THE EFFECT OF DIETARY CRUDE PALM OIL AND ALPHA-TOCOPHERYL ACETATE ON REPRODUCTIVE PERFORMANCE AND LARVAL QUALITY OF TILAPIA (Oreochromis sp.)

WANG YAN

UNIVERSITI SAINS MALAYSIA

2014
THE EFFECT OF DIETARY CRUDE PALM OIL AND ALPHA-TOCOPHERYL ACETATE ON REPRODUCTIVE PERFORMANCE AND LARVAL QUALITY OF TILAPIA (Oreochromis sp.)

by

WANG YAN

Thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

submitted in September 2014
Acknowledgement

First and the foremost, my utmost gratitude goes to my supervisor, Prof. Ng Wing Keong, for his motivation, kindness, and support. Without his unwavering guidance, it is impossible for me finish this dissertation. Prof. Ng’s altitude and enthusiasm on the scientific research will always inspire me to explore the science of fish nutrition.

My thanks also go to my fellow Ph. D students Chik Boon, Kuan Shern, Chiaw Yee, and two post doctorates Dr. Kim Young Chul and Dr. Nicholas Romano. Specifically, Chik Boon will be remembered for his constructive discussion on differentiate the gender of pre-spawning tilapia and the setup of my hatching facilities. Kuan Shern’s skilled management on the laboratory facilities provides a great convenience for me to smoothly run the biochemical assays. Chiaw Yee, her help of the fatty acids analysis on samples from the larval study is highly appreciated. Dr. Kim is appreciated for his marvelous expertise at taking fish blood and measuring tilapia hematocrits. And for Nick, his timely arrival made possible for him to polish my English and correct errors made in the first draft of my thesis.

Before and current post-graduates like Nicol and Chia Ling, and intern students Leong Chui Kiet, Tan Shiang Kit and Kor Zhen Kai are thanked for their assistance on counting eggs, rearing tilapia larvae as well as numerous samplings.

Finally, my beloved father Mr. Wang Jinzhong, mother Zhang Zhengying, and wife Qian Yunyun are deserved thanks for unconditional love and support. Without their patience and encouragement, I couldn’t image how I could have had gone through in the past few years.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF PLATES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xvi</td>
</tr>
<tr>
<td>ABBREVIATIONS</td>
<td>xvii</td>
</tr>
<tr>
<td>ABSTRAK (Bahasa Melayu)</td>
<td>xviii</td>
</tr>
<tr>
<td>ABSTRACT (English)</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER 1. INTRODUCTION

1

CHAPTER 2. LITERATURE REVIEW

7

2.1 Lipid and fatty acids requirement of tilapia 7

2.2 Alternative lipid source for tilapia 9

2.3 Vitamin E nutrition of tilapia 11

2.4 Broodstock nutrition of tilapia 15

CHAPTER 3. MATERIALS AND METHODS

20

3.1 Introduction 20
3.2 Proximate analysis 21
3.3 Fatty acid analysis 22
3.4 Vitamin E analysis 23
3.5 Dietary lipid source 25
3.6 Diets preparation 28
 3.6.1 Dietary energy requirement of experimental diets 28
 3.6.2 Dietary Formulation 28
 3.6.3 Diets pelleting 29
3.7 Hatching Facilities Setup 29
3.8 Broodfish management, eggs collection and hatching, larvae collection 31
 and salinity challenge test
 3.8.1 Broodfish management 32
 3.8.2 Monitor spawning 34
 3.8.3 Eggs hatching 35
 3.8.4 Larva collection 36
 3.8.5 Larva salinity stress test 36
 3.8.6 Broodstock fish samplings 37
 3.8.6.1 Initial sampling 37
 3.8.6.2 Hematocrit determination 37
 3.8.6.3 Fish tissue sampling 38
 3.8.6.4 Evaluation of fish growth performance and feed efficiency 38
 3.8.6.5 Evaluation of somatic indices of broodstock fish 39
3.9 Statistical analysis 39

CHAPTER 4. INCLUSION OF CRUDE PALM OIL IN THE BROODSTOCK DIETS OF FEMALE NILE TILAPIA, Oreochromis niloticus, RESULTED IN ENHANCED REPRODUCTIVE PERFORMANCE COMPARED TO BROODFISH FED DIETS WITH ADDED FISH OIL OR LINSEED OIL 41

4.1 Introduction 41
4.2 Materials and methods 45
 4.2.1 Experimental broodstock diets 45
 4.2.2 Fish management and sample collection 46
 4.2.2.1 Broodfish management 46
 4.2.2.2 Spawnsings monitor 47
 4.2.2.3 Eggs collection and hatching 47
 4.2.2.4 Larva collection 47
 4.2.2.5 Larvae salinity tolerance test 48
 4.2.2.6 Fish tissue sampling 48
 4.2.3 Proximate analysis 48
 4.2.4 Fatty acids analysis 48
4.3 Statistical analysis 49
4.4 Results

4.4.1 Composition verification of broodstock diets

4.4.1.1 Proximate composition

4.4.1.2 Dietary fatty acid composition

4.4.2 Growth Performance of Broodstock Fish

4.4.2.1 Overall growth performance and feed efficiency of broodstock Nile tilapia

4.4.2.2 Growth performance of female broodstock Nile tilapia

4.4.2.3 Growth performance of male broodstock Nile tilapia

4.4.2.4 Hematocrits and somatic indices of female and male brood tilapia

4.4.3 Reproductive performance of female broodstock Nile tilapia

4.4.4 Biometrics of eggs spawned

4.4.5 Eggs hatchability and biometric data of larvae hatched

4.4.6 Fatty acid composition of various tissues of broodstock fish, spawned eggs and larvae

4.4.6.1 Fatty acid composition of muscle from female broodstock Nile tilapia

4.4.6.2 Fatty acid composition of liver from female broodstock Nile tilapia

4.4.6.3 Fatty acid composition of ovaries from female broodstock Nile tilapia

4.4.6.4 Fatty acid composition of eggs

4.4.6.5 Fatty acid composition of larvae

4.4.6.6 Fatty acid composition of muscle from male broodstock Nile tilapia

4.4.6.7 Fatty acid composition of livers from male broodstock Nile tilapia

4.4.6.8 Fatty acid composition of ovaries from male broodstock Nile tilapia

4.5 Discussion

CHAPTER 5. VITAMIN E DEPOSITION AND DISTRIBUTION IN FEMALE AND MALE BROODSTOCK NILE TILAPIA, Oreochromis niloticus

5.1 Introduction

5.2 Materials and methods

5.2.1 Experimental broodstock diets

5.2.2 Broodfish management

5.2.3 Samples collection

5.2.4 Vitamin E analysis
5.3 Statistical analysis
5.4 Results
 5.4.1 Dietary vitamin E concentrations
 5.4.2 Vitamin E determination for various tissues of female broodstock Nile tilapia, eggs and larvae
 5.4.2.1 Vitamin E concentration and composition of muscle from female broodstock Nile tilapia
 5.4.2.2 Vitamin E concentration and composition of livers from female broodstock Nile tilapia
 5.4.2.3 Vitamin E concentration and composition of ovaries from female broodstock Nile tilapia
 5.4.2.4 Mean vitamin E concentration and composition of eggs from the first four consecutive spawns of female brood tilapia in Experiment 1
 5.4.2.5 Vitamin E concentration and composition of yolk-sac free larvae
 5.4.3 Vitamin E determination for various tissues of male broodstock Nile tilapia
 5.4.3.1 Vitamin E concentration and composition of muscle from male broodstock Nile tilapia
 5.4.3.2 Vitamin E concentration and composition of livers from male broodstock Nile tilapia
 5.4.3.3 Vitamin E concentration and composition of testes from male broodstock Nile tilapia
5.5 Discussion

CHAPTER 6. SUPPLEMENTATION OF VITAMIN E IN BROODSTOCK DIETS ENHANCES REPRODUCTION PERFORMANCE OF RED HYBRID TILAPIA, Oreochromis sp.

