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KEJURUTERAAN PERMUKAAN LOGAM TITANIUM UNTUK 

TINDAKBALAS SEL 

 

ABSTRAK 

 

Penyelidikan ini fokus kepada pengubahsuaian permukaan titanium dengan 

morfologi topografi tiub-nano TiO2. Tindak balas tiub-nano TiO2 dan sel stromal 

tulang PA6 dikaji bagi memahami pengaruh struktur tiub-nano terhadap 

pertumbuhan sel. Bagi menjayakan objektif penyelidikan ini, kerajang titanium telah 

diubahsuai kepada tiub-nano TiO2 yang mempunyai pelbagai dimensi melalui 

kaedah penganodan dan dicirikan. Tiub-nano TiO2 bersaiz 25 - 110 nm berjaya 

dihasilkan di antara 10 V dan 40 V. Rintangan kakisan adalah tinggi bagi sampel 

yang dianodkan pada 10 V (25 nm-diameter). Panjang tiub-nano TiO2 adalah 2.2 μm 

apabila dianodkan selama 3 jam. Fasa anatas, anatas-rutil dan rutil dihasilkan apabila 

tiub-nano TiO2 disepuhlindap pada 300 °C, 600 °C dan 700 °C. Struktur tiub juga 

didapati musnah apabila disepuhlindap pada 700 °C. Fasa anatas mempunyai 

rintangan kakisan yang tinggi kerana lapisan oksida yang telah dihablurkan 

menghalang aktiviti kakisan (kadar kakisan = 0.31 nm/tahun). Morfologi sel, 

perlekatan, kebolehhidupan,  immunokimia, aktiviti phosphatase alkali, pemendapan 

kalsium, Western Blot dan immunophenotyping dijalankan untuk menilai kesan 

biologi bagi sel PA6 apabila dikultur di atas tiub-nano TiO2. Dari kajian ini, tiub-

nano dengan 45 nm-diameter, 2.2 μm-panjang dan mengandungi campuran fasa 

anatas-rutil meningkatkan pertumbuhan sel PA6. Tiada bahan yang dibebaskan 

semasa tempoh pengeraman sel PA6 diperhatikan. Kepekatan protein di atas 
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permukaan tiub-nano lebih tinggi berbanding bahan kawalan kerana luas permukaan 

dan tapak perlekatan untuk sel memegang substrat adalah lebih besar. Ekspresi 

immunostaining untuk cytokeratin, Bromodeoxyuridine, CD34, IBMR3 dan 

propidium iodida adalah positif bagi kesemua sampel. Bagi analisa 

immunophenotyping, sel PA6 adalah positif untuk CD49e, CD51 and CD73. Ini 

mencadangkan sel PA6 di atas tiub-nano TiO2 terlibat dalam perlekatan matrik sel 

luaran, interaksi sel stromal tulang, sistem imun dan pembahagian sel asas 

mesenchymal. Yang pentingnya, sinaran fluorescence menunjukkan sel PA6 yang 

dikultur di atas tiub-nano TiO2 tidak mengalami perubahan yang mendadak 

berbanding bahan kawalan. Selepas 14 hari, hydroxyapatite didapati menyelaputi 

keseluruhan permukaan tiub-nano dan struktur ini meningkatkan pertumbuhan sel 

PA6. Penemuan ini menjelaskan bahawa tiub-nano merupakan faktor yang penting 

untuk mengoptimakan interaksi sel PA6. 
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SURFACE ENGINEERING OF TITANIUM BASED METAL FOR CELL 

INTERACTION 

 

ABSTRACT 

 

This research focused on the titanium surface modification with nanotopography 

morphology of TiO2 nanotubes. Cell-metal interaction between TiO2 nanotubes and 

PA6 bone marrow stromal cells were studied to understand the TiO2 nanotubes 

parameters that affect the cell growth. To achieve objective of this research work, 

titanium foil was transformed into different dimensionalities of TiO2 nanotubes via 

simple anodization method and characterized. TiO2 nanotubes with inner diameter of 

25 nm to 110 nm were successfully developed within 10 V to 40 V. Corrosion 

resistance was higher for sample anodizes at 10 V (25 nm-diameters). The length of 

the TiO2 nanotubes arrays were 2.2 μm after 3 hours anodization. Anatase, anatase-

rutile and rutile phase was observed when TiO2 nanotubes subjected to anneal at 300 

°C, 600 °C and 700 °C. Tubular structure destroy when anneal at 700 °C. Anatase 

phase give higher corrosion resistance because crystallized barrier oxide layer hinder 

the corrosion activity (corrosion rate = 0.31 nm/year). Cell morphology, adhesion, 

viability, immunocytochemistry, alkaline phosphatase activity, calcium deposition, 

