecting the best location (node) is also a competition because the resource of the destina-

tion nodes are limited. Hence, the data fragments are “competing” to get the best node. Game

theory is one of the formal studies of conflict resolution (Turocy and von Stengel, 2001). Gre-

bla and Cenan (Grebla and Cenan, 2005) adapts game theory to solve the problem of “if there

are N data fragments which are spread into some nodes, how many nodes (P) of which data

fragments need to be replicated into another M nodes?”. According to the authors, no replica-

tion and full replication result in poor performance. Partial replication of P nodes in M nodes

in which P,M < N provides good performance. There would be some pairs of P and M that

make the system perform very well. This problem is similar to the “Tragedy of the Commons”

(known also as the “Santa Fe Bar Problem”). The “Tragedy of the Commons” is a problem

of sharing resources of limited capacity which satisfies a non-cooperative, repeated game. The

authors’ main idea is: an agent will replicate the data fragment if a node is under crowded (not

yet reached its optimal capacity) and not to replicate if the node is over crowded. The authors
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also stated that the agents would become more adaptive (hence, making better decisions) when

fictitious play are applied together with game theory.

Game theory is the theory of conflict and cooperation. It is one of the formal studies of

decision making. In game theory a player will try to maximize its payoff by executing its

best strategy according the current condition (Ozdaglar, Spring 2005; Slantchev, 2004-2007;

Turocy and von Stengel, 2001). Game theory allows both cooperation and non-cooperation

between the participating players.

Data placement is related to competition and conflict. In data placement, both cooperation

and non-cooperation may be needed to obtain the best result with an acceptable amount of

overhead. Hence, game theory can be a good method for solving data placement problem in a

DGE.

The key concept of fictitious play is the use of beliefs to model the opponents’ behaviors

(Ozdaglar, Spring 2005). The beliefs are updated after each round (iteration). Fictitious play

can be applied to implement learning in game theory (Lambert-III et al., 2005; Marden et al.,

2005).

Data placement in a DGE can involve many, dynamically-joining nodes. Examining the

actions of all the nodes would add many calculation and communication overhead to the algo-

rithm. Therefore, the use of fictitious play to predict the actions (behaviors) of other nodes can

be a good method for solving data placement problem in a DGE.

2.3 A Brief Introduction to Game Theory and Fictitious Play

The concepts of game theory apply whenever the actions of the players are interdependent

(Turocy and von Stengel, 2001). The main components which form a game are:
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• a finite set of players;

• available pure strategies (actions or moves) for the players; and

• payoff functions.

In game theory, all players are rational and will not deviate from their best strategies (Turocy

and von Stengel, 2001).

A cooperative game is a game between coalitions (groups) of players. In a cooperative

game, the main concerns are about how to form a coalition and how to apply its strategies in

order to maximize the mutual payoff. The emphasize of a cooperative game is on the outcomes

when some players meet together in many different combinations (Brandenburger, 2002).

A non-cooperative game is a game between players. In a non-cooperative game, players

apply their own strategies based on their preferences in order to maximize their personal pay-

offs. The detail in a non-cooperative game is in all the available strategies that can be taken by

the players (Brandenburger, 2002).

2.3.1 Normal Form of the Game

In the normal form of the game (also known as the strategic form of the game), a matrix is

used to represent the game. The payoffs are put in the matrix. All participants (players or

groups of players) move simultaneously without any prior knowledge about the opponents’

moves (Ozdaglar, Spring 2005).

Another form of the game is called the extensive form. In this form, the game is represented

using a tree. In this kind of game, participants make their moves sequentially (Ozdaglar, Spring

2005). Due to more than one nodes in a DGE may perform actions simultaneously, the exten-

sive form of the game would not be suitable.
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Figure 2.2: An Example of Game: Prisoner’s Dilemma

Figure 2.2 (Turocy and von Stengel, 2001) displays an example of a game in its normal

form. The game is called the “Prisoner’s Dilemma”. In the figure, I and II are the players, C

and D are the strategies, the numbers (0, -1, -3, and -5) are the time (in years) the prisoners

(players) will spend their live in prison if they choose the particular strategy. In an implementa-

tion, instead of static, the numbers in the matrix may actually calculated using equations (Khan

and Ahmad, 2004, 2005; Ozdaglar, Spring 2005).

In the storyboard of the above game, two persons had committed crime and caught by

police. However, the police does not have enough visible evidence of their crime. Hence, the

police interrogate them in two separated rooms. In the process of interrogation, finally the two

suspects are given two choices:

• comply (C), which means keep silent and cover (protect) each other;

• defect (D), which means become the witness of others’ crime.

The police states that if they want to be witness of others’ crime, they will get reduction in their

penalties (less time spent in prison).

The properties of the above game are:

• the strategy D dominates the strategy C (please refer to the arrows in the figure);
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• the game is symmetric: the game stays the same even if the players are exchanged cor-

responding to the reflection line (shown as dashed line in the figure);

• the game has one equilibrium point which is (D, D).