6.1 Introduction
6.2 Materials and methods
 6.2.1 Experimental broodstock diets
 6.2.2 Fish management and sample collection
 6.2.2.1 Broodfish management
 6.2.2.2 Spawning monitor
 6.2.2.3 Eggs collection and hatching
 6.2.2.4 Larva collection
 6.2.2.5 Larvae salinity tolerance test
 6.2.2.6 Fish tissues samples
 6.2.3 Proximate analysis
 6.2.4 Vitamin E analysis
6.3 Statistical analysis
6.4 Results

6.4.1 Composition verification of broodstock diets
6.4.1.1 Verified proximate composition
6.4.1.2 Dietary tocopherols and tocotrienols concentrations

6.4.2 Broodstock Fish Growth Performance
6.4.2.1 Overall growth performance of red hybrid broodstock tilapia
6.4.2.2 Growth performance of female red hybrid brood tilapia
6.4.2.3 Growth performance of male red hybrid brood tilapia

6.4.3 Hematocrits and somatic indices of red hybrid broodstock tilapia
6.4.3.1 Hematocrits and somatic indices of female red hybrid brood tilapia
6.4.3.2 Hematocrits and somatic indices of male red hybrid brood tilapia

6.4.4 Reproductive performance of female red hybrid brood tilapia
6.4.5 Weight of eggs spawned
6.4.6 Eggs hatchability and biometric data of larvae hatched

6.4.7 Vitamin E determination for various tissues of female broodstock fish, eggs and larvae
6.4.7.1 Vitamin E concentration and composition of muscle from female red hybrid tilapia
6.4.7.2 Vitamin E concentration and composition of livers from female broodstock red hybrid brood tilapia
6.4.7.3 Vitamin E concentration and composition of intraperitoneal fat from female broodstock red hybrid tilapia
6.4.7.4 Vitamin E concentration and composition of ovaries from female brood red hybrid tilapia
6.4.7.5 Vitamin E concentration and composition of eggs
6.4.7.6 Vitamin E concentration and composition of yolk-sac free larvae

6.4.8 Vitamin E determination for various tissues of male broodstock fish
6.4.8.1 Vitamin E concentration and composition of muscle from male broodstock red hybrid tilapia
6.4.8.2 Vitamin E concentration and composition of livers from male brood red hybrid tilapia
6.4.8.3 Vitamin E concentration and composition of intraperitoneal fat from male brood red hybrid tilapia
6.4.8.4 Vitamin E concentration and composition of testes male red hybrid tilapia

6.5 Discussion
CHAPTER 7. MATERNAL-OFFSPRING TRANSFERRED VITAMIN E PROVIDED PROTECTION FOR THE FIRST-FEEDING LARVAE OF RED HYBRID TILAPIA, Oreochromis sp. FED DIETS WITH OR WITHOUT OXIDIZED DIETARY LIPID

7.1 Introduction 182
7.2 Materials and methods 183
 7.2.1 Determination of peroxide value of dietary lipids 183
 7.2.2 Larval diets 183
 7.2.3 Larva rearing 183
 7.2.4 Final sampling 183
 7.2.5 Evaluation of larval growth performance 183
 7.2.6 Chemical analysis 183
 7.2.6.1 Proximate analysis 183
 7.2.6.2 Vitamin E analysis 183
 7.2.6.3 Fatty acids analysis 183
7.3 Statistical analysis 183
7.4 Results 183
 7.4.1 Experimental larval diets 183
 7.4.1.1 Proximate Composition 183
 7.4.1.2 Dietary vitamin E composition 190
 7.4.1.3 Dietary fatty acids composition 191
 7.4.2 Larval growth performance 194
 7.4.3 Larval vitamin E profile 197
 7.4.4 Larval fatty acid composition 200
7.5 Discussion 206

CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 211

8.1 Conclusions 211
8.2 Recommendations 216

REFERENCES 217

APPENDIXES 233

LIST OF PUBLICATIONS & AWARDS 254
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Protein concentration of dietary protein source (dry weight basis, %) in Experiment 1, 2 & 3.</td>
</tr>
<tr>
<td>3.2</td>
<td>Fatty acid composition (% of total fatty acids) of fish oil (FO), crude palm oil (CPO), and linseed oil (LSO) used in Experiment 1.</td>
</tr>
<tr>
<td>3.3</td>
<td>Vitamin E concentration (μg/g oil) and composition (%) from fish oil (FO), crude palm oil (CPO), and linseed oil (LSO) used in Experiment 1.</td>
</tr>
<tr>
<td>4.1</td>
<td>Composition (g/100g dry diet) of the four semi-purified experimental broodstock diets in Experiment 1.</td>
</tr>
<tr>
<td>4.2</td>
<td>Proximate composition (g/100 g dry diet) of the four semi-purified broodstock diets supplemented with different dietary lipid source in Experiment 1.</td>
</tr>
<tr>
<td>4.3</td>
<td>Fatty acid composition (% total fatty acids) of the four semi-purified broodstock diets supplemented with different lipid sources in Experiment 1.</td>
</tr>
<tr>
<td>4.4</td>
<td>Growth performance and feed efficiency of broodstock Nile tilapia given four experimental diets for 25 weeks in Experiment 1.</td>
</tr>
<tr>
<td>4.5</td>
<td>Growth performance of female Nile tilapia fed on four broodstock diets supplemented with different lipid source for 25 weeks in Experiment 1.</td>
</tr>
<tr>
<td>4.6</td>
<td>Growth performance of male Nile tilapia fed on broodstock diets supplemented with different lipid source in Experiment 1.</td>
</tr>
<tr>
<td>4.7</td>
<td>Hematocrit and somatic indices of female brood Nile tilapia fed four experimental broodstock diets for 25 weeks in Experiment 1.</td>
</tr>
<tr>
<td>4.8</td>
<td>Hematocrit and somatic indices of male brood Nile tilapia fed four experimental broodstock diets for 25 weeks in Experiment 1.</td>
</tr>
<tr>
<td>4.9</td>
<td>Spawning performance of female Nile tilapia fed with four broodstock diets supplemented with different lipid source over the period of 25 weeks in Experiment 1.</td>
</tr>
<tr>
<td>4.10</td>
<td>Number (percentage, %) of spawning female Nile tilapia from the first to sixth spawn in Experiment 1.</td>
</tr>
<tr>
<td>4.11</td>
<td>Mean diameter (mm), volume (mm³) and weight (mg) of eggs from the first four consecutive spawns of Nile tilapia fed with broodstock diets supplemented with different lipid source in Experiment 1.</td>
</tr>
<tr>
<td>4.12</td>
<td>Egg hatchability and larval quality from the fifth and sixth spawning of Nile tilapia fed with broodstock diets supplemented with different lipid source in Experiment 1.</td>
</tr>
</tbody>
</table>
4.13 Muscle fatty acid composition (% total fatty acids) of female Nile tilapia fed with broodstock diets supplemented with different lipid source for 25 weeks in Experiment 1

4.14 Liver fatty acid compositions (% of total fatty acids) of female Nile tilapia fed with broodstock diets supplemented with different dietary lipid source for 25 weeks in Experiment 1

4.15 Ovary fatty acid composition (% total fatty acids) of female Nile tilapia fed with broodstock diets supplemented with different lipid source for 25 weeks in Experiment 1

4.16 Summary of two-way ANOVA of the effect of spawning time, dietary lipid source and their interaction on the composition of fatty acids in the eggs from the first four consecutive spawnings in Experiment 1

4.17 Mean egg fatty acid composition (% total fatty acids) of four consecutive spawns of Nile tilapia fed with broodstock diets supplemented with different lipid source for 25 weeks in Experiment 1

4.18 Mean yolk-free larval fatty acid composition (% total fatty acids) from Nile tilapia fed with broodstock diets supplemented with different lipid source for 25 weeks in Experiment 1

4.19 Muscle fatty acid composition (% total fatty acids) of male Nile tilapia fed with broodstock diets supplemented with different lipid sources for 25 weeks in Experiment 1

4.20 Liver fatty acid compositions (% of total fatty acids) of male Nile tilapia fed with broodstock diets supplemented with different dietary lipid source for 25 weeks in Experiment 1

4.21 Testes fatty acid composition (% total fatty acids) of male Nile tilapia fed with broodstock diets supplemented with different lipid source for 25 weeks in Experiment 1

5.1 Dietary vitamin E concentration (mg/kg dry diet) and composition (%) of four experimental diets in Experiment 1

5.2 Vitamin E concentration (μg/g) and composition (%) of muscle from female brood tilapia before and after fed the four experimental diets for 25 weeks in Experiment 1

5.3 Vitamin E concentration (μg/g) and composition (%) of livers from female brood tilapia before and after fed the four experimental diets for 25 weeks in Experiment 1

5.4 Vitamin E concentration (μg/g) and composition (%) of ovaries from female brood tilapia before and after fed the four experimental diets for 25 weeks in Experiment 1

5.5 Mean vitamin E concentration (μg/g) and composition (%) of eggs from the first four consecutive spawns of female brood tilapia in Experiment 1

5.6 Summary of two-way ANOVA of the effect of numbers of spawning time, dietary vitamin E state and their interaction on vitamin E
concentration and composition of eggs spawned by female brood tilapia in Experiment 1.