Western Blot and immunophenotyping were done to evaluate PA6 cells interaction 

on TiO2 nanotubes accordingly. From this study, 45 nm-diameter, 2.2 μm-length 

nanotube and anatase-rutile mixture phase enhanced the PA6 cells growth. No 

materials elution after 3 days incubation with PA6 cells observed. The protein 

concentrations on TiO2 nanotubes were significantly higher than control due to large 
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surface area and binding sites for cells to anchorage the substrate. Immunostaining 

expression for cytokeratin, Bromodeoxyuridine, CD34, IBMR3 and PI was positive 

on entire samples. From immunophenotyping analysis, PA6 cells were positive on 

CD49e, CD51 and CD73, suggested that PA6 cells on TiO2 nanotube arrays 

positively involved in extracellular matrix adhesion, bone marrow stromal cells 

interaction, immune system and mesenchymal stem cells differentiate. Importantly, 

fluorescence image shows PA6 cells cultured on TiO2 nanotubes did not have much 

alteration as compared to control with regard of no significant different from the 

fluorescence intensity. After 14 days, hydroxyapatite fully covered TiO2 nanotubes 

surface and enhance the PA6 cell growth and viability. These findings indicate that 

fine-tuning TiO2 nanotubes will be essential parameter in optimizing PA6 cell 

interaction. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 Over the past 20 years, titanium (Ti) and it alloys have been used as implant 

materials (Park et al., 2010). Biocompatible nature (Vega et al., 2008), excellent 

mechanical properties and chemical stability (Lee et al., 2009) of Ti makes it a 

perfect candidate to be used in implant applications. However, implant materials for 

clinical applications tend to fail because of their poor surfaces characteristic that 

enable to support new bone growth and this will lead insufficient bonding to 

juxtaposed bone (Ma et al., 2008), thus slow osteoconductivity (Thian et al., 2006) 

and healing process. In this case, juxtaposed bone refers to natural bone bonding to 

implant material. Therefore, lately considerable attention has been focused on Ti 

surface modification (Chang et al., 2009) such as plasma coating (Hauser et al., 2009 

and Wei et al., 2008), etching (Das et al., 2007) and anodization (Yu et al., 2009) to 

improve surface characteristic for implant material.  

Recently, Ti surface was modified to form self-ordered layer of vertically 

oriented titanium dioxide (TiO2) nanotubes with diameters ranging from 25 and 100 

nm by anodization process (Lan et al., 2014). The results revealed that proliferation 

and cytocompatibility of cells on vertically aligned TiO2 nanotube surfaces are 

nanotubes diameter dependent. A nanotube with diameter of 25 nm seems to have 

high biocompatibility of epithelial cells in comparison to 50 and 100 nm. Such 

results indicate that the surface nanostructure of an implant is an important factor for 

surface cell adhesion and growth. In line with this result, Zhao and co-workers 
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(2013) observed 30 nm-diameter TiO2 nanotubes promotes the spread of 

mesencymal stem cells (MSC) into polygonal osteoblastic shape. The TiO2 

nanotubes samples promote osteogenesis in absence of an extra osteogenic agent. A 

30 nm-diameter TiO2 nanotubes also generates big nodular alkaline phosphatase 

(ALP) product and induce extracellular matrix (ECM) mineralization. However, two 

years ago, Zhao et al., (Zhao et al., 2012) reported 80 nm-diameters of TiO2 

nanotubes give best ability to simultaneously promote MSC proliferation and 

osteogenic differentiation simultaneously. In 2011, Choe has demonstrated that 50 

nm-inner diameter of TiO2 nanotubes provided good osseointegration such as cell 

proliferation, migration and differentiation (Choe et al., 2011). Yang et al., 

suggested that surface treatment with nanotubular TiO2 surface enhanced the early 

osteoblast response, such as cell spreading and cytokine release, which is an 

important factor for subsequent cell functions and bone healing in vivo (Yang et al., 

2008a). Previous studies by Brammer et al., demonstrate that nanotopography 

provided nanoscale cue that facilitate cellular probing, cell sensing if more actin 

cytoskeletal filaments formed lamellipodia and locomotive morphologies (Brammer 

et al., 2011b). Park’s group also showed that adhesion, spreading, growth and 

differentiation of MSC are critically dependent on the tube inner diameter (Park et 

al., 2007). Spacing between 15 – 30 nm provided an effective length scale for 

accelerated integrin clustering/focal contact formation and strongly enhanced 

cellular activities compared to smooth TiO2 surfaces. Cell adhesion and spreading 

were severely impaired on nanotube layers with tube diameter larger than 50 nm 

resulting reduced cellular activity and experienced programmed cell death. So, 

Park’s group suggested TiO2 nanotubes with 30 – 50 nm inner diameter represents 

critical borderline for cell to survive (Park et al., 2007).  The cell function altered if 
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the inner diameter of TiO2 nanotubes were less than 30 nm and more than 50 nm. 

The above-mentioned findings are valid generally for the cell response to different 

topographical nanorough surface and have an important impact on the design and 

composition of implant surfaces (Gongadze et al., 2011). 

 

1.2 Problem statement 

Recently, surface topography such as TiO2 nanotubes have been shown to 

alter cell behaviors such as adhesion, orientation, differentiation and migration 

significantly (Koo et al., 2013). It is due to nanotubes topography that can provide 

more abundant topographical cues similar to dimensional scale of bone collagen 

fibrils and elasticity resembling bones (Wang et al., 2013). However, the 

dimensionality (diameter and length) of TiO2 nanotubes on cell interaction is not 

well understood. In addition, there have been some inconsistencies in the literature 

regarding the optimal size of TiO2 nanotubes for eliciting maximal adhesion, 

proliferation and cell functionality (Moon et al., 2011; Rajyalakshmi et al., 2011; 

Lan et al., 2013 and 2014). Therefore, in this research work the effect of diameter 

and length of TiO2 nanotubes on cell interaction were systematically studied. 