The strategy (D, D) is an equilibrium point because no rational player will choose a dominated

strategy (Turocy and von Stengel, 2001). In the example game, the players do not trust each

other. Hence, they choose the strategies that will give less worse outcome.

2.3.2 Fictitious Play Applied in Game Theory

Fictitious play is one of the earliest and simplest learning rules. Fictitious play relies on the

history of previously played game to form the beliefs. Fictitious play assumes that there is

more than one best strategies (all give the same payoffs) that can be chosen by a player and the

opponents. Hence, the player and the opponents may alternately choose between the available

best strategies (Ozdaglar, Spring 2005).

Below is a simple example of how fictitious play may be applied together with game theory:

• there are one player and one opponent;

• currently, despite the other dominated strategies, there are two best strategies (both give

the same payoffs), A and B;

• from the perspective of the player, the opponent may choose either A or B;

• choosing the same strategy with the opponent will lower the payoff.

In the first game, both A and B have the same probability (50%) to be chosen by the oppo-

nent. Hence, the player will just choose either A or B randomly. Assume that the opponent then

chooses A. In the second game, the player will have the history of the previous game stating

that the opponent has chosen A. This will update the belief of the player. In the perspective
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of the player, the opponent will now most probably also choose A. Therefore, the player now

should choose B.

2.4 Summary of the Work and Methods

Table 2.1 summarizes the comparison between the fore-mentioned work. One part which seems

to be missing is the part which explicitly determines how a newly created data would be allo-

cated (initial data-placement).

Table 2.1: Comparison Between the Work

Algorithm Area Purpose Method

Optimal Data migration
Finding better locations
for the data fragments

Static equations

NNA Data migration
Finding better locations
for the data fragments

Static equations

BGBR Data migration
Finding better locations
for the data fragments

Static equations

FNA Supplementary
Preventing oscillation of
movements

Fuzzy logic

EFA Data migration
Finding better locations
for the data fragments

Genetic algorithm

Adaptive Agent Data replication
Finding whether it will be
beneficial to replicate or
not

Game theory and
fictitious play

Asynchronous
Prestaging

Data placement
(but more
towards
migration)

Finding better locations
for the data fragments

Scientific-
application
workflow analysis

Adapt

Data placement
(but more
towards
migration)

Finding better locations
for the data fragments

Distributed-
memory machines
communication
and computation
performance
analysis
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Table 2.2 summarizes the features of the methods used by the work. Data placement is

a competition for finding the best location with the need of predicting the overall dynamic-

interaction between the participants. Therefore, using static equation and system observation

as the base, adopting game theory and fictitious play would be a good method for solving data

placement problem in a DGE.

In game theory all participants (players) are assumed to be rational (they will not deviate

from their strategies and targets). A DGE is an example of a system which is rational. Today’s

data servers would also have enough memory. Hence, the disadvantages of game theory and

fictitious play would not be major problems.

Table 2.2: Features of the Methods

Method Advantages Disadvantages

Static equation
Simple, directly predictable
result

Not able to capture the dynamic
interaction of the participants

System observation
Able to capture the dynamic
properties of the data and
system condition

May still not able to capture the
dynamic interaction of the
participants

Fuzzy logic
Capable of learning and making
a more find-grained decision

Not specifically designed for
conflict resolution

Genetic algorithm
Mimics the evolution of nature
to generate better solutions

Needs many iterations, the
randomness factor may produce
non-deterministic results

Game theory
It is the theory of conflict and
cooperation

All participants (players) are
assumed to be rational

Fictitious play

Able to model the opponents
behaviors and improving the
model (learning), applicable
with game theory

Need to maintain (store) history
in order to calculate the beliefs

The next chapter will explain how static equations, system observation, game theory, and

fictitious play are adapted in the algorithm. The design of the algorithm will be described in

detail.
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CHAPTER 3

ALGORITHM DESIGN

This chapter summarizes the design methodology of the proposed algorithm. The model of

the proposed system and the applied concept will be described briefly. Payoff calculations and

the adaptation of game theory and fictitious play will be explained in detail, followed by the

execution flow of the algorithm.

3.1 Design Methodology

A simplified model of the system is needed because it would be complicated to perform cal-

culation and measurement on a real, complete system. The model was created based on the

structure of a real Data Grid Environment (DGE). In a DGE, there are specialized nodes with

limited centralizing roles such as proxy server and resource broker. The model was prototyped

and verified by using simulation.

The static and dynamic (observed) system’s properties are transformed into basic payoffs.

There are four basic payoffs. Each payoff is related to a specific property of the system. The

first payoff represents the condition of the network (topology and bandwidth). The second

payoff represents the storage and processing capacity of the storage nodes (data servers) as

well as the existence of replicas. The third payoff represents the reliability of the data servers.

The fourth payoff represents the Virtual Organization (VO) policy via the existence of local

interests and/or disinterests. These four basic payoffs are combined into one total payoff.
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