5.7 Mean vitamin E concentration (μg/g) and composition (%) of yolk-free larvae after hatching the eggs from the firth and sixth spawns in Experiment 1

5.8 Vitamin E concentration (μg/g) and composition (%) of muscle from male brood tilapia before and after fed the four experimental diets for 25 weeks in Experiment 1

5.9 Vitamin E concentration (μg/g) and composition (%) of livers from male brood tilapia before and after fed the four experimental diets for 25 weeks in Experiment 1

5.10 Vitamin E concentration (μg/g) and composition (%) of testes from male brood tilapia before and after fed the four experimental diets for 25 weeks in Experiment 1

6.1 Composition (g/100g dry diet) of the four semi-purified experimental broodstock diets in Experiment 2

6.2 Proximate composition (g/100 g dry diet) the four semi-purified broodstock diets supplemented various levels of vitamin E used in Experiment 2

6.3 Dietary vitamin E concentration (mg/kg dry diet) and composition (%) of four experimental diets in Experiment in Experiment 2

6.4 Growth performance and feed efficiency of red hybrid broodstock tilapia fed the four experimental broodstock diets for 12 weeks in Experiment 2

6.5 Growth performance of female red hybrid tilapia after fed with the four experimental broodstock diets for 12 weeks in Experiment 2

6.6 Growth performance of male red hybrid tilapia after fed with the four experimental broodstock diets for 12 weeks in Experiment 2

6.7 Hematocrit and somatic indices of female red brood tilapia fed four experimental broodstock diets for 12 weeks in Experiment 2

6.8 Hematocrit and somatic indices of male red brood tilapia fed four experimental broodstock diets for 12 weeks in Experiment 2

6.9 Spawning performance of female red hybrid tilapia fed with four broodstock diets supplemented with different levels of vitamin E over the period of 12 weeks in Experiment 2

6.10 Mean percentage (%) of spawning female red hybrid tilapia over six consecutive spawns in Experiment 2

6.11 Mean weight (mg) of eggs from the first four consecutive spawns of red hybrid tilapia fed with broodstock diets supplemented with different levels of vitamin E in Experiment 2

6.12 Egg hatchability and larval quality from the first four spawnings of red hybrid tilapia fed with broodstock diets supplemented with different levels of vitamin E levels in Experiment 2
6.13 Vitamin E concentration (μg/g) and composition (%) of muscle from female red hybrid tilapia brood before and after 12 weeks on the experimental diets in Experiment 2

6.14 Vitamin E concentration (μg/g) and composition (%) of livers from female red hybrid tilapia brood before and after 12 weeks on the experimental diets in Experiment 2

6.15 Vitamin E concentration (μg/g) and composition (%) of intraperitoneal fat from female red hybrid tilapia brood after 12 weeks on the experimental diets in Experiment 2

6.16 Vitamin E concentration (μg/g) and composition (%) of ovaries from female red hybrid tilapia brood before and after 12 weeks on the experimental diets in Experiment 2

6.17 Mean vitamin E concentration (μg/g) and composition (%) of eggs from the first four consecutive spawns of female red hybrid tilapia brood in Experiment 2

6.18 Summary of two-way ANOVA of the effect of numbers of spawning, dietary vitamin E state and their interaction on vitamin E concentration and composition of eggs spawned by female red hybrid tilapia brood in Experiment 2

6.19 Mean vitamin E concentration (μg/g) and composition (%) of yolk-sac free larvae in Experiment 2

6.20 Vitamin E concentration (μg/g) and composition (%) of muscle from male red hybrid tilapia brood before and after 12 weeks on the experimental diets in Experiment 2

6.21 Vitamin E concentration (μg/g) and composition (%) of livers from male red hybrid tilapia brood before and after 12 weeks on the experimental diets in Experiment 2

6.22 Vitamin E concentration (μg/g) and composition (%) of intraperitoneal fat from male red hybrid tilapia brood before and after 12 weeks on the experimental diets in Experiment 2

6.23 Vitamin E concentration (μg/g) and composition (%) of testes from male red hybrid tilapia brood before and after 12 weeks on the experimental diets in Experiment 2

7.1 Composition (g/100g dry diet) of the two larval diets added with non-oxidized or oxidized mixture of fish oil + sunflower oil (4:1) in Experiment 3

7.2 Proximate composition (g/100 g dry diet) of non-oxidized and oxidized larval diets used in Experiment 3

7.3 Vitamin E profile of non-oxidized and oxidized larval diet used in Experiment 3

7.4 Fatty acid composition (% total fatty acids) of non-oxidized and oxidized larval diets used in Experiment 3

7.5 Growth performance of yolk-sac free tilapia larvae fed with non-oxidized and oxidized diets for 3 weeks in Experiment 3
7.6 Summary of two-way ANOVA of the effect of broodfish vitamin E, lipid oxidation state of diets and their interaction on the growth performance of larvae after yolk-sac absorption in Experiment 3
196
7.7 Vitamin E status of yolk-sac free tilapia larvae from broodfish receiving diets added various levels of vitamin E fed with two experimental diets for 3 weeks in Experiment 3
198
7.8 Summary of two-way ANOVA of the effect of broodfish vitamin E, lipid oxidation state of diets and their interaction on the body vitamin E of larvae after yolk-sac absorption in Experiment 3
201
7.9 Initial fatty acid composition (% total fatty acids) of the siblings of yolk-sac free larvae used in Experiment 3 for the feeding trial
203
7.10 Fatty acid composition (% total fatty acids) of yolk-sac free tilapia larvae from the broodfish receiving diets added various levels fed with two experimental diets for 3 weeks in Experiment
201
7.11 Summary of two-way ANOVA of the effect of broodfish vitamin E, lipid oxidation state of diets and their interaction on the body fatty acid composition of larvae after yolk-sac absorption in Experiment 3
205
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Total world tilapia production and Nile tilapia production from 1950 to 2012</td>
<td>1</td>
</tr>
<tr>
<td>2.1</td>
<td>Pathways of conversion of C18 (n-6) and (n-3) polyunsaturated fatty acids to their higher C20 and C22 derivatives</td>
<td>8</td>
</tr>
<tr>
<td>2.2</td>
<td>Global fish oil production between 2002 and 2011</td>
<td>10</td>
</tr>
<tr>
<td>4.1</td>
<td>Overall fortnightly accumulated growth rate of GIFT broodstock Nile tilapia fed four experimental diets monitored over 25 weeks in Experiment 1</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Fortnightly accumulated growth rate of female broodstock Nile tilapia fed four experimental diets monitored over 25 weeks in Experiment 1</td>
<td>55</td>
</tr>
<tr>
<td>4.3</td>
<td>Fortnightly accumulated growth rate of male broodstock Nile tilapia fed four experimental diets monitored over 25 weeks in Experiment 1</td>
<td>57</td>
</tr>
<tr>
<td>6.1</td>
<td>Overall fortnightly accumulated growth rate of red hybrid broodstock tilapia fed four experimental diets monitored over 12 weeks in Experiment 2</td>
<td>139</td>
</tr>
<tr>
<td>6.2</td>
<td>Fortnightly accumulated growth rate of female red hybrid brood fish fed four experimental diets monitored over 12 weeks in Experiment 2.</td>
<td>142</td>
</tr>
<tr>
<td>6.3</td>
<td>Fortnightly accumulated growth rate of male red hybrid brood fed four experimental diets monitored over 12 weeks in Experiment 2</td>
<td>144</td>
</tr>
</tbody>
</table>
LIST OF PLATES

<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>The combo image shows (A) a general view of two sets of the self-built indoor hatching system and (B) a detailed view of the setup of one of them with the orange colored pump seen submerged in the water at the far end of the fiber-glass tank.</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Sexual differences of tilapia can be discerned by the shape and opening(s) the genital papilla. A male fish is seen here on the left while a female on the right.</td>
<td>32</td>
</tr>
<tr>
<td>3.3</td>
<td>Pre-spawning female GIFT Nile tilapia, Oreochromis niloticus, was tagged using a needle with a vinyl thread to pierce the body dorsally between the fourth and fifth spine of each fish.</td>
<td>33</td>
</tr>
<tr>
<td>3.4</td>
<td>Six pre-spawning female GIFT Nile tilapia were tagged with different colored plastic discs and were put in a barrel before stocked into a one-tonne liter round fiber-glass tank.</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Eggs, seen oval-shaped, were removed from the buccal cavity of a spawned Nile tilapia and then counted. The fish was weighed before it was put back to the breeding tank.</td>
<td>35</td>
</tr>
<tr>
<td>3.6</td>
<td>Yolk-sac larvae were kept gently rolling in a continuous flow of water in the hatching bottle.</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Illustration</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Alpha</td>
</tr>
<tr>
<td>β</td>
<td>Beta</td>
</tr>
<tr>
<td>γ</td>
<td>Gama</td>
</tr>
<tr>
<td>δ</td>
<td>Delta</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>CMC</td>
<td>Carboxymethyl cellulose</td>
</tr>
<tr>
<td>CPO</td>
<td>Crude palm oil</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexaenoic acid</td>
</tr>
<tr>
<td>EPA</td>
<td>Eicosapentaenoic acid</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agricultural Organization</td>
</tr>
<tr>
<td>FO</td>
<td>Fish oil</td>
</tr>
<tr>
<td>GC</td>
<td>Gas chromatography</td>
</tr>
<tr>
<td>GSI</td>
<td>Gonadal somatic index</td>
</tr>
<tr>
<td>HPLC</td>
<td>High pressure liquid chromatography</td>
</tr>
<tr>
<td>HSI</td>
<td>Hepatosomatic index</td>
</tr>
<tr>
<td>IPI</td>
<td>Intraperitoneal fat index</td>
</tr>
<tr>
<td>LSO</td>
<td>Linseed oil</td>
</tr>
<tr>
<td>LC</td>
<td>Long chain</td>
</tr>
<tr>
<td>MT</td>
<td>Metric tonnes</td>
</tr>
<tr>
<td>MUFA</td>
<td>Monounsaturated fatty acid</td>
</tr>
<tr>
<td>NFE</td>
<td>Nitrogen free extract</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated fatty acid</td>
</tr>
<tr>
<td>SFA</td>
<td>Saturated fatty acid</td>
</tr>
<tr>
<td>SGR</td>
<td>Specific growth rate</td>
</tr>
<tr>
<td>T</td>
<td>Tocopherol</td>
</tr>
<tr>
<td>T3</td>
<td>Tocotrienol</td>
</tr>
<tr>
<td>TSI</td>
<td>Testo-somatic index</td>
</tr>
<tr>
<td>VSI</td>
<td>Viscera-somatic index</td>
</tr>
</tbody>
</table>
KESAN MINYAK KELAPA SAWIT MENTAH DAN ALFA-TOKOFERIL ASETAT DALAM DIET KE ATAS PRESTASI PEMBIAKAN DAN KUALITI LARVA IKAN TILAPIA (Oreochromis SP.)