Another factor attribute to the drawback of Ti as implant materials is TiO2 

phases. Among three different crystalline phases of TiO2, anatase phase is more 

favorable for cell adhesion and proliferation due to lower surface contact angle 

(hydrophilic) and wettability (Koo et al., 2013). In contrast, high surface contact 

angle (the water contact angle is larger than 90 °) lead to hydrophobic surface, which 

mimic biological surface such as lotus leaf (Rosario et al., 2004). However, An and 

group reported that mixture anatase-rutile phase was more favorable for cell 
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interaction (An et al., 2011). Such contradicting outcomes among research groups 

cause difficulty for researchers to select the best phase for implant materials. Thus, 

in order to understand effect of crystal structure on cell interaction, considerable 

efforts have been devoted to produce stable TiO2 nanotubes phase that suits cells 

interaction requirement. 

Besides, the selection of cells has also drawn an essential role in determining 

the cell-metal interaction. Many cells cannot adapt and poorly survive in vitro or 

implanted in the foreign body. This is because foreign material cannot interact 

properly with cells as they are lack of ECM (Llopis-Hernández et al., 2011). Some 

efforts have been devoted in the literature to correlate the surface properties to 

protein adsorption and cell adhesion (Wang et al., 2012). There is still lack of 

understanding of the cell-metal interaction from an integrated point of view that 

includes cell adhesion, cell viability and biocompatibility, adsorbed proteins on the 

nanomaterials surface such as TiO2 nanotube arrays regarding their dimensionality. 

The different cells been used in the literature (Huo et al., 2013; Neupane et al., 2011; 

Roy et al., 2007) also make the analysis on the cell-metal interaction became more 

complicated. Therefore, detail study on cell-metal interaction specifically on TiO2 

nanotube arrays need to be done by using single cell type (PA6 cells) will be primary 

concern of this study. PA6 bone marrow cells are well known for a good and main 

available source of MSC at the present time (Yang et al., 2004 and Ayatollahi et al., 

2012a). It is also well ascribed that MSC are best candidates for tissue engineering 

and cellular therapy of orthopedic musculoskeletal tissues. 

 Ti has been introduced for biomaterials applications because it owns some of 

the good biocompatibility and high corrosion resistance. Yu et al. (2011) observed 

that 30 nm-diameter TiO2 nanotubes had higher resistance of the barrier layer and 
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lower passive current density (Ipass) compared to the smooth Ti. A previous study by 

Saji and co-workers indicated that the TiO2 nanotubes surface exhibited passivation 

behavior and corrosion current density was considerably high. However, the relation 

within electrochemical corrosion behavior of TiO2 nanotubes with cell-metal 

interaction was not reported. Indeed, comprehensive corrosion behavior study and 

cell-metal analysis would able to determine the best biomaterials implant.  

 Other laboratory concerns are materials elution from substrate to cell culture 

containing serum. This precipitation ions generated mineral nanoparticles with 

morphologically and chemically identical called nanobacteria (NB). NB is putative 

living entities are unusual for their small sizes (50-500 nm) have been implicated in 

numerous diseases involving extraskeletal calcification (Young et al., 2009). 

Therefore, in the present study, materials elution from TiO2 nanotubes were analyse 

after culturing with PA6 cells. This is to ensure that TiO2 nanotubes are safe to use 

as implant materials. 

The up-to-date biomarker to characterize cell behaviors has been study 

elsewhere (Oh et al., 2013; Huo et al., 2013; Peng et al., 2009). However, no formal 

consensus has yet been reached on which markers may be best suited for PA6 bone 

marrow cells. To resolve the PA6 cells behavior during incubation with TiO2 

nanotubes, several biomarkers were tested and discussed. 

The hydroxyapatite (HA) coatings formed upon immersion in Simulated 

Body Fluid (SBF) solution is believed to have similarities to bone apatite (Weng et 

al., 1997). However, the relation of HA coating surface corrosion behavior and cell 

interaction study was not discussed by Weng et al. (1997). In the present study, 
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compositional and structural analyses are employed to reveal with the intention of 

gaining insight into the material response to cell. 

In summary, many efforts have been made by researchers (Koo et al., 2013; 

Llopis-Hernández et al., 2011; Wang et al., 2013; Weng et al., 1997; Yu et al., 2011) 

to improve biocompatibility of titanium as an implant material by developing TiO2 

nanotubes. However, the effect of nanotubes dimension, crystal structures and HA 

coating on biocompatibility of PA6 cells are less reported. Therefore, in the present 

research those parameters were studied. 