ABSTRAK

Disertasi ini dijalankan untuk meniasat kesan-kesan pemakanan lipid dan vitamin E induk kepada prestasi pembiakan tilapia dan kualiti larva. Empat diet yang isonitrogenus (35% protein) dan isolipidik (10%) berasaskan kasein dirumuskan dengan minyak ikan (FO), FO dan minyak kelapa sawit mentah (FO+CPO; 1:1), CPO atau minyak linseed sebagai sumber lipid dalam Eksperimen 1, dan 0 (T0), 60 (T60), 600 (T600) mg α-tokoferil asetat, atau pecahan kaya tokotrienol berasaskan CPO yang ditetapkan untuk menyediakan α-tokoferol pada tahap 60 (PalmE60) mg sekilogram diet kering ditambah dalam Eksperimen 2. Tilapia betina (Oreochromis sp.) yang pre-bertelur dilabel dengan tag warna secara individu, enam betina dan dua jantan distokkan dalam tangki pembiakan yang bersaiz satu tan. Setiap diet diberi kepada dua tangki induk ikan dan prestasi pembiakan individu ikan betina dipantau selama 25 dan 12 minggu, masing-masing. Induk betina diberi makan dua jenis diet berasakan CPO (Eksperimen 1) dan diet T600 (Eksperimen 2), menunjukkan saiz gonad yang lebih besar secara ketara (P<0.05), mempunyai bilangan tertinggi tilapia yang aktif bertelur dan menghasilkan jumlah telur seekor ikan tertinggi disebabkan oleh selang peneluran yang lebih pendek dan kekerapan menelur yang lebih tinggi. Penetasan telur yang berasal dari rawatan-rawatan ini juga lebih tinggi secara ketara. Penggunaan pelbagai sumber lipid diet mempengaruhi komposisi lemak asid atau kepekatan vitamin E dalam otot, hati, gonad, testis, telur dan larva yang baru ditetas, secara ketara. Dalam Eksperimen 3, larva tanpa karung telur kuning yang diperolehi dari Eksperimen 2
diberi makan diet mengandung vitamin E yang rendah dengan lipid tidak-teroksid (PV9) atau lipid teroksid (PV160) selama 3 minggu. Keputusan yang diperolehi menunjukkan prestasi pertumbuhan ikan yang diberi diet PV160 adalah lebih rendah daripada ikan yang diberi diet PV9, tetapi larva yang berasal dari tilapia betina yang diberi makan diet T600 kelihatan dapat mengurangkan pengaruh pengoksidaan lipid diet dengan rizab vitamin E yang tinggi. Kesimpulannya, penambahan minyak sawit mentah atau kandungan vitamin E yang tinggi dalam diet induk boleh meningkatkan prestasi pembiakan tilapia dan pemindahan vitamin E induk-anak dapat mengurangkan pengaruh negatif pemakanan pengoksidaan lipid kepada prestasi pertumbuhan larva tilapia apabila diberi makan diet lipid teroksid.
THE EFFECT OF DIETARY CRUDE PALM OIL AND ALPHA-TOCOPHERYL ACETATE ON REPRODUCTIVE PERFORMANCE AND LARVAL QUALITY OF TILAPIA
(Oreochromis sp.)

ABSTRACT

The present dissertation was conducted to investigate effects of the broodstock dietary lipids and vitamin E on the reproductive performance of tilapia and the quality of larvae hatched. Four isonitrogenous (35% protein) and isolipidic (10%) casein-based diets were formulated with added fish oil (FO), FO and crude palm oil (FO+CPO; 1:1), CPO or linseed oil as the lipid source in Experiment 1, and supplemented with 0 (T0), 60 (T60), 600 (T600) mg α-tocopheral acetate, or a CPO-derived tocotrienols-rich fraction designated to provide α-tocopherol at a level of 60 (PalmE60) mg per kg dry diet in Experiment 2. Pre-spawning female tilapia (Oreochromis sp.) was individually color-tagged, and six females and two males were stocked into a one-ton breeding tank. Each diet was fed to two tanks of broodfish and the reproductive performance of 12 individual female fish was monitored over 25 and 12 weeks, respectively. Female broodfish fed the two crude palm oil-based diets and the 600 mg α-tocopheryl acetate/kg added diet, showed significantly (P<0.05) larger ovary sizes, had the highest number of actively spawning tilapia and produced the highest total number of eggs per fish due to the shorter inter spawning interval and higher spawning frequency. The hatchability of eggs originated from these dietary treatments was also significantly higher. The inclusion of various dietary lipid source significantly affected the fatty acid composition or vitamin E concentration of muscle, liver, ovary, testes, egg and newly hatched larvae. In Experiment 3, yolk-sack free tilapia larva hatched
from spawned eggs obtained from the study of Experiment 2 were fed on the low vitamin E diets supplemented with non-oxidized lipid (peroxide value, PV9) or oxidized lipid (PV160) for 3 weeks. Results obtained revealed that the growth performance of fish given the PV160 diet was poorer than larvae fed the PV9 diet but the larvae originating from T600 diet fed parental female could to some extent alleviate the influence of dietary lipid oxidation with the high vitamin E reserve. In conclusion, the addition of crude palm oil or high vitamin E amount into the broodstock diet could enhance the reproductive performance of tilapia and mother-offspring transferred vitamin E thereafter could alleviate the negative influence of dietary lipid oxidation on the growth performance of tilapia larvae when fed oxidized dietary lipid.
Chapter 1 Introduction

Tilapia is a collection name for a group of cichlid fish species from the *Cichlidae* family. These fish are mainly living in freshwater and occasionally brackish water in the tropical and subtropical environments. Originally native to the African continent, tilapias have been artificially introduced to be commercially cultured in nearly 100 countries in the world since 1950s because of their rapid growth, hardiness to tolerate harsh conditions, good resistance to diseases and adaptability to a wide range of rearing systems (Gupta & Acosta, 2004). Tilapias have nowadays become the second most widely cultured fish only after the carps. Among them, Nile tilapia, *Oreochromis niloticus*, is the most widely farmed tilapia species. Other species of tilapia also of important commercial importance are Mozambique tilapia (*O. mossambicus*), blue tilapia (*O. aureus*) and their hybrids. Figure 1.1 illustrates the total world production of tilapia and Nile tilapia (FAO, 2012).

![Figure 1.1 Total world tilapia production and Nile tilapia production from 1950 to 2012.](image-url)
As shown in Figure 1.1, after a relatively slow tilapia production increase from 1950 to 1970, the exponential growth was seen from the subsequent twenty years and thereafter. By 2012, there were totally around 4.5 million metric tonnes (Mt) produced, of which was 3.2 million Mt Nile tilapia. Together, farmed tilapia contributed around 84% of world tilapia production.

With the ever expanding world population, aquaculture is expected to continue as one of the fastest growing animal food-producing sectors to meet the consumption demand of human for the protein intake as well as the requirement of health-benificial unsaturated fatty acids like omega-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In 2011, fish accounted for 16.7 percent of animal protein intake of the global population and 6.5 percent of all proteins consumed (FAO, 2012). FAO (2012) estimated these ratios will grow further and the contribution from aquaculture production in total food supply will rise. Global tilapia production is thus also anticipated to further increase and projected to raise to about 8.9 million tonnes by the year 2020 (Tacon and Metian, 2008).

This rapid rise of tilapia production is due in part to the increasing intensification of farming systems and this has led to a critical need for large quantities of fingerlings for stocking grow-out systems. Furthermore, it is increasingly important to produce high quality tilapia fry due to the low fecundity of broodfish. Tilapias of the *Oreochromis* genus, the major farmed species, are female mouth-brooders and exhibit high parental care with relatively low number of eggs produced in each clutch. The problem in the mass production of tilapia seed is further exacerbated due to the low
degree of female spawning synchrony and reduction in spawning rigor with time (Mires, 1982).

Broodstock nutrition is recognized as a major factor that can influence fish reproduction and subsequent larval quality of many fish species (Izquierdo et al., 2001). Lipids are one of the important nutritional composition of aquafeeds. Their inclusion in the broodstock diets plays a crucial role in maintaining successful spawning performance of broodfish, egg quality and improving hatchability and larval survival and growth (Watanabe et al., 1984; Cerda et al., 1994; Abi-Ayad et al., 1997; Navas et al., 1998; Furuita et al., 2000; Mazoarra et al., 2003). While those studies were primarily conducted on marine species, there is currently a paucity of information concerning the nutrient requirements of tilapia broodfish especially as it relates to lipid nutrition but some information is available on protein and energy requirements (Gunasekera et al., 1996a,b; Siddiqui et al., 1998; El-Sayed and Kawanna, 2008; Lupatsch et al., 2010).

Vitamin E is an essential micronutrient found nearly 100 years ago when Evens and Bishop (1922) studied the reproduction of rats. It has now evolved to be a generic name for two groups of potent, structure-related, lipid-soluble, chain-breaking antioxidants, namely tocopherols and tocotrienols. While extensive research had long been carried out for the role of vitamin E on the reproduction of terrestrial animals, it was not until 1970s for the similar research first appearing to conduct on rainbow trout (Kimunaki & Sugii, 1972). During the following years, fish broodstock nutrition studies, fully or partially focusing on vitamin E, were reported on common carp (Cyprinus carpio) (Watanabe and Takshima, 1977), ayu (Plecoglossus altivelis)
(Takeuchi et al., 1981), red sea bream (*Pagrus major*) (Watanabe et al., 1985), and Atlantic salmon (*Salmo salar*) (Schiedt et al., 1988; Eskelinen, 1989). Vitamin E was eventually recognized for its role on fish reproduction in 1990 (Watanabe, 1990). Since then, this role has been demonstrated in turbot (*Scophthalmus maximus*) (Hemre et al., 1994), seabream (*Sparus auratus*) (Fernández-Palacios et al., 1998), sea bass (*Dicentrarchus labrax*) (Carcia et al., 2000), common dentex (*Dentex dentex*) (Mourente et al., 1999), Japanese flounder (*Paralichthys olivaceus*) (Tokuda et al., 2000), Japanese eel (*Anguilla japonica*) (Furuita et al., 2009a). In contrast, there was little information available for the role of vitamin E on the reproduction on tilapia (El-Gamal et al., 2007; Gammanpila et al., 2007; Areechon and Thaitoungchin, 2003). It is therefore this scarcity guarrantes there is a necessity to further study the role of vitamin E on tilapia reproduction.

It is recognised for aquatic animals that the materal brookdstock nutrition has a profound role on the quality of reproduction products such as eggs and/or newly hatched offsprings. Antioxidant like vitamin E is essential for the defence system buildup of developing eggs or newly hatched larvae of fish (Cowey et al., 1985; Mourente et al., 1999). Although a few research noted the association of vitamin E concentrations in eggs and early development stages of larvae of some fish sepcies (Takeuchi et al., 1981; Mourente et al., 1999; Ciarcia et al., 2000), there is no information available for the role of materal-offspring transferred vitamin E on the protection, if any, for the first-fed larvae when challenged the oxidated diet. Considering tilapia is majorly cultured in the tropical area where the hot weather easily causes the oxidation of lipids in the larva diet, there is an urgency to start the research in this area in order to have a better management of quality tilapia seed production.
Those situation described in the previous paragraphs is not on par with the fact that tilapia is the second most farmed fish. There is a necessity that the related research of broodstock dietary lipids and vitamin E must be conducted to expand our knowledge on the reproductive performance of this economically very important fish.

It is thus the following four objectives have set up for the current dissertation,

1. To evaluate effects of fish oil, crude palm oil, and linseed oil on the spawning performance, egg and larval quality, and the fatty acid composition of muscle, liver, ovaries and testes from broodstock Nile tilapia (*O. nilotica*) (Chapter 4).

2. To determine the distribution of tocopherols and tocotrienols in the muscle, liver, ovaries, testes, egg and larvae from broodstock tilapia (*O. nilotica*) (Chapter 5).

3. To determine if vitamin E supplied as α-tocopheryl acetate or derived from tocotrienols rich fraction of palm oil can enhance the reproductive performance and egg quality of red hybrid tilapia (*O. nilotica × O. mossambica*) (Chapter 6).

4. To study if the maternal-offspring transferred vitamin E can provide the protective role on the newly-hatched red hybrid tilapia larvae (*O. nilotica × O. mossambica*) fed on the oxidized dietary lipid (Chapter 7).
The results from these studies will be expected to better help us understand the role of lipids and vitamin E on the reproductive performance of tilapia as well as effects of maternal-offspring transferred vitamin E on the quality of eggs and larval produced by this fish.
2.1 Lipid and fatty acids requirement of tilapia

Lipid nutrition is one of the most extensively researched topics of many aquatic animals including the tilapia species. Lipid provides the source for energy reserve and essential fatty acids (EFA). It facilitates the absorption of fat-soluble vitamins, serves as precursors of hormones and prostaglandins and maintains proper fluidity and permeability of tissue and cellular membrane structures (Ng & Chong, 2004; Sargent, 1995). Appropriate level of dietary lipid inclusion is important for the growth and well-being of tilapia. Studies on non-brooding tilapias reported optimum dietary lipid level was between 10% and 15% (El-Sayed and Garling, 1988; Chou and Shiau, 1996), whereas a minimum level of 5% must be provided (De Silva et al., 1991; Chou and Shiau, 1996). An even lower level of only 3% was reported on Mozambique tilapia (O. mozambicus) if sufficient energy sources contributed from digestible proteins and carbohydrates were guaranteed in the feeds when the fish was intensively cultured in recirculating systems (Fitzsimmons et al. 1997). There were numerous studies reported on the protein sparing effect of lipid in tilapia (Anderson et al., 1984; Wee and Ng, 1986), at the same time, under some conditions the amount of dietary lipid requirement of tilapia could be also spared by carbohydrates (El-Sayed and Garling, 1988; Shimeno et al., 1993).

While reviewing the lipid nutrition of tilapia, the fatty acid requirement of this species must also be considered. Tilapia, unlike marine fish, is capable of converting the 18-carbon polyunsaturated fatty acids (PUFA) like linoleic (18:2n-6) and linolenic
(18:3n-3) acids through desaturation and elongation into their respective longer end products arachidonic acid (20:4n-6) and DHA (22:6n-3) (Figure 2.1). Applying the stable isotope tracking technology, both of Olsen et al. (1990) and Tocher et al. (2002) confirmed this ability of Nile tilapia to synthesize C20 and C22 from C18 n-6 and n-3 PUFA by supplying the fish with 14C labelled linoleic (18:2n-6) and linolenic (18:3n-3) acids laden diets. Tilapia, like other fish and vertebrates, can not de novo synthesize 18:2n-6 and 18:3n-3 (Henderson and Tocher 1987). It was thus these two fatty acids were essential fatty acids for this species and must be provided in the diets (NRC 1993).

\[(n-6) \text{ Series} \]

\[
\begin{align*}
18:2n-6 & \rightarrow 18:3n-6 & \rightarrow 20:3n-6 & \rightarrow 20:4n-6 \\
\end{align*}
\]

\[(n-3) \text{ Series} \]

\[
\begin{align*}
18:3n-3 & \rightarrow 18:4n-3 \\
\end{align*}
\]

\[
\begin{align*}
20:4n-3 & \rightarrow 20:5n-3 & \rightarrow 22:6n-3 \\
\end{align*}
\]

Figure 2.1 Pathways of conversion of C18 (n-6) and (n-3) polyunsaturated fatty acids to their higher C20 and C22 derivatives. (Adopted from Sargent, J.R., 1995)

However, similar to other freshwater fish, tilapia tends to require greater amounts of n-6 fatty acids in contrast to n-3 fatty acids for the maximal growth performance (NRC, 1993) though this was not accompanied with uncontradictory reports. Takeuchi et al. (1983) reported Nile tilapia required 0.5% 18:2n-6 albeit not 20:4n-6 for the optimal growth when fed the purified diets. Kanazawa et al. (1980) found red-belly tilapia, *Tilapia zillii*, had the fatty acid requirement for 18:2n-6 or 20:4n-6 at a level of about 1% of the better growth performance. These authors also showed that dietary 18:3n-3 or n-3 HUFA either had no growth improvement or even
to the worse reduced growth performance or feed untilization of the afore-mentioned tilapias. Similar findings were reported in blue tilapia (*O. aureaus*) (Stickney and McGeachin, 1983) and hybrid tilapia (*O. niloticus × O. aureaus*) (Huang *et al*., 1998; Ng *et al*., 2001). Contrary to the notion, Chou *et al*. (2001) reported that hybrid tilapia fed diets containing up to 5% n-3 PUFA rich cod liver oil (CLO) had better growth performance while those fed a diet added no CLO had poorer growth and showed a typical n-3 deficiency, suggesting that n-3 PUFA may be required for maximal growth.