 

1.3 Objectives 

 The objectives of this research are as follows: 

i. To prepare TiO2 nanotubes with different diameters by an anodization 

method by controlling potential, time and electrolyte pH. 

ii. To prepare TiO2 nanotubes with different crystal structures by annealing at 

different temperatures. 

iii. To investigate TiO2 nanotubes dimensionality and crystal structure to cell 

proliferation, viability, attachment, protein adsorption and mineralization. 

iv. To prepare apatite coated TiO2 nanotubes surface and investigate cell-metal 

interaction on developed TiO2 nanotubes surface. 
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1.4 Research outcomes 

 The ultimate outcomes of this research project are detailed as follow: 

a) Optimum anodization parameter to form TiO2 nanotubes for cell-metal 

interaction is the main outcomes of this research work. 

b) Data on annealing temperature to obtain specific crystal structure of TiO2 

nanotubes. 

c) Optimum dimension and crystal structure for cell proliferation, viability, 

attachment, protein adsorption and mineralization. 

d) Optimum duration of SBF immersion on apatite formation on TiO2 nanotubes 

and its enhancement on cell-metal interaction. 

e) Subsequently, by acquiring this knowledge on the formation of TiO2 nanotube 

arrays and study on cell-metal interaction by altering the dimensionality and 

crystal structure, this research would reveal the viability of using TiO2 

nanotubes as a biocompatible implant material. 

 

1.5 Structure of the Thesis 

 This dissertation is organized in five chapters consecutively. Chapter 1 is the 

introduction of the research project, problem statement, objectives and possible 

outcomes of this research. Chapter 2 introduces the important background of this 

research work, properties of titanium as implant materials, surface modification of 

titanium and cell-metal interaction between TiO2 nanotubes with cells. This includes 

a comprehensive review on the improvement TiO2 nanotubes dimensionality and 
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crystal structure by controlled anodization parameter. Reviews on cellular response 

to TiO2 nanotube arrays are also presented. In chapter 3, detailed method of 

experimental work involved in the preparation and characterization of TiO2 

nanotubes are explained. Also, method to study cell interaction is presented in this 

chapter. This covers a brief explanation on the characterization equipment, 

operational principle and sample preparation. 

Chapter 4 includes the discussion based on the results obtained from the 

experiment of TiO2 nanotube arrays formation and cell-metal interaction study. The 

content consists of four main parts: (1) the detail investigation on the growth 

behavior of TiO2 nanotubes by altering anodization parameter (e.g., applied 

potential, anodization period and electrolyte pH) and effect of structural 

characteristics on the surface properties; (2) the crystallization of TiO2 nanotube 

arrays at different annealing temperature; (3) cell-metal interaction (cell 

proliferation, viability, attachment, protein adsorption, mineralization, biomarker 

(immunostaining and Western Blot) and immunophenotyping) with regard to the 

TiO2 nanotubes dimensionality and crystal structure; and (4) HA coating on TiO2 

nanotubes by immersion in SBF and its interaction with PA6 cells. The potential of 

newly develop TiO2 nanotube surfaces as implant materials are discussed in detail. 

Finally, Chapter 5 presents the conclusion of this research work and suggestions for 

improvement for future study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

According to a recent report by World Health Organization (WHO), skeletal 

injuries that typically involves having patient lie in bed for up to 3 months, prevent 

most patient from working and thus places large burden on the patient’s family 

(Matityahu et al., 2014). Ideally, effective biomaterials implant is required to 

overcome aforementioned drawback to stimulate rapid wound healing (Brammer et 

al., 2008).  

Ti and its alloy have been well known implantable materials (Oh et al., 

2006). A number of reports have shown that the surface structure of titanium is 

critical for determining the success or failure of clinical titanium implantations for 

the purpose of bone, joint, or tooth replacements (Webster and Ejiofor, 2004; 

Raimondo et al., 2010; Jacobi-Gresser et al., 2013). In the past, numerous studies on 

implant surface modifications have been performed at the micrometer scale to 

optimize the surface geometry and profile to best fit cell interactions for adequate 

bone growth (Kawahara et al., 2004; Li et al., 2005; Pisarek et al., 2011). Recently 

efforts have been made to improve cell stimulating, biomimetic activities by 

designing new surface geometries at nanoscale (Lim et al., 2008 and Chiang et al., 

2009). Therefore, for the past decade, Kubota have suggested that TiO2 nanotube 

arrays grow on Ti metal would be the best candidate as an implant material. The 

excellent biocompatibility appears to depend on the presence of a passive oxide layer 

(TiO2 layer) formed on the surface (Sasaki et al., 2006). In an effort to enhance the 
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cell implant material interaction and increase lifetime, bioactive ceramic based 

coatings have been applied to Ti implants (Crawford et al., 2007). 

In this chapter, the properties of Ti as implant material is first introduced and 

reviewed. Then, technique for surface modification of Ti as implant device is 

discussed. A section on the interaction of TiO2 nanotubes and cells is also presented. 