The qualitative requirement of broodstock tilapia for EFA has to date not been determined yet.

2.2 Alternative lipid source for tilapia

Fish oil is a traditional key important ingredient for the aqua-feeds as a source for energy and n-3 PUFA. Due to the over-exploitation for pelagic fisheries, the global annual production of fish oil has stagnated around one million MT (Figure 2.2) for many years after peaking at slightly less than two million MT during the late 1980s. The International Fishmeal and Fish Oil Organisation estimated 0.8 million MT of global fish oil was used for the aquaculture and 3% of this amount for tilapia in 2009. Although the total amount of fish oil for the aquaculture use was to some extent reduced in recent years but the fish oil use in the tilapia feeds was increased to 5.3% according to The World State of Fisheries and Aquaculture by FAO in 2012. To reduce the reliance on this expensive and finite oil source, quite some work have been carried out to research the economical alternatives for tilapia (Gaber, 1996; Huang *et al*., 1998; Ng *et al*. 2001, 2006; Bahurmiz and Ng, 2007; Trushenski *et al*., 2009; Szabo *et al*., 2011).
Results from these studies showed vegetable oils like soybean oil (Gaber, 1996; Huang et al., 1998) and crude palm oil (Ng et al. 2001, 2006; Bahurmiz and Ng, 2007) appeared to be suitable candidates. Especially for crude palm oil, it is cheap and readily available as this oil was projected to take over soybean oil as the most abundant plant oil a decade ago (Gunstone, 2001). Its richness in natural antioxidants such carotenoids and vitamin E, high concentration of saturated 16:0 and monounsaturated 18:1n-9 fatty acids leads not hard to believe it is not only reduce the incidence of rancidity of feeds but also lend the benefits to the health of tilapia consuming this oil. Furthermore, Shiranee & Natarajan (1996) reported the incorporation of crude palm oil into the diet enhanced the reproductive potential of pearlspot *Etroplus suratensis*. Hajizadeh et al. (2008) first reported the addition of crude palm oil into the broodstock diet had no
negative effect on egg and larval quality in *O. niloticus*. Further research should be conducted to investigate effects of crude palm oil, the foremost potential fish oil substitute for tilapia, on the reproductive performance of this fish (Chapter 4).

2.3 Vitamin E nutrition of tilapia

Vitamin E found by Evans and Bishop (1922) is nowadays used to describe for a group of structure-related, lipid-soluble compounds. Its eight naturally occurring isoforms consists of a common chromanol head and a hydrocarbon side chain (Figure 2.3). Those with the saturated tail are called tocopherols whereas those bearing the unsaturated one named tocotrienols. The vitamin E homologue, α, β, γ or δ-tocopherol or tocotrienol, is designated according to the number and the position of the methyl groups (CH₃-) attached to the aromatic ring. Various homologues of vitamin E have the different biological activity with the following order was reported, α-tocopherol > β-tocopherol > α-tocotrienol > γ-tocopherol > β-tocotrienol > δ-tocopherol > γ-tocotrienol, corresponding to a respective biopotency factor to 1, 0.5, 0.3, 0.1, 0.05, 0.03 and 0.01 based on the amount of vitamin E necessary to prevent foetal resorption in pregnant and vitamin E-deficient rats (Sheppard and Pennington, 1993; Drotleff and Ternuies, 1999). Nevertheless, the biological activity of these homologues is not necessarily associated with their antioxidant activity. For example, Cooney *et al.* (1993) reported that γ-tocopherol was superior to α-tocopherol to detoxify nitrogen dioxide (NO₂), suggesting that the former had the more potent antioxidant activity than the latter. Serbinova *et al.* (1991) reported α-tocotrienol possessed 40-60 times higher antioxidant activity against Fe²⁺-induced lipid peroxidation in rat liver microsomal membranes than α-tocotrienol. Similarly, Kamat *et al.* (1995 & 1997) reported
tocotrienols had more potent antioxidant capabilities than α-tocopherol in rat brain mitochondria and liver miscosomes, respectively.

![Structure of naturally occurring vitamin E isoforms: tocopherols (a) and tocotrienols (b).](image)

<table>
<thead>
<tr>
<th>Tocopherol</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>CH₃</td>
<td>CH₃</td>
</tr>
<tr>
<td>β</td>
<td>H</td>
<td>CH₃</td>
</tr>
<tr>
<td>γ</td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>δ</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

(a)

<table>
<thead>
<tr>
<th>Tocotrienols</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>CH₃</td>
<td>CH₃</td>
</tr>
<tr>
<td>β</td>
<td>H</td>
<td>CH₃</td>
</tr>
<tr>
<td>γ</td>
<td>CH₃</td>
<td>H</td>
</tr>
<tr>
<td>δ</td>
<td>H</td>
<td>H</td>
</tr>
</tbody>
</table>

(b)

Figure 2.3 Structure of naturally occurring vitamin E isoforms: tocopherols (a) and tocotrienols (b).

Like terrestrial animals, fish can not synthesize vitamin E in the body and thus must obtain it from the diet (NRC, 1993). DL-α-tocopheryl acetate, chemically synthesized from substituting the hydrogen atom of hydroxyl group on phenolic ring on the chromanol nucleus of tocopherol by the acetate group (CH₃COO⁻) (Figure 2.4),
is the most commonly used vitamin E compound due to its stability. The deficiency of vitamin E in fish can cause poor growth, muscular dystrophy, anemia, impaired erythropoiesis, depigmentation, and among other symptoms (NRC, 1993).

Figure 2.4 Structure of chemically synthesized vitamin E: α-tocopheryl acetate.

The dietary requirement for vitamin E has been established for many fish species including tilapia with the levels ranging from 25 – 119 mg/kg (NRC, 1993). The dietary vitamin E requirement of tilapia may be species specific and also affected by the dietary lipid level or dietary HUFA. For example, Satoh et al. (1987) reported the dietary vitamin E requirement of Nile tilapia was 50–100 mg DL-α-tocopheryl acetate/kg dry diet for a diet added with 5% lipid but significantly increased to 500mg/kg when the dietary lipid level was increased to 10-15%. In the meanwhile, Roem et al. (1990) reported the requirement of blue tilapia O. aureas was estimated to 10mg and 25mg/kg in diets supplemented with 3% and 6% dietary lipd, respectively. Futhurmore, Shiau & Shiau (2001) re-evaluated the vitamin E dietary of tilapia to be 42-44 mg/kg and 60-66 mg/kg when fed diets containng 5% and 12% lipid, respectively, based on the findings from their laboratory that both n-3 HUFA and n-6 fatty acids were required by tilapia for maximal growth (Chou and Shiau, 1999; Chou et al., 2001). To date, the qualitative requirement for vitamin E of broodstock tilapia is not determined.
In fish nutrition, the vitamin E studies were primarily focused on α-tocopherol/α-tocopheryl acetate, only a few research were conducted on other tocopherols like β, γ or δ-tocopherol in salmonids (Sigurgisladottir et al., 1994; Hamre and Lie, 1997; Parazo et al., 1998) and tocotrienols in African catfish (Ng et al. 2004) and red hybrid tilapia (Wang et al., 2006). The results obtained from these studies showed α-tocopherol was always the predominant isoform accumulated in all tissues of fish examined, indicating there was no conversion between the most biological active α-tocopherol and its β, γ or δ-counterpart or four tocotrienols. A study by Hamre et al. (1998) indicated there might be present of a hepatic tocopherol binding protein called α-tocopherol transfer protein (α-TTP) existing in mammals (Blatt et al., 2001) to differentiate α-tocopherol in liver from other tocopherols during the absorption, also in Atlantic salmon (Salmo salar L.). Ng et al. (2004) assumed α-TTP was also present in African catfish and went on to propose this was the cause leading to the very low levels of α- and γ-tocotrienols deposited into the tissues of this fish detected despite that one of groups of animals were fed on a diet containing 10% palm fatty acid distillate rich in tocotrienols (3889.2mg total vitamin E/g oil, with 79.5% consisting of tocotrienols and 20.4% tocopherols). The further work from this laboratory led Wang et al. (2006) first to report the deposition of tocotrienols in the tissues of tilapia fed diets added palm oil-originating tocotrienols fraction. Results obtained there furthur added the credence of existence of assumed α-TTP in fish although the exact mechanism of this fat-soluble vitamin remains to be uncovered. There is also no report available on the deposition and distribution of various vitamin E homologues in the broodstock tilapia, which warrants the necessity of doing the relevant studies in this regard (Chapters 5 & 6).
2.4 Broodstock nutrition of tilapia

Tilapia farming is developing at the fast step as it is the second most farmed fish only after the carps in the world. However, to have the sustainable tilapia production, it is not difficult to understand the demand for fry supply must be met. The *Oreochromis* tilapia and its hybrids are mouthbrooders and infamous for their asynchronous spawning and low fecundity breeding traits which hinders to expand commercial tilapia aquaculture (Bhujel, 2000). Broodstock nutrition is recognized to play the important role on gonadal maturation, egg and larval quality of fish (Izquierdo *et al.*, 2001). To date, protein is the foremost researched nutrient on the reproduction of tilapia. Results available showed a dietary requirement for protein of tilapia should be ranging from 20 to 40%. Santiago *et al.* (1985) found Nile tilapia fed on the 40% protein diet consistently had the higher larvae production but only a portion of those on the 20% protein one had the comparable results with the remaining having significantly inferior reproductive performance. Gunasekara *et al.* (1996a) reported Nile tilapia maintained on the diets with 20 or 35% protein level had higher numbers of eggs per spawn and significantly shorter pawning intervals compared to those on a diet of 10% protein level though relative fecundity and egg size was relatively similar. A following work by the same authors observed Nile tilapia had the similar numbers of eggs per spawn and percent fertilizability when also fed the 20 and 35% protein level diets but those on the higher protein diet had significantly higher hatchability of eggs and percentage of normal larvae (Gunasekara *et al.*, 1996b). Similiarly, Bhujel *et al.* (2001) observed no difference for the reproduction performance between the two groups of broodstock Nile tilapia fed on two commercial catfish diets with the protein content at 25% and 30%, respectively. El-sayed *et al* (2003) reporte that 40% dietary protein was required for optimum spawning performance of Nile tilapia reared at
different salinities. Nevertheless, the excess of protein inclusion in diets might have a negative effects on the tilapia reproduction. Both Wee and Tuan (1988) and De Silva and Radampola (1990) found tilapia fed on the diets containing more than 40% crude protein produced less larvae or total number of spawnings per female. When high dietary protein levels were used for broodstock tilapia, an optimal protein to energy (P/E) ratios from 20.5 to 23.6 mg CP KJ/g was recommended (El-Sayed and Kawanna 2008; Lupatsch et al., 2010). In the meanwhile, deficiency of protein in the broodstock diets of tilapia was reported to delay sexual maturity, slow oocyte maturation, and reduce the fertility of spawned eggs and postpon the spawning intervals (Gunasekara et al., 1995, 1996a, b).

Aside from protein, lipid also plays a crucial role on the reproductive performance and larval quality of fish (Bell et al., 1997; Mazorra et al., 2003). Although the lipid nutrition of tilapia attracted many interests of fish nutritionists in the past decades (see Section 2.1), fewer studies have by so far been performed on the broodstock tilapia. Santiago and Reyes (1993) studied effects of different dietary lipid sources (cod liver oil, soybean oil, corn oil, coconut oil or a cod liver oil and corn oil mixture), on the reproductive performance of Nile tilapia. They found that fish fed the diet added cod liver oil rich in n-3 HUFA as the sole lipid source had the poorest spawning performance while fish fed on the diet supplemented with soybean oil abundant with n-6 18:2-6 had the most breeders and the highest larvae production. El-sayed et al. (2005) also researched the reproductive performance of Nile tilapia fed on different dietary lipid sources (fish oil, soybean oil, or the mixture of the two oils) added at a level of 10% when rearing in the different salinities (0 - 17‰). These authors found Nile tilapia fed all dietary lipid sources had similar fecundity and
number of eggs per spawn at the 0‰ salinity but fish fed fish oil-based diets had shorter egg hatching and yolk-sac absorption time at higher salinities at 7 and 14‰ in contrast to those soybean oil fed. They went on to suggest the broodfish of Nile tilapia reared in the salty water require a source of dietary n-3 HUFA for optimum spawning performance. In another study comparing broodstock dietary lipid source, Hajizaheh et al. (2008) fed diets added 10% of cod liver oil, palm oil, or a blend of palm oil and cod liver oil with a commercial trout diet as a control to Nile tilapia from the starting of exogenous feeding. It turned out fish on the diet with cod liver oil as the sole source suffered high mortalities and did not spawn while fish fed diet containing palm oil or mix of palm oil with cod liver liver had higher fecundity and shorter spawning intervals than fish fed the control diet. Other than those information summarized above, no optimal dietary lipid and n-3 or n-6 fatty acids levels were reported for the broodstock tilapia. Furthur studies should be considered in this area to expand our current knowledge on the lipid broodstock nutrition of the second most farmed fish.

Vitamin E has been recognized for its importance in the reproduction of fish (Watanabe et al., 1991; Izquirdo et al., 2001). However, there were few reports available for this fat-soluble antioxidant on the reproductive performance of tilapia. Both El-Gamal et al. (2007) and Gammanpila et al. (2007) confirmed the synergistic effects of this vitaminer together with vitamin C, selenium or zinc on the spawning performance and egg and larval quality. For example, El-Gamal et al. (2007) observed Nile tilapia fed α-tocopheryl actate at a dietary level of 34mg/kg combined with vitamin C 120 mg/kg and/or selenium 0.2 mg/kg had larger egg diameter, higher fecundity, fertilization percentage, hatching rate and survival percentage of hatched fry compared to the fish fed on the control diet supplemented with none of them. At the same time,
Gammanpila et al. (2007) found the supplementation of vitamin E at 600 mg \(\alpha \)-tocopheryl actate/kg diet (or vitamin C at 1250 mg/kg) alone in the diet did not affect the spawning efficiency, total fry production and number of eggs per breeder of Nile tilapia but the broodfish fed diets supplemented with the combination of vitamin E and vitamin C with or without zinc (added as 120 mg/kg zinc sulphate) had significantly higher numbers of eggs per spawning. An early report by Areechon and Thaitoungchin (2003) also did not observe the enhanced spawning of this species though the broodfish fed with the diet added a high level of vitamin E (600 mg/kg) slightly increased number of spawning fish. It is therefore further studies are worth of being done to examine the requirement of vitamin E for broodstock tilapia in order to improve the reproductive performance (Chapter 6). And thereafter, what extent and how the maternal-offspring transferred vitamin E (as antioxidant) can provide to the first-feeding larvae when reared on the lipid oxidative stressed diets? The question can not be answered until the related research (Chapter 7) is done since there is no any ready information available for fish.

There is by so far almost no reports of other nutrients aside from protein, lipid (including fatty acids) and vitamin E available on the tilapia reproduction. Abdelhamid et al. (2010) reported both commercial feed additives Therigon® (Adwia Co, El Oubor, Egypt) consisting of GnRH stimulant \(\alpha \)-amino-p-hydroxyhydrocynamnic acid and Nuvisol Hatch P® (Newtrix Co, Lille, Belgium) making up of various B vitamins, progesterone, biotin and L-carnitine, added at the level of 1 g/kg of diet, fed to female broodstock Nile tilapia significantly increased the total number of eggs produced. Besides, there were some reports available for the influence of non-nutrition factors on the spawning activities and fry production. For example, Siddiqui and Al-Harbi
(1997) found a stocking density of 2 fish/m² in concrete tanks under a sex ratio of 1:2 and 1:3 (male : female) showed the better spawning performance of hybrid tilapia (O. nilotica × O. aurea) in terms of number of eggs/female/day and number of eggs/kg female/day. While using the same sex ratio as Siddiqui and Al-Harbi (1997), Ridha and Cruz (1999) obtained the best results with respect to fecundity, spawning synchrony and number of swim-up fry for the breeders of Nile tilapia stocked at a density of 4 fish/m² than at 8 and 12 fish/m². Environmental factors like temperature and light condition was also reported to affecting the spawning performance of tilapia (Ridha et al., 1998; Ridha and Cruze, 2000; El-sayed and Kawanna, 2007). It was suggested that an ambient water temperature of 29 ± 2°C was optimal for the spawning performance of the tilapia species O. spilurus (Ridha et al., 1998) and a light intensity of 2500lux combined a light/night photoperiod of 18h/day improve the seed production and spawning synchrony of Nile tilapia broodfish reared in concrete tanks (Ridha and Cruze, 2000) but a 12h/day photoperiod regime was recommended in order to obtain maximum fecundity, egg production and spawning efficiency of Nile tilapia broodstock cultured in intensive, recirculating systems (El-sayed and Kawanna, 2007).
Chapter 3. Materials and Methods

3.1 Introduction

Based on the research objectives, three separate but related feeding trials were carried out. This chapter describes the materials and general methods used in the present dissertation.