 

2.2 Ti as biomaterials 

European Society for Biomaterials Consensus Conference defined that 

biomaterial is a non-viable material used in a medical device intended to interact 

with biological systems (Carter and Norton, 2007). Recently, demand on the 

manufacture of synthetic biomaterials arises tremendously in the form of implant and 

medical devices (Simchi et al., 2011). The aim of biomaterials design is to mimic the 

biomechanical properties of host tissue (Von Der Mark et al., 2010) and suits it 

applications. Some of biomaterials and its application are listed in Table 2.1. Among 

this materials, Ti and its alloys such as Ti-6Al-4V and Ti-6Al-7Nb are widely used 

in bio-medical applications for instance (e.g. artificial hip, orthopedic or dental 

implants) because of their high strength-to-weight ratio, good mechanical properties 

(Table 2.2), biocompatibility (Crawford et al., 2007), high corrosion resistance (low 

metal  ion  release)  (Macak  et al., 2005b  and  Tsuchiya,  2006),  processibility  and 

availability (Freese et al., 2001). Even though Ti commonly use as implant material, 

they are also utilized as anti-bacteria (Baram et al., 2009), anti-cancer (Kalbacova et 

al., 2008), drug delivery (Peng et al., 2009) and biosensor (Chen et al., 2010). Figure 

2.1 shows the schematic comparison of natural tooth and implant tooth. However, Ti 

cannot bond directly to living bone after implantation into a host body (Park et al., 



Table 2.1 List of biomaterials and its application. 

Implant material Morphology Application Author and Year 
Polymer demixing of 
polystyrenes 

Nanometrically 
high islands 

Stents, conduits, and bone repair De Graaf et al., (1995) 
Dalby et al., (2002) 
Berry et al., (2006) 
Lim et al., (2012) 

Tantalum Porous Implant Bobyn et al., (1999);  
Zhang et al., (1999); 
Koutsostathis et al., 
(2009) 

Carbon Nanotubes improved tracking of cells, sensing of microenvironments, 
delivering of transfection agents, and scaffolding for incorporating 
with the host's body 

Harrison and Atala, 
(2007) 
Saito et al., (2009) 

Polyaryletherketones 
(PAEKs) 

Porous orthopedic, and spinal implants Kurtz and Devine, 
(2007) 

Fe3O4 
 

Nanoparticles pH-responsive drug release 
 
antibacterial biomaterials for biomedical devices and implants 
 

Gan et al., (2011) and  
Chen et al., (2013) 
Das et al., (2013) 

HA Powder 
compaction 

Bone replacement Saha et al., (2012) 

TiO2  Foam  
Thin film 
Nanotubes 

Scaffold 
Bone implant 
Nasal surgery (nasal septal perforation repairmen, nasal 
reconstruction or rhinoplasty and cerebral spinal fluid (CSF) 
rhinorrhea repairment) 

Haugen et al.,( 2004) 
Park et al., (2011) 
Lan et al., (2014) 
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Table 2.2 Mechanical properties of selected titanium biomaterials (Freese et al., 
2001). 

Grade 
Designation and 
type 

Tensile 
Strength 
(MPa) 

0.2% Yield 
Strength 
(MPa) 

Elongation 
% 

Reduction 
in Area % 

Typical 
Hardness 

(Rockwell) 
Ti CP-1 (Alpha) 241 172 24 30 70 HRB 
Ti CP-2 (Alpha) 345 276 20 30 80 HRB 
Ti CP-3 (Alpha) 448 379 18 30 90 HRB 
Ti CP-4 (Alpha) 552 483 15 25 100 HRB 
Ti-6Al-4V 
(Alpha/Beta) 

931 862 15 30 36 HRC 

Ti-6Al-7Nb 
(Alpha/Beta) 

862 793 10 25 32 HRC 

Ti-15Mo 793 655 22 60 24 HRC 
Ti-12Mo-6Zr-2Fe 
(Beta) 

1000 965 15 40 33 HRC 

Ti-35Nb-7Zr-5Ta 827 793 20 55 35 HRC 
HRB = Hardness, Rockwell B Scale, HRC = Hardness, Rockwell C Scale. 

 

 

Figure 2.1 Schematic comparison between natural tooth and implant tooth (Oshida, 
2006) 

 

2010). Therefore, the following section provides a method for improving the bone-

bonding ability of an implant by modifying Ti surface as investigated in the present 

study. 
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2.3 Physiological response to implanted materials 

 Recently, few studies have reported a correlation between nanoscale surface 

topography and cell interaction (Conforto et al., 2008; Lamolle et al., 2009; 

Chamberlain et al., 2011). There are a few biological activities involves before the 

cell-metal interaction take place. Figure 2.2 shows biological response to material 

surfaces. Immediately after biomaterial implantation, interaction between water 

molecules and surface material occur. Then, protein adsorption takes place. Protein 

that bound to biomaterial surface act as detection sites via specific cell receptors for 

cell to adhere (integrins) (Jell et al., 2009). Surface chemistry and topography affects 

the protein quantity, conformation, direction and distribution that bound to 

biomaterial surface. For instance, direction of adsorbed protein and conformation 

may hinder cell receptor detection. Cell anchorage to biomaterial surface is crucial 

for majority of cell type to survive. Focal adhesion sites are combination of proteins 

that bound to biomaterial surface, receptors at cell membrane and cytoplasmic 

proteins. Interaction between focal adhesion and cytoskeleton stimulate signal 

transduction, protein production, gene expression and ECM remodeling. These 

critical factors subsequently affect cell behavior. These reveal that adaptation of cell 

adhesion and behavior towards biomaterial surface depends on the type of cell, 

materials surface and environment. 