In Experiment 1 (Chapter 4), the prime intention was to examine how the replacement of fish oil with 0, 50 and 100% of crude palm oil as the dietary lipid in broodstock diets while including linseed oil as a sole lipid source in a fourth diet for comparison purposes affect the reproduction of Nile tilapia, *Oreochromis niloticus*. Because of the high endogenous vitamin E occurrence in these diets originating from the dietary oils, the second part (Chapter 5) of this experiment studied the deposition and distribution of tocopherols and tocotrienols in various tissues of female and male broodfish, and reproduction products like eggs and yolk-sac free larva.

Experiment 2 (Chapter 6) was designed to examine if the supplementation of various levels of vitamin E in the α-tocopheryl acetate form or from a palm oil-based tocotrienols rich fraction into broodstock diets could boost the reproductive performance of brooding tilapia. It was expected that high broodstock dietary α-tocopheryl acetate could lead to the high α-tocopherol reserve in the body of larvae having originated from the parental female fed on the afore-mentioned diets.

Experiment 3 (Chapter 7) was thus conducted to investigate whether the resultant high α-tocopherol level in the body of yolk-sac free larva had positive effects
on the growth performance, body vitamin E status and fatty acids profile when given no vitamin E added diet supplemented with or without highly oxidized oil.

3.2 Proximate analysis

Proximate analysis were performed to check the composition of dietary ingredients before formulating diets as well as to verify the composition of all experimental diets after pelleted. Dietary protein sources were made up of Danish fish meal, soybean meal, gelatin and casein. These ingredients were either locally sourced or purchased from multinational cooperates. Danish fish meal was supplied by Tan Trading Sdn. Bhd. (Alor Setar, Kedah, Malaysia), soybean meal from Sun Sun Feedstuffs Co. (Butterworth, Penang, Malaysia), gelatin of bovine origin from Liang Traco Trading (George Town, Penang, Malaysia) and purified casein was bought from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA).

Fish meal, casein and soybean meal were analysed for moisture, crude protein, crude lipid, fiber and nitrogen extract (NFE). NFE was not determined directly, but by the amount remaining after subtracting the total amounts of other proximate constituents from 100%, that is \(%\text{NFE} = 100 - (\%\text{Ash} + \%\text{Protein} + \%\text{Lipid} + \%\text{Fiber}) \). The procedures to perform these analyses were done according to AOAC standard methods (Association of Official Analytic Chemists, 1997).

Table 3.1 shows protein concentration of dietary protein sources used in three experiments of the present study.
Table 3.1 Protein concentration of dietary protein source (dry weight basis, %) in Experiment 1, 2 & 3.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Dry Matter</th>
<th>Protein</th>
<th>Lipid</th>
<th>Ash</th>
<th>NFE²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish Meal</td>
<td>92.42 ± 0.15</td>
<td>77.75 ± 0.21</td>
<td>12.33 ± 0.04</td>
<td>13.10 ± 0.13</td>
<td>TR³</td>
</tr>
<tr>
<td>Casein</td>
<td>89.51 ± 0.06</td>
<td>91.21 ± 0.13</td>
<td>TR</td>
<td>2.11 ± 0.39</td>
<td>6.68 ± 0.23</td>
</tr>
<tr>
<td>Gelatin</td>
<td>91.10 ± 0.13</td>
<td>100</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
</tr>
<tr>
<td>SBM⁴</td>
<td>93.28 ± 0.05</td>
<td>48.86 ± 0.16</td>
<td>3.57 ± 0.08</td>
<td>6.87 ± 0.07</td>
<td>35.99 ± 0.10</td>
</tr>
<tr>
<td>Experiment 2 & 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish Meal</td>
<td>91.68 ± 0.10</td>
<td>72.33 ± 0.76</td>
<td>12.33 ± 0.04</td>
<td>13.10 ± 0.13</td>
<td>TR³</td>
</tr>
<tr>
<td>Casein</td>
<td>92.86 ± 0.10</td>
<td>89.01 ± 0.20</td>
<td>TR</td>
<td>1.14 ± 0.41</td>
<td>9.84 ± 0.26</td>
</tr>
<tr>
<td>Gelatin</td>
<td>87.57 ± 0.04</td>
<td>100</td>
<td>TR</td>
<td>TR</td>
<td>TR</td>
</tr>
<tr>
<td>SBM</td>
<td>93.69 ± 0.20</td>
<td>48.08 ± 0.44</td>
<td>5.17 ± 0.08</td>
<td>5.93 ± 0.01</td>
<td>37.93 ± 0.48</td>
</tr>
</tbody>
</table>

¹ Results were expressed as mean ± S.D. after triplicate samples were analyzed.
² NFE, nitrogen-free extract.
³ TR = trace.
⁴ SBM = soybean meal.

3.3 Fatty acid analysis

Fatty acid analysis was done using a Shimadzu GC-2010 GC (Shimadzu, Japan). It is equipped with a flame ionization detector and Shimadzu GC solution integrator.

All fatty acid methyl ester were resolved and analyzed by this Shimadzu system. The esters were separated on a SP™-2560 fused silica capillary column (100 m x 0.25 mm ID, 0.2μm film thickness, Supelco, Bellafonte, PA, USA). Column temperature was set at 140°C for the first 2 min, then increased to 225°C at 2°C/min and held at this temperature for 5 min, then increased again to 240°C at 2°C/min and held for 3 min. A
SPL-2010 injector (split ratio 1:100) was used. Injector port and detector temperatures were 250°C. Nitrogen was used as the carrier gas.

Fatty acids were identified by comparing retention time with those of known standards (Supelco 37 Component FAME Mix, PUFA No.2 and PUFA No.3; Supelco, Bellafonte, PA). The resulting peak areas were then quantified relative to the internal standard. An internal standard (23:0) was added for quantitative measurement of individual fatty acid present in the samples.

Solvents and chemicals used during the sample preparation, such as methanol, chloroform, sodium chloride, anhydrous sodium sulphate (Na₂SO₄) and heptane, all of analytical-grade, were purchased from Thermo Fisher Scientific (Hampton, NH, USA), while methanolic boron trifluoride (BF₃) were bought from Merck (Darmstadt, Germany). Oils samples could be directly processed to be methylated and transestificated with methanolic BF₃ (AOAC, 1997) before fatty acid methyl esters were extracted into a volume of heptane and finally a portion of it was analyzed on GC.

3.4 Vitamin E analysis

Vitamin E (tocopherols and tocotrienols) was analysed by high performance liquid chromatography (HPLC). Solvents and chemicals used during the sample preparation, such as butylated hydroxyltoluene (BHT), sodium chloride (NaOH, ACS-graded), absolute ethanol (>99.6%), hexane (HPLC-grade), tetrahydrofuran (THF), ethyl acetate were all purchased from the Malaysian branch of Fisher Scientific Ltd., except for potassium hydroxide (KOH, ACS-graded) that was supplied by Merck (Darmstadt, Germany).
The HPLC system consisted of a LiChroCART Purospher STAR Si (5 µm) 250×4.6 mm column from Merck (Darmstadt, Germany) equipped with a LiChroCART 4-4 guard column, a Rheodyne 7125i sample injector fitted with a 20-µl sample loop, a Shimadzu LC-20AT pump, and a Shimazu RF-10Axl Fluorescence Detector (Shimadzu, Japan). Results were recorded and analyzed using Shimadzu LC solution software. The excitation and emission wavelengths of detector was set at 196 nm and 330nm, respectively. The isocratic mobile phase used was hexane – THF (100:4), v/v) at a flow rate of 2 ml per min.

α-tocopherol, and tocotrienols (α-, γ- and δ-) were identified and quantified with the help of an in-house reference standard complimented by Carotech (Ipoh, Malaysia). δ- tocopherol standard was purchased from Sigma-Aldrich (MO, USA).

As tocopherol and tocotrienols are light and heat sensitive, it is important to perform this bio-assay in a dim and low temperature environment. Oil samples were weighed accurately about 0.01g or experimental diets, fish tissues (muscle, liver, ovary, testes) into a 10ml centrifuge tube, followed by adding 2 ml absolute ethanol containing 0.2% BHT, 0.2 ml of 2% NaCl and 0.4 ml of 60% KOH. The tube was flushed nitrogen gas, capped and thoroughly mixed on a votex machine before saponified in a 70°C water bath for 20 minutes. After cooling on ice, the tube was added 2 ml of 2% NaCl. The tocopherols and tocotrienols were extracted with 5 ml of hexane containing ethyl acetate (v:v = 9:1). 100 µl of aliquots of the hexane layer was injected into the HPLC.