 

2.4 Biocompatibility of nanomaterials 

Ti is acceptable worldwide for its excellent in implant application due to the 

biocompatibility properties of Ti. Biocompatibility can be address by an ability of a 

material to perform with an appropriate host response in a specific application  
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Figure 2.2 Time line of the biological response to material surfaces (Jell et al., 
2009). 

 

(Ratner, 2001). Cytocompatibility and healing process can be improved by 

modifying Ti surface (Balasundaram et al., 2008). 

 

The high degree of Ti implant biocompatibility is usually ascribed to their 

ability to form stable and dense oxide layers consisting mainly of TiO2. The native 

oxide layer on Ti is spontaneously grown in most environments whenever has 

mechanically damaged. These native oxide layers are usually 2-5 nm thick, 

depending on the redox potential of the surrounding environment. Based on previous 
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experience with Macak and co-workers (2005a), thicker oxide layers can be grown 

on the alloys by electrochemical anodization in various solutions. 

Nanomaterials formulation exhibited a greater real surface area compared 

with conventional materials. It is because nanomaterials may significantly influence 

nanoimplants corrosion behavior (Yu et al., 2009). TiO2 nanotubes layer has larger 

surface area compare to conventional materials surface. This matter will affect 

titanium corrosion resistance (Saji and Choe, 2009). One important characteristic for 

implant materials is corrosion behavior. TiO2 nanotubes possessed better corrosion 

resistance than bare alloys or pure Ti metal (Al-Mobarak and Al-Swayih, 2014). 

Hollow structure act as perfectly pits because can behave as effective channels for 

electrolyte to reach implant materials surface. Lower corrosion resistance of these 

TiO2 nanotubes resulting from concave shape of tubes bottom and distinctly 

separated tube bottom with barrier oxide interface (Saji et al., 2009). Thin oxide 

layer approximately 4 nm on Ti surface make Ti relatively inert and corrosion 

resistance metal (Ratner, 2001). Pure Ti metal has positive ions that tend to oxidize 

upon exposure to the environment. Therefore, a systematic research on TiO2 

nanotubes corrosion resistance is a must before clinical trial. Corrosion behavior will 

be defined either implant materials is biocompatible or not. 

 
2.4.1 Titanium osseointegration 

For the past 30 years, many researches have been developed for improving 

osseointegration (Ehrenfest et al., 2009). In clinical terms, osseointegration is 

defined as the stability and stiffness of a joint due to abnormal adhesion and rigidity 

of the bones which may be the result of injury or disease (Arakeri et al., 2011) of an 

implant in bone. Fibrous tissue isolates Ti from surrounding bone after implantation 
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process (Das et al., 2007) by a process known as the foreign body reaction (van den 

Beucken et al., 2005). Oxidative stress from surgical trauma during and after 

implantation will create overproduction of free radical and oxygenated derivatives. 

This phenomenon will thicken TiO2 layer. Calcium and phosphorus ion from bone 

matrix are then incorporated within TiO2 porous layer resulting interface between 

bone and implant to be highly dynamic (Khor et al., 2006). Unfortunately, 

contamination and destruction of TiO2 layer leads to peri-implantitis process. This 

process is destructive inflammatory process affecting the soft and hard tissues 

surrounding the implant materials (Ehrenfest et al., 2009). To facilitate 

osseointegration, an anodization treatment of titanium and its alloys to achieve 

thicker and more stable TiO2 based oxides, which are generally favorable for the 

surface bioactivity (Macak et al., 2005) were studied in the present study. 

 

2.5 Cell-metal interaction 

Implantable biomaterials are subjected to several interacting forces whenever 

they come in contact with the physiological systems (blood, immune system, 

nervous, digestive, respiratory, reproductive and urinary) and organ in human body. 

The interaction include the effects of body temperature, body physiological fluids 

containing several ions and bio-molecules, proteins and cells with various functions 

(Jackson and Ahmed, 2007). The first interactions are between the cell and surface 

defines the quality of the cell-metal interaction (Anselme et al., 2010). Integrin 

receptor acts as an interface between the intracellular and extracellular compartment 

in cell-metal interaction process. On the extracellular side, integrin interact with 

ECM and on intracellular side, integrin interact with cytoskeleton and signaling 

molecules at the adhesion site, called focal adhesion. Figure 2.3 ascribed the 
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filopodia, lamellipodia and focal adhesion of cell on surface substrate. However, 

limited information has been discussed in literature on cell–materials interactions. 

Llopis-Hernández et al., (2011) describe cell-material interaction as a complex bi-

directional and dynamic process that mimics biological function to a certain extent 

the natural interactions of cells with the extracellular matrix. Figure 2.4 shows 

example ECM covering the substrate surface. Surrounding cells tends to adhere and 

rearrange adsorbed ECM proteins on the materials surface in a fibril-like pattern. In 

various literatures, the filopodia act as cell’s tools to explore its surrounding (Le 

Guehennec et al., 2008; Das et al., 2009; Yu et al., 2010).  

 

 

Figure 2.3 Model for cell alignment on surface substrate. (a) Focal adhesion and 
actin filament adhere to surface substrate. (b) Filopodia movements are isotropic on 
surface substrate. Adapted from Anselme et al., (2010). 
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In general, cell-metal interaction study tends to focus on the initial cell 

adhesion phase. However, little attention is paid to cell-metal interaction after this 

stage. First, cells adhered within 24 h, called short-term adhesion. The long-term 

adhesion represents the strength of cell-metal interface formed within 3 weeks of 

culture period involving ECM proteins synthesized by the cells themselves and cell-

cell interactions can be seen (Anselme et al., 2010). However, cell-metal interaction 

mechanism which the topographical cue effects the functions of PA6 cells are still 

not well understood and this has hampered optimization of the biomaterials 

topography. Therefore, in this work, surface factors such as dimensionality, surface 

roughness, crystal structure and surface coating were investigated to understand the 

cell–materials interaction for the next generation orthopedic implants. 

 

 
Figure 2.4 Scanning electron micrograph showing a multilayer of rat bone marrow 
cells and extracellular matrix covering the substrate surface (Knabe et al., 2002). Bar 
= 20mm. 

 

2.5.1 Cell 

 An adult human body consists of more than 50 trillion cells and most of these 

cells are specialized in structure and function (Wynsberghe et al., 1995). Whatever 

their specific functions, most cells are capable of carrying on life-sustaining 
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activities such as breaking down food molecules for energy and generating energy-

rich adenosine triphosphate (ATP), reproducing, synthesizing chains of polypeptides, 

engulfing foreign materials and creating new cell structures and getting rid of old 

ones. Each cells works together with other cells to provide an environment that is 

compatible with all the process of life (Wynsberghe et al., 1995). Scientists divide 

cells into four basic parts: 

1. The plasma membrane is the outer boundary of the cell. It selectively allows 

substances to pass into and out of the cell. 

2. Cytoplasm is the portion of the cell outside the nucleus and within the plasma 

membrane. Metabolic reactions take place here with the aid of specialized 

structures called organelles. The fluid portion of the cytoplasm is called cytosol. 

3. The nucleus is the control center of the cell. Within the nucleus are the 

chromosomes that contain the genes that direct reproduction, information flow 

and the heredity of cells. The nucleus is a clearly defined body that is separated 

from the surrounding cytoplasm by a double nuclear envelope. 

4. Nucleoplasm is the material within the nucleus. 

 

Table 2.3 shows the selection of cell types to investigate their response and 

interaction to biomaterials. From Table 2.3, it can be concluded that different cell 

types gave different cell responses. So, in present days, specific studies are focused 

to understand the influence of cell type, response and biological mechanisms to 

specific nanotopography pattern. 

 



Table 2.3 List of cell type selection to study cell-metal interaction and its information. 

Year Author Cell type Information 
2014 Lan et al., Human nasal epithelial 

cells (HNEpC) 
Nasal application (nasal septal perforation repairmen, nasal reconstruction or 
rhinoplasty and CSF  rhinorrhea repairmen). 

2013 Lan et al., MRC-5 human fibroblasts Stronger diameter dependence of cell activity 
2012 Cao et al., Rat bone marrow stromal 

cells (BMSC) 
Used as dental or orthopedic implants 

2011 Brammer et 
al., 

MC3T3-E1 mouse 
osteoblast cells 

Aiding in the design of orthopedic implants with improved osseointegrating 
interfaces. 

2011 Chamberlain 
et al., 

Bone marrow cells 
differentiated into 
macrophage cells 

Decreased inflammatory response in medical devices 

2011 Choe MC3T3-E1 mouse 
osteoblast cells 

Used in dental and orthopedic implant materials 

2011 Ma et al., Human gingival 
fibroblasts (HGF) 

Use in dental implant abutment 

2011 Narayanan 
et al., 

MG63 human 
osteosarcoma cells 

Used as orthopedic implant materials 

2011 Smith et al., Human dermal fibroblasts 
and human epidermal 
keratinocytes 

Allow primary integration between the dermis and the transcutaneous implantable 
devices. 
Epidermal integration based on subsequent cell signaling and cell-cell attachment. 
 

2011 Yang et al., Osteoblast from fetal rat 
calvarial cells 

Osteoblasts are established  cells that respond to the material substrate and have 
pivotal role at the surface of implant materials with the secretion of many cytokines 
involves in bone remodeling 

2010 Yu et al., MC3T3-E1 mouse 
osteoblast cells 

Used as implantation materials. 

2008 Das et al., Osteoblastic precursor cell 
line (OPCI) 

Preferential cell attachment on rough surface compare to smooth surface. 

20 
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2.5.2 PA6 cells 

 PA6 or MC3T3-G2 cells are stromal cell line derived from newborn mouse 

calvaria (Turksen, 2002). Bone marrow stromal cells are a critical cellular element of 

the bone marrow microenvironment and support the production of blood cells from 

the bone cavity in adults (Milwid et al., 2013). In certain situation, PA6 cells mono 

layer can be used as feeder cells that support sustained generation of various 

hematopoietic progenitor types. PA6 cells support the differentiation of cells 

resembling osteoclasts in co cultures with spleen cells (Krauser et al., 1994). 

 

2.6 Nano-scale surface engineering on Ti 

The term ‘surface engineering’ was used for the first time in England in the 

70s. Different aspect of thermal spraying and welding are focusing at the beginning 

before progressively broadened its range of attention. Then, Wolfson Institute for 

Surface Engineering was formed at University of Birmingham. That institute mainly 

concern with problem stemming from surface diffusion treatment with vacuum 

technology at the beginning. Next, the activity broadening its scope to various 

technique of surface layers formation. Surface engineering is a science discipline 

including surface layers manufacturing processes (coating and exterior layer for the 

purposes of scientific and technology) related phenomenon and performance effects 

(Burakowski and Wierzchoń, 1999). 

Surface modification can be derived by transformation of structure, 

morphology and material surface composition without leaving the bulk mechanical 

properties (Hanawa, 2009). The aim of Ti surface modification is to produce fine 

porous layer on biomaterials. Specifically, cavities and high surface area of 
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biospecies, precursor’s adsorption and anchoring were exploited (Macak et al., 

2005b). To further improve Ti bioactivity, biocompatibility, the interface between 

bone and implant and implant anchorage to bone, different surface modification 

methods have been explored (Tsuchiya, 2006).  

Typically, two different strategies have been developed. In the first approach 

by incorporating inorganic phases such as calcium phosphate on or into TiO2 layer 

interface chemically was improved. This inorganic chemical modification, bone 

regeneration   is stimulated   and   biochemical   interlocking between bone   matrix 

proteins and surface materials increase. Conversely, biochemical surface 

modification is differ from first strategy and refer to organic molecules incorporation 

such as protein, enzymes or peptides to persuade specific cell and tissues responses 

(Ehrenfest et al., 2009).  

For second approaches, the interface is improved physically by surface 

topography architecture. At micrometer stage, rough surface create higher developed 

area rather than smooth surface. This rough surface increase bone anchorage 

reinforced the biomechanical interlocking of the implant with bone up till certain 

level of roughness. At nanometer stage, the roughness increase surface energy to 

improve protein matrix adsorption, bone cell migration, proliferation and 

osseointegration (Ehrenfest et al., 2009). To date, anodization of Ti has been 

investigated because can be easily create biological-inspired nanometer roughness 

(Balasundaram et al., 2008). From Table 2.4, nano-scale topography of TiO2 

provides adhesion sites for protein help cell proliferation into 3D formation and 

facilitate in cell differentiation as compared to other surface morphology. Wu et al., 

(2008) indicate the potential use of spin-coating materials for orthopedic and implant 

materials. Spin coating significantly improved adhesion strength, chemical stability  



Table 2.4 List of surface engineering approaches to achieve geometrical structuring of TiO2 surface. 

Year Author Surface 
engineering 

Morphology Finding 

2001 Casaletto 
et al., 

Metal organic 
chemical vapor 
deposition 

Thin film Higher amount of organic species found on the substrate surface 

2005 Li et al., Polymeric 
sponge 
replication 

Porous TiO2 sponge Nontoxic and favorable for cell attachment 

2009 Chiang et 
al., 

Anodization Nano-network layer 
of TiO2 

Greater amount of proteins on nano-scale TiO2 network. 
Help human bone marrow stem cells (hMSC) proliferate to 3D formation 
in vivo 
Facilitate hMSC to differentiate toward osteogenic lineage 

2010 Raimondo 
et al., 

Electron beam 
evaporation 

Micron rough 
surface features and 
higher degree of 
nanometer surface 
features 

Increase surface energy and promote surface osteoblast and endothelial 
cell adhesion 
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and able to form apatite layer in SBF compared to HA coat Ti-6Al-4V. Based on the 

literature review of this section, it is important to optimized implant materials 

regarding their surface characteristic (e.g. chemistry, topography, surface energy and 

morphology (Bauer et al., 2008) before implantation.  

 
2.6.1 TiO2 nanotube arrays 

An approach for synthesis of highly ordered and vertically oriented TiO2 

nanotubes  on  Ti and Ti-alloy  substrates have  been  discovered in 1999.  Basically,  

anodization of the substrates was performed in a fluoride containing electrolyte 

under specific electrochemical conditions that lead to self-organize TiO2 nanotubes. 

Up to now, several generations of nanotubes have been brought forward (Kalbacova 

et al., 2008) to further improve its dimensionality. 

For pure Ti, the compact TiO2 layer thickness increase gradually with the 

growth rate of 2.5 nm/V up to applied voltage where dielectric breakdown of the 

oxide occurs at 100 - 200 V. Ti anodization in electrolytes contain F- ion at 10 - 20 V 

produced porous structures (π-TiO2) consist of nanotubes with 100 nm range 

diameter (Macak et al., 2005b) and a length of ~ 500 nm (Tsuchiya, 2006). Figure 

2.5 shows TiO2 nanotubes morphology and cross sectional view. Throughout 

anodization process, the Ti foil surface color generally transforms from purple to 

blue, yellow, red, and then lastly light red (Quan et al., 2005). Through this 

technique, TiO2 nanotubes with a diameter ~ 100 nm could be developed.  

The construction of the nanotube structures on titanium during anodization is 

because of the competition between TiO2 growth and TiO2 dissolution. Throughout 

the Ti foil anodization nanotube structures are produced through two processes: 

field-enhanced Ti oxidation and field-enhanced oxide dissolution. There are two  
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